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INTRODUCTION 

• Survival analysis, or more generally, time-to-event analysis, refers 

to a set of  methods for analyzing the length of  time until the 

occurrence of  a well-defined end point of  an interest. A unique 

feature of  survival data is that typically not all patients experience 

the event (e.g, death) by the end of  the observation period, so the 

actual survival times for some patients are unknown. This 

phenomenon, referred to as censoring, must be accounted for in 

the analysis to allow for valid inferences. 



• Moreover, survival times are usually skewed, limiting the usefulness of  

analysis methods that assume a normal data distribution. Analyzing survival 

data is unique, in that the research interest is typically a combination of  

whether the event has occurred (binary outcome) and when it has occurred 

(continuous outcome).



• Appropriate analysis of  survival data requires specific statistical methods that can deal with 

censored data. As the assessed outcome is frequently mortality, these techniques are subsumed 

under the term survival analysis. 

• Generally, these techniques can be used for the analysis of  the time until any event of  interest 

occurs (e.g, recurrence of  a disease; initial breakthrough, postoperative pain; or failure of  an 

implanted medical device), and such data can thus also be called time-to-event or failure time data 

(Schober, 2018). In medicine, time duration from the patient had been diagnosed up to the time 

of  his death. 



• The objective of  a survival data analysis may be just to describe a single sample of  data 
to describe the lifetimes of  a single population or to compare the lifetimes of  two or 
more groups of  subjects; for example, the two groups may have received different 
medical treatments and the lengths of  survival time measure how effective the 
treatments are.  

• The two main characteristics of  data on times until failure are: (i) The times are non-
negative and have skewed distributions with long tails. (ii) A distinctive feature of  
survival data is that some observations may be censored: often the event of  interest 
(e.g. death of  patient, failure of  component, recovery of  patient) has not occurred by 
the time of  recording so that all is known is that the lifetime for that subject is at least 
some value (and may well be greater than this value). 



• Such censoring cannot just be ignored since they carry important information about the 

effectiveness of  the treatment. This introduces a complication in the statistical description 

and analysis of  the data. (Fieller, 2011).  

• There are five different types of  censoring, namely: right, left, interval, double and middle 

censoring (Jammalamadaka and Mangalam, 2003; Collett, 2003; Turnbull, 1974).



Kaplan Meier Model• Kaplan Meier is derived from the names of  two statisticians; Edward L. 

Kaplan and Paul Meier, in 1958 when they made a collaborative effort and 

published a paper on how to deal with time to event data. Therefore, they 

introduced the Kaplan-Meier estimator which serves as a tool for measuring 

the frequency or the number of  patients surviving medical treatment. Later 

on, the Kaplan-Meier curves and estimates of  survival data have become a 

better way of  analyzing data in cohort study. Kaplan- Meier (KM) is non-

parametric estimates of  survival function that is commonly used to describe 

survivorship of  a study population and to compare two study populations.



• KM estimate is one of  the best statistical methods used to measure the survival probability 

of  patients living for a certain period of  time after treatment. It is an intuitive graphical 

presentation approach. In clinical trials or community trials, the intervention effect is 

assessed by measuring the number of  participants saved or survived after that intervention 

over a period of  time. KM estimate is the simplest procedure of  determining the survival 

over time in spite of  all the difficulties associated with subjects or situations. Curves are used 

in Kaplan Meier estimate to determine the events, censoring and the survival probability.



• KM estimate is one of  the best statistical methods used to measure the survival probability of  

patients living for a certain period of  time after treatment. It is an intuitive graphical presentation 

approach. In clinical trials or community trials, the intervention effect is assessed by measuring 

the number of  participants saved or survived after that intervention over a period of  time. KM 

estimate is the simplest procedure of  determining the survival over time in spite of  all the 

difficulties associated with subjects or situations. Curves are used in Kaplan Meier estimate to 

determine the events, censoring and the survival probability. 



• Kaplan-Meier survival curve is used in epidemiology to analyze time to event data 

and to compare two groups of  subjects. The survival curve is used to determine a 

fraction of  patients surviving a specified event, like death during a given period of  

time. This can be calculated for two groups of  patients or subjects and also their 

statistical difference in the survivals. 



• Product Limit estimate (PLI) is another name of  Kaplan Meier estimate. The 

product-limit formula estimates the fraction of  organisms or physical devices 

surviving beyond any age t, even when some of  the items are not observed to die or 

fail, and the sample is rather small. It involves computing the probabilities of  

occurrence of  event at a certain point of  time. These successive probabilities will be 

multiplied by any earlier computed probabilities to determine the final estimate.



• For example, the probability of  a sub-fertile woman surviving the pregnancy three 

months after laparoscopy and hydrotubation can be considered to be the probability 

of  surviving the first month multiplied by the probabilities surviving the second and 

third months respectively given that the woman survived the first two months. The 

third probability is known as a conditional probability (Etikan, 2017). 



OBJECTIVES OF THE PAPER

The objectives of  this seminar paper are to; 
• introduce Kaplan Meier as a statistical model for survival analysis, 

• identify various types of  censoring in survival analysis, 

• describe survival and hazard function in survival analysis and 

• finally, introduce the modified model



 
LITERATURE REVIEW 

• This section presents the brief  literature about the Kaplan Meier and various types of  

censoring in survival analysis. 

• Kaplan Meier is a non-parametric statistic that deals with time-to-event data, which 

analyze the patients or participants that will be lost to follow-up or dropped out of  

the study; those who will develop the disease of  interest or those that will survive it.



Time -to- Event Data and Censoring
• Time-to-Event Data is the data that have the time as a principal end point as an event 

occurs. Some examples for time-to-event data is time until an electrical component 

fails, time needed to recover from illness and then the subjects in these studies may 

provide a survival time or a censoring time. If  not all the subjects in data will have 

experienced the event at the end of  the follow-up period, this is called censoring, 

meaning that the observation period ended without observing the event of  interest.



Censoring may occur due to various reasons (Klein and Kleinbaum, 2005) listed three 

main reasons of  censoring: 

• 1- An object does not experience the event before the study ends. 

• 2- An object is lost to follow-up during the study period. 

• 3- An object withdraws from the study because of  other failure reasons.



• It is not possible in these cases to know if  and when the subject would have 

experienced the event. As an example, consider a study of  a group of  patients who 

suffer from a certain disease. Let 𝑇 be the time to death after diagnosing the disease. 

Subjects who are still alive at the end of  the study or who were dropped from the 

study and the current status is unknown, will be the censored observations. Consider 

another example as a study of  a group of  patients who received treatments for a 

certain illness. Let 𝑇 be the time to cure after the treatment. In this case, censored 

objects are those who still need treatments at the end of  the study.



Thus censoring is usually coded as follows;

        1: if  not censored  
   δ =              (2.1) 
         0: if  censored 
There are different censoring mechanisms (Abeysundara and Hemalika, 2010). 

2.2 Censoring Mechanism: 

• There are several mechanisms that can lead to censored data. We may distinguish the 

following types of  censoring:



Type I censoring:
It refers to studies where all subjects enter the study at the same time and 

experiment is terminated at a specific time tc 

Hence;  

   1: if T≤ t event occurred 

   δ =          (2.2) 

   0: if  tc <T      censored  

In type I censoring, if  there are no accidental losses, all censored observations 

equal the length of  the study period (Lee, 2003). 



• In this type, the total duration of  the study is fixed while the number of  events (i.e, the 

number of  individuals who have been exposed to the event) is a random variable. This kind 

of  censoring is called (fixed censoring), within which the time of  stopping the study is 

determined after a specified period of  time (Fieller, 2011). 

• Figure below shows the Type I censoring mechanism where the subjects who observed the 

event of  interest after time tc are the censored data (Abeysundara and Hemalika, 2010).



Figure 2.1: Type I censoring



• Up to date, there are five known censoring mechanism of  Type I censoring occur in survival 

data, which are mainly classified according to the status of  objects and time of  checking up the 

occurrence of  the desired event. 

1. Right censoring: 

• It is the most common situation in survival data, and this case is linked to the individuals that 

the event did not happen to it. Some individuals stay alive at the end of  the study which means 

that the residence time of  the individuals exceeds a point of  the end of  the study tc and the 

individuals are called at the right censoring.



Right censoring may occur because of: 

• 1. Researcher's decision to end the study before the event occurs. 

• 2. The inability to reach the individuals for any reason. 

• 3. Some individuals did not get the event. 

2. Left censoring: 
• Suppose that we have a single individual in the study, but the exposure time of  the risk is 

unknown, for example, cancer patients and AIDS patients. The beginning of  the infection 

time is unknown but death time is well known because of  this disease. This individual is called 

left censoring.



• 3. Interval censoring: 
• In this case, the time of  occurrence of  the event is not exactly known for some individuals, but 

the known is the period of  time in which the event occurred, and it is said about this 

individual's interval censoring (Fieller, 2011). 

4. Double Censoring: 

• When some of  the data are censored on the left and some on the right, in other words if  both 

left and right censoring occurs simultaneously. (Turnbull, 1976) introduced a special type so-

called doubly censored, for example analyzed a real sample consists of  65 children from Nigeria 

are tested monthly, if  they had learned certain tasks, double censoring occurred due to late 

arrivals (those who already learned the skills before entering the study) and losses ( those who 

had not acquired the skill by the end of  study time ).



• 5. Middle Censoring: 
• Jammalamadaka and Mangalam (2003) introduced the middle censoring' scheme in non-

parametric set up is called a general censoring scheme. If  a data point is not observable when it 
falls inside a random interval here middle censoring is occur. The middle censoring scheme can 
be described as follows: 

• Suppose 𝑛 identical items are set in test and the lifetimes of  these items are T1 … Tn. For the ith 
item, there is a random censoring interval [Li, Ri] which follows some unknown bivariate 
distribution. Ti is observable only if  Ti ϵ [Li, Ri] otherwise it is not observable. 

• Iyer, et al. (2008) presented the analysis of  middle censored data with exponential lifetime 
distribution, and recently, Bennett (2011) explored middle censoring for further parametric 
models like the Wei-bull and Gamma families and for parametric models with covariates, 
recently Abuzaid, et al. (2015) studied the robustness of  middle censoring.



2.2.2.  Type II censoring 

• In this case, the number of  individuals that have known event occurs (fixed) in advance, while 

the total study period is a random variable which cannot be known in advance and the time of  

the end of  the study is to be determined after certain number of  cases occurrence of  the 

event. 

• Also we refer to the censoring as the type II censoring, when it is possible to terminate the 

experiment after rth failure occurs out of  n items. 

• The first n observations will obtain survival times and the rest of  the n – r items will obtain 

failure time = Tr as explained in the Figure below (Abeysundara and Hemalika, 2010)



Figure 2.2: Type II censoring



2.2.3 Type III censoring (Random Censoring)

• In this type, every individual has expected time censoring Ci and expected survival time Ti 

assumed that the time censoring and survival time of  two random variables are independent. 

We note that Yi = min (Ci ,Ti )  Yi is a time of  survival or censoring time whichever is less, and 

the cursor variable named  di and tells us that the viewing ended in death or censoring, and this 

type is a combination of  two previous types (Fieller, 2011). 

• In real life practice, not all the subjects are enrolled at the same time and thus the follow-up 

period can vary from one subject to another. Random censoring allows subjects to enter the 

experiment at any time. Right censoring is presented here and left censoring is analogous.



 
They may; 
1. Loss to follow up - we do not see them but only know that they are still alive - Censored. 
2. Drop out/died - Uncensored 
3. Survive at the end of  the experiment – Censored 
 
Figure 2.3: Random censoring



• A life time associated with a specific individual in a study is considered to be left 

censored if  it is less than the censoring time. That is, the event of  interest has already 

occurred before the beginning of  the study. A study may contain right censored data, 

left censored data or both. 

• Both means that the random censoring data that is a combination of  right censoring 

and left censoring (Abeysundara and Hemalika, 2010).



 
2.2.4 Informative and Non-informative censored 

• In informative censoring, the event and censoring rates are assumed to be the same 

conditional on the level of  the covariates. Essentially means that within any subgroup of  

interest, the subjects who are censored at time t should be representative of  all the subjects in 

that subgroup who remained at risk at time t with respect to their survival experience. In 

other words, censoring is independent provided that it is random within any subgroup of  

interest. So independent censoring is a less restrictive form of  random censoring (where we 

would not be taking into account the survival profile by covariates) (Campigotto and Weller, 

2014).



• Non-informative censoring is when time to event and time to censoring are independent 

conditional on the level of  covariates. It occurs if  the distribution of  survival times (T) 

provides no information about the distribution of  censorship times) (C), and vice versa. The 

assumption of  non-informative censoring is often justifiable when censoring is independent 

and/or random; nevertheless, these assumptions are not equivalent. In non-informative 

censoring we assume that the time to censorship distribution is not related to the time-to-event 

distribution (e.g. if  a patient in a study received the event, then another patient in the study is 

selected randomly to leave the study). (Kleinbaum and Klein, 2011)



2.3.1  The Survival Function

• Survival function is the probability that the random survival time variable T is greater than or 

equal to a specific t. Let F (t) be the cumulative distribution function of  t and the survivor 

function is the right tail probability, where T>0 have a pdf  f (t) and cdf  F (t). (Smith, et al., 2003). 

The purpose of  survival analysis is to compare and estimate survival experiences of  different 

groups and it can describe survival experience by the cumulative survival function, then the 

survival function takes on the following form: 

 S (t) = P {T>t} = 1 – F (t)       (2.3) 

  Where, F (t) = P (T<t) =  du∫
𝑡

0
𝑓 (𝑢)



 

Survival function gives the probability of  surviving or being event-free beyond time 

t . Because S(t) is a probability, it is positive and ranges from 0 to 1, it is defined as 

S(0) = 1, and as t approaches ∞ , S(t)   approaches 0 . Survival curve describes the 

relationship between the probability of  survival and time. 

Figure 2.4: The probability of  survival vs time



• They are non-increasing; that is, they head downward as t increases. At time as t → ∞,  t = ∞, 

S(t) = S (∞) = 0; that is, theoretically, if  the study period increased without limit, eventually 

nobody would survive, so the survivor curve must eventually fall to zero. 

• The time when S(t) = 0.5 is termed the life expectancy in the population. Usually in practice, 

we don't reach the median survival at exactly one of  the failure times. In this case, the 

estimated median survival is the smallest time T such that Ŝ (t) ≤ 0.5 (Sameer, 2009).



• Also, the median survival time could be simply estimated by the sample median of  survival 
times with every survival time observed exactly in the absence of  censoring, while in the 
presence of  censoring, we need to use the Kaplan–Meier estimate Ŝ (t) to estimate the median 
(Vittinghoff, et al., 2004). 

2.3.2 The Hazard Function 

• We often modeling the lifetime through the hazard function h(t) which measures the 'risk' or 

'proneness' to death at time t, given survival up to time 𝑡. It is the probability that an individual 

die at time t, conditional on him having survived to that time. Hazard function represents the 
instantaneous death rate for an individual surviving to time t (Fieller, 2011).



• The hazard function describes the concept of  the risk of  an outcome (e.g., death, failure and 

hospitalization) in an interval after time 𝑡, conditional on the subject having survived to time 𝑡. 

It is the probability that an individual die somewhere between t and t+∆, divided by the 

probability that the individual survived beyond time 𝑡.  

• It seems that the hazard function be more intuitive to use in survival analysis than the pdf  

because it aims to determine the size of  the instantaneous risk that an event will take place at 

time 𝑡 given that the subject survived to time t (Smith, et al., 2003).



• The hazard function species the instantaneous rate of  failure at T = t given that the 

individual survived up to time t and is defined as 

         h(t) =  =  =     (2.4) 

• The hazard function is also referred to as the risk or mortality rate. The hazard is a rate 

rather than a probability. It can assume values in (∞, 0). It is easily verified that h(t) 

specifies the distribution of  T, since 

 h (t) = lim  = –       (2.5)

lim
∆𝑡→0

𝑃 (𝑡 ≤ 𝑇 < 𝑡 + ∆ 𝑡│𝑇 ≥ 𝑡)
∆ 𝑡

𝑓(𝑡)
𝑆(𝑡)

𝑓(𝑡)
1 − 𝐹(𝑡)

–𝑑𝑆(𝑡)/𝑑𝑡
𝑆(𝑡)

𝑑𝑙𝑜𝑔(𝑆(𝑡))
𝑑𝑡



• The cumulative hazard function is the integral of  the hazard function. It can be 

interpreted as the probability of  failure at time x given survival until time x: 

• H (t) =       (2.6) 

• This function is supported for continuous distributions only. It can be expressed about 

the cumulative sum of  the hazard probability function as:   

• H (t) = – log S(t)        (2.7)

∫
𝑥

−∞
h(𝑡)𝑑𝑡



• The relationship between survivor function and hazard function can be summarized 

as follow:   

1. Survivor function, S(t) defines the probability of  surviving longer than time 𝑡. 

2. Hazard function is the first derivative of  the survivor function over time 

 h(t) = dS(t)/ d(t). 

3. Instantaneous risk of  event at time 𝑡 (conditional failure rate). 

4. Survivor and hazard functions can be converted into each other.  

 (Gage, 2004),.



2.4  Estimation of  the Survival Function

• The estimation of  survival function can be obtained either parametrically or non-

parametrically. 

• There are three main assumptions that are necessary to ensure the correct estimate of  the 

survival probability in presence of  censored data. These assumptions are as follows: 

(Abeysundara and Hemalika, 2010); 

1. The subjects who are censored have the same survival distribution as those who 

continue the observation during the study. That is the censoring process which is 

independent of  the primary endpoint.



2. The subjects who first joined the study have a longer observation period and then 

have more chances to experience the event than subjects enrolled at the end of  

recruitment period. 

3. Survival probability is the same for subjects enrolled at the beginning and at the end 

of  recruitment period. And then for some events such as diagnosing a cancer, it is not 

possible to identify the exact date when the event happens.



 
2.4.2 Non-parametric Approach 

• We know that the survival function S(t) gives the probability that a person survives longer than 

some specified time t : that is, S(t) gives the probability that the random variable T exceeds the 

specified time t and survivor function in practice is estimated as: 

S(t) =    (2.8) 

• We have previously mentioned that the hazard function denoted by h(t) , also called the 

instantaneous failure rate, conditional mortality rate, force of  mortality and age specific failure 

rate.

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑖𝑛 𝑡h𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤h𝑜 𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑 𝑙𝑜𝑛𝑔𝑒𝑟 𝑡h𝑎𝑛 𝑡
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖𝑛 𝑡h𝑒 𝑠𝑎𝑚𝑝𝑙𝑒



• In practice, the hazard function is estimated as the proportion of  patients dying in an 

interval per unit time, given that they have survived to the beginning of  the interval: 

• (t) =     (2.9) 

• A non-parametric estimation of  survival and hazard function are obtained by 

Kaplan-Meier. Besides the description of  a variety in two or more groups of  the 

estimated survival time distributions and the plots of  the survival rates are simply 

start of  the survival analysis, researchers require a statistical test to conclude that, 

these differences are statistically significant or caused by “chance variation”. 

ĥ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑑𝑦𝑖𝑛𝑔 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑡h𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑠𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡



Kaplan-Meier Survival Curves 
• Kaplan and Meier (1958) put forth a new, efficient method for estimating patient survival rates, 

taking into account the fact that some patients may have died during a research trial while others 

will survive beyond the end of  the trial. The method is derived based on information from 

those who have died and those who have survived to estimate the proportion of  patients alive 

at any point during the trial is called the Kaplan-Meier estimator (also known as the product 

limit estimator). 



• The estimator is plotted over time and the resulting curve, which is a series of  horizontal steps 

of  declining magnitude that, when a large enough sample is taken, approaches the true survival 

function for that population, this is called the Kaplan-Meier curve. In medical research survival 

curves are almost universally generated by the Kaplan–Meier method (Costella, 2010). 

• The Kaplan-Meier estimate is the simplest way of  computing the survival over time despite all 

these difficulties associated with subjects or situations. An important advantage of  the Kaplan–

Meier curve is that the method can take into account some types of  censored data, particularly 

right-censoring, which occurs if  a patient withdraws from a study. On the plot, small vertical 

tick-marks indicate loss, where a patient's survival time has been right-censored. When no 

truncation or censoring occurs, the Kaplan–Meier curve is the complement of  the empirical 

distribution function.



• Let S(t) be the probability that a member from a given population will have a lifetime exceeding 

time, t. For a sample of  size N from this population, let the observed times until death of  the 

sample members be N t1 t2 t3 … tN. 

Corresponding to each ti is ni, the number "at risk" just prior to time ti, and di, the number of  

deaths at time ti. 

• The Kaplan–Meier estimator is the nonparametric maximum likelihood estimate of  S(t), where 

the maximum is taken over the set of  all piece-wise constant survival curves with breakpoints at 

the event time ti. It is a product of  the form 

•         (2.10)

≤ ≤ ≤ ≤

�̂�(𝑡) =  ∏
𝑡𝑖<𝑡

𝑛𝑖 −  𝑑𝑖

𝑛𝑖



• When there is no censoring, ni is the number of  survivors just prior to time ti. With 

censoring, ni is the number of  survivors minus the number of  losses (censored cases). It is 

only those surviving cases that are still being observed (have not yet been censored) that are 

"at risk" of  an (observed) death (Collett , 2003).



Non-parametric estimators of  the hazard function – the Kaplan-Meier estimator 

• Let , i = 1,…, n are independent and identically random variables with distribution function 

F and survival function S(t) . However, we do not know the class of  functions from which F or 

S(t) may come from. Instead, we want to estimate S(t) non-parametrically, in order to obtain a 

good idea of  the ‘shape’ of  the survival function. Once we have some idea of  its shape, we can 

conjecture the parametric family which may best fit its shape. If  the survival has not been 

censored the ‘best’ non-parametric estimator of  the cumulative distribution function F is the 

empirical likelihood 

{𝑇𝑖}



        (2.11) 

• Since n (t) is an estimator of  the distribution function 𝐹 where I is an indicator function. It is 

clear that an estimator of  the survival function S (t) is n (t) = 1 -  =   and the 

maximum likelihood estimator of  the hazard 

 is  =                 

        (2.12) 
 where  are the number of  failures at time  and  are the number of  survivors just before 
time . 
• In many respects, this is a rather intuitive estimator of  the hazard function. For example, if  there 

is no censoring then it can be shown that maximum likelihood estimator of  the hazard is 

   =      (2.13) 

which is a very natural estimator.

𝐹 𝑛(𝑡) =  
𝑛

∑
𝑖=1

𝐼(𝑡≤𝑇𝑖)

�̂�

�̂� 𝐹 𝑛(𝑡)
1
𝑛

𝑛

∑
𝑖=1

𝐼(𝑡≤𝑇𝑖)

ĥ𝑠 =  𝑃 (𝑇 =  𝑡𝑠)/𝑃 (𝑇 ≥ 𝑡𝑠−1)  ĥ𝑠
𝑑𝑠

𝑁𝑠

𝑑𝑠 𝑡𝑠 𝑁𝑠
𝑡𝑠

ĥ =
𝑑𝑠

∑∞
𝑖=𝑠 𝑑𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑤h𝑜 𝑠𝑢𝑟𝑣𝑖𝑣𝑒 𝑗𝑢𝑠𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑖𝑚𝑒𝑠



 
3.0 METHODOLOGY 

In this section, methodology used on survival analysis is basically described below;  
St = Number of  subjects living at the start – Number of  subjects that died   (3.1) 

   Number of  subjects living at the start 

 Ŝ = (1 – )         (3.2) 

: A time when at least one event happened. 
: Number of  deaths that happened at time ti 
: Individual known to survive (censored) at time t or number of  subjects at-risk at : ordered 

time 
: Number of  events, : total individuals at risk at time .,  
: discreet hazard rate (probability of  an individual with an event time ti.

∏
𝑖:𝑡𝑖 ≤𝑡 

.   
𝑑𝑗

𝑛𝑗

𝑡𝑖
𝑑𝑖

𝑛𝑖
𝑖𝑡h

𝒅𝒊 𝒏𝒊 𝑡𝑖
𝒉𝒊



S(t) =  

L [  =       (3.3) 

Therefore, the log likelihood will be; 

                       (3.4) 

Finding the maximum of  log likelihood with respect to hi yield; 

  = – = 0 → =        (3.5) 

where  is used to denoted maximum likelihood estimation given this result, we can write; 

Ŝ =     =       (3.6)

∏ (1 −  h𝑖)

h𝑗:𝑗≤𝑖/𝑑𝑗:𝑗≤𝑖,𝑛𝑗:𝑗≤𝑖]
𝑖

∏
𝑗=1

h𝑑𝑗. (1 −  h𝑗)
𝑛𝑗− 𝑑𝑗

log(𝐿) =  
𝑖

∑
𝑗=1

(𝑑𝑗log(h𝑖)+(𝑛𝑗 −  𝑑𝑗)log(1 −  h𝑖))  

𝛿log(𝐿)
𝛿 h𝑖

𝑑𝑖

ĥ𝑖

 
𝑛𝑖 −  𝑑𝑖

1 − ĥ𝑖

ĥ𝑖
𝑑𝑖

𝑛𝑖

ĥ𝑖

∏
𝑖:𝑡𝑖 ≤𝑡

(1 −  ĥ𝑖) ∏
𝑖:𝑡𝑖 ≤𝑡

(1 −  
𝑑𝑖

𝑛𝑖
)



• 3.1 Survival Model: 

Ŝ (t) =        (3.7) 

= (1– ) x (1 – ) x…x (1 – ) 

:  ordered follow-up time 

: Number of  deaths at  ordered time 

: Number of  subjects at-risk at  ordered time

∏ (1 −  
𝑑𝑖

𝑛𝑖
)

𝑑1

𝑛1

𝑑2

𝑛2
 
𝑑𝑖

𝑛𝑖

𝑡𝑖 𝑖𝑡h

𝑑𝑖 𝑖𝑡h

𝑛𝑖 𝑖𝑡h



3.2 Modified Model 

Ŝ (t) =       (3.8) 

Where   

= (1 – ) x (1 – ) x…x (1 – )       (3.9) 

:  ordered follow-up time 
: Number of  deaths at  ordered time 
: Number of  subjects at-risk at  ordered time 
= Initiation of  evaporated milk/milk extract at time t 
=Initiation of  natural food supplement (water, cooked grains, etc.) at time t

∏(1 −  
𝑑𝑗

𝑛𝑗 )𝜃𝑖

𝜃 =  𝛼𝑡𝑖  ∗  𝛽𝑡𝑖 ∗  𝜏𝑡𝑖
𝑑1

𝑛1
𝜃1 

𝑑2

𝑛2
𝜃2   

𝑑𝑗

𝑛𝑗
𝜃𝑛 

𝑡𝑖 𝑖𝑡h

𝑑𝑖 𝑖𝑡h

𝑛𝑖 𝑖𝑡h

𝛼𝑡𝑖

𝛽𝑡𝑖
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