# AI in Statistics

MSI. Agustín Gómez Meléndez

UCR-UNED

November 1, 2023



### Figure: LINK VIDEO

## Introduction

## Prompt: Al in Statistics a new way of teaching



## Figure: It happens before!

MSI. Agustín Gómez Meléndez (UCR-UNED)

AI in Statistics

November 1, 2023

# Introduction

What's the catch with GPT models?

"GPT" stands for "Generative Pre-trained Transformer." It is a type of artificial intelligence model developed by OpenAI.

- Generative: This refers to the model's ability to generate text or other content. GPT can create human-like text based on the patterns it has learned from the text it was trained on.
- Pre-trained: GPT is "pre-trained" on a vast amount of text data before it is fine-tuned for specific tasks. During pre-training, the model learns language structure, grammar, vocabulary, and some general knowledge from a diverse range of text sources.
- Transformer: The "Transformer" is a type of neural network architecture introduced in a paper titled "Attention is All You Need" by Vaswani et al. in 2017. Transformers have become the foundation for many state-of-the-art natural language processing models, including GPT. They use a mechanism called "attention" to process sequences of data, making them highly effective for tasks involving sequential data like text.

## Keywords: A new way of learn

| 1. Machine Learning                     | 26. Overfitting                           | 51. Facial Recognition                   | 76. Fuzzy Logic                    |
|-----------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------|
| 2. Neural Networks                      | 27. Underfitting                          | 52. Sentiment Analysis                   | 77. Swarm Intelligence             |
| 3. Deep Learning                        | 28. Cross-Validation                      | 53. Text Generation                      | 78. Evolutionary Algorithms        |
| 4. Natural Language Processing (NLP)    | 29. Training Data                         | 54. Language Translation                 | 79. Bayesian Networks              |
| 5. Computer Vision                      | 30. Testing Data                          | 55. Recommendation Systems               | 80. Knowledge Representation       |
| 6. Robotics                             | 31. Validation Data                       | 56. Anomaly Detection                    | 81. Semantic Web                   |
| 7. Reinforcement Learning               | 32. Model Evaluation                      | 57. Computer Vision                      | 82. Ontologies                     |
| 8. Supervised Learning                  | 33. Precision                             | 58. Object Detection                     | 83. Natural Language Understanding |
| 9. Unsupervised Learning                | 34. Recall                                | 59. Semantic Segmentation                | 84. Speech Synthesis               |
| 10. Semi-Supervised Learning            | 35. F1 Score                              | 60. Edge Computing                       | 85. Text-to-Speech                 |
| 11. Algorithm                           | 36. Accuracy                              | 61. Internet of Things (IoT)             | 86. Chatbot                        |
| 12. Data Mining                         | 37. Loss Function                         | 62. Big Data                             | 87. Virtual Assistant              |
| 13. Pattern Recognition                 | 38. Optimization                          | 63. Cloud Computing                      | 88. Machine Perception             |
| 14. Predictive Modeling                 | 39. Backpropagation                       | 64. Ethics in Al                         | 89. Affective Computing            |
| 15. Artificial Neural Networks (ANN)    | 40. Hyperparameter Tuning                 | 65. Bias in Al                           | 90. Human-Computer Interaction     |
| 16. Convolutional Neural Networks (CNN) | 41. Regularization                        | 66. Explainable AI (XAI)                 | 91. Augmented Reality              |
| 17. Recurrent Neural Networks (RNN)     | 42. Transfer Learning                     | 67. Artificial General Intelligence (AGI | ) 92. Virtual Reality              |
| 18. Support Vector Machines (SVM)       | 43. Generative Adversarial Networks (GAN) | 68. Artificial Superintelligence (ASI)   | 93. Simulated Reality              |
| 19. Decision Trees                      | 44. Reinforcement Learning                | 69. Turing Test                          | 94. Quantum Computing              |
| 20. Random Forests                      | 45. Q-Learning                            | 70. Machine Consciousness                | 95. Blockchain                     |
| 21. Gradient Boosting                   | 46. Deep Reinforcement Learning           | 71. Singularity                          | 96. Smart Cities                   |
| 22. K-Nearest Neighbors (KNN)           | 47. Chatbots                              | 72. Data Science                         | 97. Industry 4.0                   |
| 23. Clustering                          | 48. Autonomous Vehicles                   | 73. Predictive Analytics                 | 98. Health Informatics             |
| 24. Dimensionality Reduction            | 49. Speech Recognition                    | 74. Cognitive Computing                  | 99. Bioinformatics                 |
| 25. Feature Engineering                 | 50. Image Recognition                     | 75. Expert Systems                       | 100. Cyber-Physical Systems        |

### Figure: Keywords

æ

# Introduction

## Prompt: Al in Statistics a new way of teaching

| #education · following<br>4d · Post from Phillip Alcock                                                                                                                                                                                                                                                                                                                                                                                            |                                                                              | ×                       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------|--|--|
| Teachers and schools: It's Time. Al is here.                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |                         |  |  |
| It's time to get serious.                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                         |  |  |
| It's time to talk strategy.                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              |                         |  |  |
| It's Time To:<br>> Adopt a problem/project-based learning .<br>institution.<br>> Utilize AI to establish clear, unwavering le<br>objectives for every student.<br>> Utilize AI to amplify the richness of learnin<br>> Utilize AI to amplify the richness of learnin<br>> Utilize AI to analior learning to each studer<br>need, and every distinct culture.<br>> Utilize AI to integrate the Sustainable Devinto the core of your school's ethos. | approach in y<br>earning<br>ng experience<br>it, every uniqu<br>velopment Go | our<br>es.<br>ie<br>als |  |  |
| Need a hand? Reach out. I'm here to help. C<br>Let's reshape, re-envision, and reignite the<br>world.                                                                                                                                                                                                                                                                                                                                              | connect with r<br>educational                                                | ne.                     |  |  |
| Let's do this.                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                         |  |  |
| #education #artificialintelligence #inclusivelearning                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                         |  |  |

### Figure: Taken from LinkedIn

3)) J

## Introduction

Prompt: Al in Statistics a new way of teaching



### Figure: Created whit Dall-E

MSI. Agustín Gómez Meléndez (UCR-UNED)

AI in Statistics

November 1, 2023

Most competitive neural sequence transduction models have an encoder-decoder structure [5, 2, 29]. Here, the encoder maps an input sequence of symbol representations  $(x_1, ..., x_n)$  to a sequence of continuous representations  $\mathbf{z} = (z_1, ..., z_n)$ . Given  $\mathbf{z}$ , the decoder then generates an output sequence  $(y_1, ..., y_m)$  of symbols one element at a time. At each step the model is auto-regressive [9], consuming the previously generated symbols as additional input when generating the next.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1, respectively.

### Figure: Attention Is All You Need

# Model Architecture





æ

(B)

# How Chatbots and Large Language Models Works EXAMPLE 1 https://youtu.be/X-AWdfSFCHQ EXAMPLE 2 https://www.youtube.com/watch?v=X994dDnmRmY

# Context

#### Article https://www.sequoiacap.com/article/generative-ai-act-two/



A work in progress

The Generative Al Market Map @

#### MSI. Agustín Gómez Meléndez (UCR-UNED)

#### AI in Statistics

圓

э



Figure: Source https://www.sequoiacap.com/

イロト イポト イヨト イヨト

э

- Definition and basic concepts of statistics.
- Importance of statistics in decision-making
- Main Statistical Tools and Methods

Statistics is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. It serves as a tool to understand variability and offers methods to derive meaningful insights from numerical information.

The foundational concepts include differentiating between descriptive and inferential statistics, understanding the distinctions between populations and samples, and classifying variables as qualitative or quantitative

Statistics plays a pivotal role in decision-making across various domains. It offers a structured way to represent data, helping individuals and organizations make informed decisions based on empirical evidence.

By understanding patterns, relationships, and trends within data, stakeholders can predict future outcomes, evaluate current strategies, and reduce uncertainties, ultimately leading to better, data-driven decisions

Statistical tools and methods encompass a wide range of techniques used to describe, analyze, and infer from data. Core tools include measures of central tendency (like mean, median, mode) and measures of dispersion (such as variance and standard deviation).

More advanced methods, such as hypothesis testing, regression analysis, and analysis of variance (ANOVA), help in making predictions or determining relationships between variables. The choice of tool or method often depends on the nature of the data and the specific research question.

(AI) refers to the simulation of human intelligence in machines, enabling them to perform tasks that typically require human-like thinking. These tasks include problem-solving, pattern recognition, decision-making, and language understanding, among others. Several foundational concepts underpin AI:

• **1. Algorithms:** At the heart of Al are algorithms, which are step-by-step procedures or formulas used to solve problems.

• 2. Machine Learning (ML): A subset of AI, ML allows computers to learn from data without being explicitly programmed. For instance, given enough images of cats, a machine learning algorithm can identify a cat in a new image.

• **3. Neural Networks:** These are computing systems inspired by the structure of the human brain. They consist of interconnected nodes (analogous to neurons) and are foundational to deep learning, a powerful subset of ML.

- 4. Natural Language Processing (NLP): This involves enabling machines to understand and generate human language. It's the reason virtual assistants like Siri or Alexa can understand and respond to user commands.
- 5. Robotics: A field of AI where machines can perform tasks in the real world. Examples include self-driving cars or robots in manufacturing.

- 6. Expert Systems: These are computer systems that mimic the decision-making ability of a human expert in specific domains, using if-then rules and logic.
- 7. Knowledge Representation: Storing information, facts, and rules that machines can use to understand the world, reason about it, and make decisions.

- **Personalized Learning:** Al can analyze students' learning patterns and adapt content accordingly, offering a tailored learning experience. For example, if a student struggles with a particular math concept, Al-driven platforms can provide additional resources or exercises specifically in that area.
- Efficiency and Automation: Tasks such as grading assignments or tests can be automated using AI, allowing educators to spend more time on instruction and interaction with students. AI can also streamline administrative tasks for educational institutions.

- Data-Driven Insights: Al can analyze vast amounts of data from students' interactions with digital platforms, providing insights into their learning behaviors, strengths, and areas of improvement. This can help educators refine their teaching strategies to better cater to their students' needs.
- Enhancing Engagement: Al-driven educational games and simulations can make learning more engaging and interactive. These tools can adjust in real-time to a student's actions, ensuring optimal challenge and engagement levels.

- Global Learning Environment: Al-powered language translation tools can break down language barriers, enabling students from different parts of the world to access content in their native languages and facilitating global collaborative learning experiences.
- **Support for Diverse Needs:** Al can offer additional support for students with disabilities or learning differences. For instance, speech recognition can help students with writing difficulties, while personalized content can assist those with cognitive challenges.

- Adaptive Learning Platforms: Al-driven educational software can adjust the learning material in real-time based on a student's progress and understanding. For example, if a student struggles with the concept of standard deviation, the platform can offer additional exercises or resources in that specific area until the student gains proficiency.
- Data Analysis Tools: Al can assist students in understanding large datasets by highlighting patterns, correlations, and other statistical phenomena, making data analysis more intuitive and less time-consuming.

- **Simulations and Modelling:** Al can power simulations that allow students to visualize complex statistical concepts, such as distributions or hypothesis testing, by interacting with virtual models.
- Automated Feedback: Al-driven systems can provide instant feedback on statistical assignments, pointing out errors in calculations or interpretations and suggesting areas for improvement.

- **Tutoring Systems:** Al can act as a personal tutor, providing students with answers to questions, guiding them through complex problems, and offering hints or solutions when they are stuck.
- **Real-World Data Collection:** Using AI, students can gather real-world data through sensors, social media scraping, or other methods for hands-on statistical analysis.

- Interactive Data Visualization: Al tools can generate dynamic graphs and charts, allowing students to interact with data visualizations and gain deeper insights into the underlying statistics.
- **Statistical Language Processing:** For students working on textual data analysis, AI can help in parsing large volumes of text, identifying patterns, and extracting statistically relevant information.
- **Gamified Learning:** Al can drive games designed to teach statistical concepts. These games can adjust their difficulty based on a student's progress, ensuring an optimal learning curve.

Al tools refer to a suite of software and applications that utilize artificial intelligence techniques to perform tasks that would traditionally require human intelligence. These tools leverage machine learning algorithms, neural networks, natural language processing, and other Al technologies to automate processes, enhance decision-making, recognize patterns, interpret data, and facilitate complex tasks.

Al tools can be found in various domains including data analytics, image and voice recognition, chatbots, predictive modeling, and recommendation systems, among others. They are designed to improve efficiency, accuracy, and scalability, often adapting and evolving based on the data they process.

- a. Platforms and software available for teaching statistics
- b. Examples of activities and projects that use artificial intelligence
- c. Recommendations and best practices for effective use of artificial intelligence in teaching statistics

- SEIR Model for COVID-19
- Regression Analysis
- Conjoint Analysis
- Multivariable Analysis on Poverty
- Neural Analysis
- Bayesian Forecast for COVID-19
- Conjoint Analysis for Smartphone Development

# Challenges and obstacles in implementing artificial intelligence in statistical education

```
# Installing and loading the igraph package
1
2
    install.packages("igraph")
3
4
    library(iaraph)
5
6
    # Sample data: each pair represents two people (by their IDs) who interacted
    edges <- data.frame(</pre>
7
     from = c(1, 2, 3, 4, 5, 6, 7, 8, 9),
8
      to = c(2, 3, 4, 5, 6, 7, 8, 9, 10)
9
10
    )
11
12
    # Creating the graph
13
    q <- graph_from_data_frame(edges, directed = FALSE)</pre>
14
15
    # Setting labels for our nodes (people)
    V(q)$name <- c("Chris", "Alex", "Jamie", "PersonD", "PersonE", "PersonF",
16
17
                    "PersonG", "PersonH",
18
                    "PersonI". "PersonJ")
19
20 # Plotting the network
    plot(a, vertex.size=30, vertex.label.cex=0.8)
21
22
```

### Figure: Network Analysis

31 / 42

イロト イポト イヨト イヨト

### GITHUB

#### Administrators, teachers, and other staff members can utilize these prompts to

- Create Engaging Lessons: Quickly design interesting and interactive lessons that captivate students.
- 2 Answer Student Questions: Provide accurate and fast answers to common student inquiries.
- 4 Automate Routine Tasks: Simplify day-to-day tasks with ready-to-use prompts.

#### How to Use

- Ind a Prompt: Browse through our collection (currently a work in progress).
- 2 Copy-Paste: Follow the direct link to Bing Chat or highlight, copy, and paste the prompt into your GPT-powered tool.
- O Apply the Answer: Use the response in your teaching, administrative tasks, or educational activities

## Employees using ChatGPT outperformed those who didn't:

- Speed increased by 25.1 pp
- Output quality improved by over 40 pp
- 12,2 pp more tasks completed
- AI has a "skill-leveling effect":
  - Lower-performing consultants received a 43 pp performance boost
  - Narrowed the performance gap between top and bottom consultants
     More info

## Challenges with AI's limitations:

- - Task outside Al's capability saw a performance decline (84pp to 60-70pp accuracy)
- Two effective strategies to harness AI:
  - 1. Centaur Behavior: A distinct division between human and AI tasks.
  - 2. Cyborg Behavior: Seamless integration, where AI and humans work hand-in-hand.

## Over-reliance on AI can have pitfalls:

- - Reduced vigilance in decision-making
- - Homogeneity in Al outputs

More info

- Al's transformative potential:
  - - Significant enhancement in work productivity and quality
  - - Need to understand the 'Jagged Frontier' of AI for optimal benefits

## - Future implications:

• - As AI evolves (beyond GPT-4), organizations must adapt for ethical and effective integration

## - Accessibility:

- Advanced AI tools, once exclusive, are now accessible to a wider audience
- Both elite consultants and the general public can leverage AI for improved work outcomes

# Why not?



AI in Statistics

36 / 42

æ





MSI. Agustín Gómez Meléndez (UCR-UNED)

AI in Statistics

37 / 42

э

# From Books to Star Trek

Generate an image using BING that illustrates how AI bridges the gap between traditional books and the futuristic world of Star Trek, making it as futuristic as possible



# From Books to Star Trek

Generate an image using BING that illustrates how AI bridges the gap between traditional books and the futuristic world of Star Trek, making it as futuristic as possible



You need to beggin here ....

- Code that https://code.org/ai/pl/101
- Future Tools https://www.futuretools.io/
- Run my ... https://app.runwayml.com/
- PromptHero https://prompthero.com/featured
- FutureTools https://www.futuretools.io
- HugginFace https://huggingface.co/
- Sequoiacap https://www.sequoiacap.com/

- Prof. Agustín Gómez Meléndez, MSI.
- Oficina/Teams: +506 2511 5474
- Cel: 6003-5479 / 8317-5479
- Whastapp Institucional: 2511-4857
- Linkedin
- X
- Email: agustin.gomez@ucr.ac.cr / agomezme@uned.ac.cr

# Let's Talk



Figure: Who will obtain the Degree?

→ < ∃ →</p>

э