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Abstract

Data collection for fresh water regions of The Ecosystem Health Monitoring Program (EHMP), in south-
east Queensland, Australia, involves the sampling of over 130 sites among 19 catchments twice per year
and has been ongoing for over ten years. The sampling design was derived following an exhaustive process
of indicator and site selection to develop a composite indicator that represented aquatic ecosystem health.
After 13 years of implementation, there was an interest in identifying redundancies in sampling to reduce
sampling costs without making a substantial impact on the integrity of the program and its capacity
to report on ecosystem health. This paper focuses on identifying a subset of sites and times that could
be removed from sampling with a minimal impact on the subsequent ecosystem health scores. Herein,
Mixed models are employed to assess a variance structure from which optimality criteria are utilized to
identify the scheme. Integer programs are then used to ensure specific practical constraints are observed.

Keywords: Ecosystem Health, Fresh water, A-optimal, Integer Programming.

1. Introduction. Comprehensive sampling is essential in monitoring the health of an ecosystem.
However, the frequency, duration, and breadth of the data collected can be problematic in the practical
sense of financial resources required and the physical difficulties of accessing remote sites. This paper
considers the scenario of a large scale monitoring program with sampling scheme already in place where
data are collected multiple times per year over a large number of locations within distinct regions or
strata. With too few sample sites the data are not representative of the ecosystem. That solution is
straightforward: increase the number of geographic sites from which to sample. This of course requires
additional expense both literal and figurative, so the question becomes given an existing large scale
monitoring program, is there now redundancy in that program? And is there a way to refine and
optimise the sampling scheme to reduce that redundancy? Addressed herein is exactly that: for a large
scale monitoring program, we develop a method to identify and remove redundancy in sampling while still
retaining a maximal amount information from the optimised sampling scheme. Our proposed method
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Figure 1: Sheldon et al. (2012). Map of region of interest relative to continent.

forested land use, while lowland streams and rivers are

dominated by agricultural and urban land use.

The Freshwater Ecological Health Monitoring
Program (EHMP)

The Freshwater EHMP was implemented in 2002 and
now forms the basis for the annual regional Report Card

for the region’s waterways (Bunn et al. 2010). Freshwa-
ter ecosystem-health data are collected biannually at 127
sites (as of 2008), during the austral spring (pre-wet) and

austral autumn (post-wet). These sites are representative
of headwaters and middle sized streams (second- and
third-order streams) in the region and are distributed

throughout major land-use types to enable reporting of
stream ecosystem health at a regional scale. Data are

collected for five groups of indicators: water quality,
fish, macroinvertebrate, ecosystem processes, and nutri-
ent indicators, with each indicator type comprised of

multiple indices (Fig. 2; Bunn et al. 2010). The annual
EHMP site score represents an aggregation of 14
ecosystem health indices, collected over two seasons

(Fig. 2). Data for each index are converted to a
standardized score by comparing the observed value at
a site with a reference condition (Bunn et al. 2010).

Standardized scores range from 0 (maximum deviation
from reference condition) to 1 (equal to reference
condition). Standardized scores for the indices, within

indicator type, are averaged to create a score between 0

and 1 for each indicator at a site. The scores for all five

indicators are then averaged to create a seasonal score
between 0 and 1 for a site. The two seasonal site scores
for each year starting in the austral spring (e.g., spring

2003 and autumn 2004) are averaged to give an annual
site score. These annual site scores are then averaged
across each catchment and converted into a report card

grade (Fig. 2), which is released as part of an annual
report card for ecosystem health in SEQ streams (Bunn
et al. 2010, Healthy Waterways Partnership 2012). Note

that, when data are missing, the scores are calculated in
the same way using the remaining data; this however
was not a systematic problem for any one indicator

apart from the nutrient indicator, which requires the
collection on an algal sample for the determination of

d15N, and this can be difficult after periods of high flow.
For this analysis, site scores for each season (pre-wet
and post-wet) were used from 116 EHMP sites sampled

between the years 2002 and 2008.

GIS methods

Land use and land-cover (LULC) characteristics were
calculated for 116 EHMP sites at catchment, riparian,
and reach scales (Fig. 3). The catchment scale represents

the entire drainage area upstream from each EHMP
survey site (Fig. 3a), while the riparian scale represents
the land within the catchment located within 25 m of the

stream (Fig. 3b). The reach scale is a subset of the

FIG. 1. Ecological Health Monitoring Program (EHMP) survey sites are collected throughout 19 EHMP reporting regions in
Southeast Queensland, Australia.
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synthesizes concepts from Operations Research, Experimental Design, and Linear Mixed Models to reduce
a large number of collection sites to a smaller representative subset.

This paper is organised in the following manner. Section 2 details the proposed method beginning
with the available data then culminating in the synthesis of mixed models, A- optimality, and integer
programming. In Section 3, results are presented on data from freshwater sites sampled in the Ecosystem
Health Monitoring Program (Bunn et al., 2010) illustrating model performance. The paper concludes
with Section 4 which summarises key findings, addresses considerations for further implementation, and
offers exciting potential for future and continued work.

2. Methods The overarching goal is to develop a method to reduce redundancy in a sampling site scheme.
Specifically, for a large number of sites, stratified across multiple regions, with data collected annually
or intra-annually, we propose a method to decrease the number of sites sampled and the frequency at
which they are sampled, while still retaining a maximal amount of information. Further, to ensure the
sampled data is representative of the entire survey area, we can employ constraints such that each region of
stratification is included. The method comprises multiple steps. First, of the variables/indices collected at
each sites a subset of these is selected through standard linear regression methods. Next, with the reduced
set of explanatory variables, a linear mixed effect model is estimated to obtain the model variance matrix.
Then, drawing from the design of experiments literature, the covariates and the variance matrix can be
used to select the sites which maximize an optimality criterion within each region/catchment. Finally,
an integer program is employed to enforce the aforementioned constraints. To develop the method, we
use as a motivating example example–which is in-fact the genesis of this method–the concept and design
of the Healthy Waterways Ecosystem Health Monitoring Program (EHMP) (Stewart-Koster et al., 2014)
described in Section . Subsequent subsections of this section detail the components of the proposed
approach.

2.1 Data. The dataset in this application comes from the Southeast Queensland freshwater Ecosystem
Health Monitoring Program (EHMP). The EHMP is a comprehensive program that assesses stream
ecosystem health based on an average of 16 indicators from five indicator groups (Abal et al. 2005). The
program has been running since 2002 and involves sampling 131 locations across 19 catchments, twice per
year (in the austral spring and autumn) to derive the annual ecosystem health score for each catchment
(Bunn et al. 2010). The five indicator groups are water quality, macroinvertebrate assemblages, fish
assemblages, nutrient concentrations and ecosystem processes . The observed data for each indictor is
scored from 0-1 against an ideal, or reference condition, and subsequently averaged up to derive a final
score for each catchment (EHMP 2008). This final score serves as the response variable for the mixed
model discussed in the following sections with explanatory variables comprising the raw input variables
to the various indices.
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2.2 Mixed Models. We apply a regression/mixed model based approach first for variable selection.
Then once the final model is identified we use that mixed model to develop A- optimality measures for
site selection. Keeping in mind the EHMP scheme detailed in Section 2.1 as a motivating example, we
use the following notation for indices: Site i = 1, . . . , n,; Time j = ti, . . . , Ti,; and Variables k = 1, . . . , p.
Note the allowance that each site may have a unique beginning and ending sample date, but we assume
that all sites are sampled at the same frequency with evenly and identically equally spaced intervals. The
method is easily extended for deviations from this assumption and these considerations are addressed
further in Section . Going forward we will reference the number of sequential time points for site i as
ri ≡ Ti − ti + 1.

Our dependent variable yij can be viewed as the annual or seasonal score referenced in Section
2.1, which is a summary measure of the raw data collected at each site i at the jth sampling time.
Each variable collected is represented by xijk: the kth predictor at site i during sampling time j, with
coefficients β1, . . . βp. We denote εij and νij as the errors associated with site i at sampling time j, which
collectively form an autoregressive process of order one (AR(1)). With δi representing the random effect
associated with site i, our model is then of the form

yij =

p∑
k=1

βkxijk + δi + εij , (0.1)

εij = ρεi−1,j + νij ,

with εij∼AR(1) such that νij
iid∼ N(0, σ2

ε) so COV (εij , εij′) = σ2
ερ
|j−j′|. We assume for the random

effect that δi
iid∼ N(0, σ2

δ ) and that νij is independent of δi for all j = 1, . . . , Ti; i = 1, . . . , n. For ease of
notation, it is assumed that xij1 = 1 for all i, j so that β1xij1 = β1 is a model intercept. Note that model
is easily extended to include random effects for region as well (fixed effects for region can be among the
xijk); for now our focus is on Model (0.1).

Based on the usual mixed-model data and error assumptions, Model (0.1) is estimated via Maximum
Likelihood. For the variable selection stage, initially all covariates can be considered for the model, then
criteria such as The Bayesian Information Criterion (BIC) and/or Akaike Information Criterion (AIC)
can be applied to the likelihood expression to determine the number of variables to retain in the final
model.

2.3 Optimality. We draw on concepts from the design of experiments (DOE) literature; specifically,
the goal to choose or find the “optimal” levels of treatments for experimentation. This is analogous to
selecting the sites to sample based on the data collected at the site. Presently, we will use the A-optimal
criterion to illustrate the method to select the sites that account for the maximal information in score
measures; any of the other optimisation criteria can easily be interchanged. Once the final model is
determined via Section 2.2, to determine the variance matrix structure, consider the matrix formulation
of the model introduced in that section:

y = Xβ + Uδ + ε, (0.2)

where yN×1 is a vector containing the scores yij for time j at site i; XN×p comprises the fixed effects;
UN×n is a matrix of indicator variables specifying the whether or not the observation belongs to site i;
δn×1 as the random effects; and εN×1 as the model errors for N ≡

∑n
i=1(Ti − ti + 1) total observations.

Based on this formulation and the error assumptions from Section , the variance of y is expressed as

V ≡ var(y) = UGU′ + R, (0.3)

where G ≡ E[δδ′] and R ≡ E[εε′]. The first term matrix in Equation (0.3) is a function of σ2
δ ; the latter

is a block diagonal matrix with diagonal blocks defined by the covariance structure noted in Section : for
each site i, we denote the ith block of the R matrix as Ri which are of the Toeplitz form with dimensions
ri × ri with for j, j′ ∈ {1, . . . , ri}, have jth row, j′th column elements σ2

ερ
|j−j′|. As an example, for a
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“balanced” design where (Ti − ti + 1) ≡ T ∀i = 1, . . . n (same number of timepoints within each site),
then Ri ≡ RT×T for all i and with the error assumptions stated in Section ,

R = σ2
ε(In ⊗R) (0.4)

UGU′ = σ2
δ (In ⊗ JT ),

with JT defined as a T × T matrix with entries all equal to unity. Note that both the UGU′ and
R matrices resolve to a dimension nT block diagonal matrix with n blocks of T × T dimension with
blocks σ2

δJT and σ2
εR, respectively. This example generalizes to the present setting where the number of

observations per site varies.

Based on Equations (0.2)- (0.4), it is a standard result (see McCulloch and Searle, 2001, e.g.) to

show that the variance/covariance matrix for the estimated parameters β̂ is expressed as W ≡ var(β̂) =
(X′V−1X)−1. Measures such as the determinant or a function of the trace of the p×p matrix W provide
a scalar measure of the “size” of the matrix and thus are criteria by which we can solve a minimization
problem of the variance. Again, here we focus on A-optimality as an example, noting that any other
optimality criterion is equally applicable.

The optimality criterion can be calculated for each site, then ranked according to their respective
values. Specifically, recall we have defined the number of sequential time points for site i as ri ≡ Ti−ti+1,
then let xi with dimensions ri × p denote the covariate observations associated with site i. Then we can
construct the ri×ri covariance matrix associated with that site and the corresponding optimality measures
(again any of the measures noted earlier in this section). With the block diagonal covariance matrix V as
shown in Equation (0.3), with blocks defined as Vi = σ2

εRi. It can be shown that the inverse is composed
of the inverses of the individual blocks: V−1 = diag{V−1i }ni=1. Then the the ri × ri covariance matrices
associated with each site i and the corresponding A-optimality measure is as follows:

wi ≡ (x′iV
−1
i xi)

−1, (0.5)

Ai ≡ tr(wi).

Within each catchment/region, the optimality measure (here, Ai) can be calculated in order to rank the
sites according to their variability to determine the optimal site(s) in each catchment. Again noting that
the goal is to select one or more optimal sites within each catchment such that a fixed total of, say, M
sites are selected, we can employ the optimality measures in an integer program to achieve this goal.

2.4 Integer Programming. The mixed model of Section provides a method by which variables can
be selected from the data collected at each site to form a refined model. The resulting covariance matrix
is then used to rank sites within each region according to their contribution to overall variability as
measured by the optimality criterion introduced in Section 2.3. The final component to our method is
to quantitatively employ practical constraints to achieve the overarching goal of reducing the number of
sites sampled to a fixed number M while ensuring that the remaining sampled sites are representative.
Here we rely on the method of Linear Integer Programming: the optimality criterion (OC) values of
each site are known using the method described in Section 2.3; the objective of the integer program is
to choose sites among all possible sites which will minimize the overall OC value of the model subject to
these constraints.

To develop the motivation behind a linear integer program, we will focus on the A-optimality criterion;
the application to other measures is immediate. We wish to find an optimal subset of sites from which to
collect data, and we have defined optimal here to mean sites with the lowest OC values. We numerically
minimise our linear objective function and arrive at a linear integer program to determine the sites
selected; the constraints of the program determine a boundary subset of sites that satisfy said constraints
from which optimal sites can be chosen.

Formalizing these ideas, we can express the linear integer program in the following manner. We will
continue to use the index i = 1, . . . , n to denote site i and introduce the index h = 1, . . . , L to denote
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a sequence of sets representing the sites in the total of L catchments or regions. That is, we create L
partitions of the i = 1, . . . , n sites so that each site i is an element of some catchment set h: i ∈ h. We
define a sequence of i = 1, . . . , n variables zi as

zi =

{
1 if site i is selected for sample.
0 otherwise.

(0.6)

and the indicator function 1{i∈h} as

1{i∈h} =

{
1 if site i is in region h,
0 otherwise.

(0.7)

Using Ai as defined in Equation (0.5), we then have the following linear integer program:

min
z

n∑
i=1

Aizi subject to:

{∑n
i=1 zi = M,∑n
i=1 1{i∈h}zi > 0 for h = 1, . . . , L,

(0.8)

which is a minimization over the sites selected z ≡ [z1, . . . , zn]′.

The extension to a seasonal analysis is straightforward and reserved for a later paper. Using the
notation of Section 2.2, our dependent variable yij is the logit transformation of the raw semi-annual

score described in Section , which we denote here as sij so that yij = ln
[

sij
1−sij

]
with values of sij = 1

set to the value sij = 0.999. The logit transformation is employed to satisfy the normality constraints
of the mixed model presented in Section . The regressors xijk consist of a constant term, the raw data
collected at each site, and a seasonal indicator (Autumn = 1). The error specifications are those noted
in and the model applied then is that of Equation (0.1). The original data consists 2,890 observations on
131 sites among 19 catchments. Sixteen sites were excluded from the analysis due to one or more of the
explanatory variables being missing for the entire time series of that site resulting in a reduction of 124
observations. Additionally, 68 observations were removed due to a missing dependent variable; per site
the data were either completely missing, or would require extrapolation for imputation. Per site, missing
values for independent and dependent variables were imputed via linear interpolation using neighboring
values. The resulting analysis data set thus consists of 2,698 observations for 19 catchments and 115 sites,
which are depicted in Figure 2; the total number of observations per site varies from 1 to 22 consecutive
semi-annual time points. From the original data, only 192 observations were removed resulting in a loss
of less than 7%. After the mixed model is estimated, we employ the integer program described in Section
and Equation (0.8) with n = 115, L = 19, and M = 60. Then the results of the method are shown Figure
2 with green dots indicating the selected sites and red dotes denoting those that were not selected. Each
region has at least one site selected, and a total of sixty sites were selected, hence the result satisfies all
the requirements.

At first glance, it appears that the method results in the selection of sites that are closely clustered
together geographically. However, recall that the method controls for optimal selection within each
catchment. Therefore while it may appear that the selected sites cluster around specific geographical
regions, these sites actually belong to distinct catchments and represent the optimal site(s) for that
catchment; the algorithm is indifferent to proximity between catchments and focuses on optimality within
catchments. Further, using distance as the sole delineator among sites disregards other aspects such
as elevation, climate, and/or proximity to urban areas which clearly would distinguish quite distinct
ecosystems.

Figure 3 illustrates this feature; depicted therein are the EHMP sites for the Lower Brisbane (squares)
and Upper Brisbane (dots) catchments with selected sites in blue and unselected sites in red. While the
selected sites are relatively close in proximity, each belongs to a distinct catchment with rather different
ecosystems. A further iteration of the present method could incorporate some spatial constraints should
proximity be a concern, and this is noted in Section .
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Figure 2: Selected sites.

4 Conclusion. Throughout the paper various modifications or further work have been noted and those
are addressed here. We then close with a an overall conclusion regarding our proposed method.

One future consideration concerns the moving of sites. Another model extension to consider is relaxing
some of the mixed model assumptions presented in Section 2.2. Finally, for illustration purposes our
optimality criterion of choice was A-optimality and this was the method employed for our demonstration
on the EHMP data. There are several other optimality criterion that exist, such as D-, S-, U-, G-, and
I-optimality. In conclusion, in this paper we have presented an algorithm for site selection that employs
three methods from disparate areas of statistics and operations research. In order to reduce the number
of sites within regions from which data is collected while retaining maximal information, we use a mixed
model approach to derive the variability per site, an optimality criterion from the DOE literature to
essentially rank each site by the amount of information it contains, and finally a linear integer program
to select the “best” site(s) within each region subject to a maximum total number of sites selected. .
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