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Abstract

It is well known that one of the major problems for maximum likelihood estimation (MLE) in the well-
established directional models is that the normalising constants can be difficult to evaluate. A new general
method of “score matching estimation” (SME) will be presented on a compact oriented Riemannian manifold
following Mardia et al. (2016). Important applications include von Mises-Fisher, Bingham and joint mod-
els on the sphere and related spaces. The estimator is found to be consistent and asymptotically normally
distributed under mild regularity conditions. Further, it is easy to compute as a solution of a linear set of
equations and requires no knowledge of the normalizing constant. Some examples will be given to demon-
strate its good performance. To highlight its properties, in this paper we give another proof of the important
result that the SME is the exact MLE for the multivariate normal distribution. Also in this paper, we show
how we can approximate in general a given distribution to a member of the exponential family; we call this
method ”score matching approximation” (SMA). Research for such types of approximations is common, for
example for the wrapped normal distribution, and we introduce here the SMA for the multivariate wrapped
normal using a multivariate von Mises distribution. Practical examples from structural molecular biology
related to protein and RNA will be presented in the talk.

Keywords: Exponential family; distributions on torus and sphere; Hyvärinen divergence; von Mises distri-
butions; Riemannian manifold.

1 Introduction

We describe here the the Hyvärinen divergence and show how it provides the score matching estimators
(SME) and the score matching approximations (SMA) on a Riemannian manifold. Let f and f∗ be two
probability densities on a Riemannian manifold M , defined with respect to the uniform measure µ, where f
and f∗ are assumed to be everywhere nonzero and twice continuously differentiable. Following Mardia et al.
(2016), we define the Hyvärinen divergence (Hyvärinen, 2005) between the two densities on M in terms of
an integrated gradient inner product for the log ratio,

Φ(f ; f∗) =
1

2

∫
M

〈log(f/f∗), log(f/f∗)〉 f∗(x)µ(dx)

=
1

2

∫
M

{〈log f, log f〉 − 2〈log f, log f∗〉+ 〈log f∗, log f∗〉} f∗(x)µ(dx). (1)

Minimizing this divergence measure over f has provided motivation for the SME in general and on manifolds
in particular (see, for example, Mardia et al. 2016). Here we consider another problem of approximating a
known distribution f∗ by another simpler distribution f from an exponential family. We take f to be in an
exponential family with parameters π and f∗ with parameters θ (which is not necessarily in the exponential
family) and the aim is to connect π and θ. The simplest example is to approximate the concentration
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parameter of the wrapped normal by that of the von Mises distribution. In general, suppose f(x;π) forms a
canonical exponential family on a compact oriented Riemannian manifold M with density

f(x) = f(x;π) ∝ exp{πT t(x)} (2)

with respect to the uniform measure µ(dx), where π is an m-vector of natural parameters and t(x) =
(t1(x), . . . , tm(x))T is a vector of sufficient statistics. Then it can be shown that the optimal approximation
from (1) is given by

π = W−1d. (3)

where W = (w`1`2) and d = (d`) have elements (see, equation (7) for the inner product used here)

w`1`2 = E{〈t`1 , t`2〉(x)}, d` = −E{∆M t`(x)} (`, `1, `2 = 1, . . . ,m). (4)

This approximation will be called Score Matching Approximation (SMA). Here, we will be dealing with
only the circle/torus case so the gradient in W and the Laplace-Beltrami operator in the quantity d are
straightforward. The expectation in W and d are with respect to the true distribution f∗ and the exponential
family f provides the functions t(x), e.g. for the SMA for the wrapped normal case, the expectation is with
respect to the wrapped normal distribution, and f has a von Mises density.
For this paper, let the manifold M be the unit sphere Sp = {z ∈ Rq :

∑
z2j = 1}, a p-dimensional manifold

embedded in Rq, q = p+ 1. The eigenfunctions of ∆M on Sp, p ≥ 1, are known as the spherical harmonics.
A spherical harmonic of degree k ≥ 0 has eigenvalue −λk where λk = k(k + p − 1) = k(k + q − 2). The
action of ∆M on the linear and quadratic spherical harmonics, expressed in Euclidean coordinates, can be
summarized as follows (for circle p = 1, q = 2) with i 6= j ∈ {1, . . . , q}.

∆Mzj = −λ1zj ,∆M (z2i − z2j ) = −λ2(z2i − z2j ),∆M (zizj) = −λ2(zizj). (5)

Mardia et al. (2016) have given a full coverage of SME for a compact oriented Riemannian manifold and here
we give complementary results, e.g. Section 2 gives another proof of the well known important result that
the SME are the exact MLE for the multivariate normal distribution. Sections 3 – 6 deal with the proposed
SMA with a particular focus on the multivariate wrapped normal distribution via the multivariate von Mises
distribution introduced in Mardia et al. (2008). We end the paper with some conclusions.

2 The SME for the normal cases revisited

Let us assume that the random vector x ∈ Rp is distributed as N(µ,Σ); its density can be recast as

f(x) ∝ exp

{
m∑
`=1

π`t`(x)

}
, x ∈ Rp,where (6)

π = (

p∑
j=1

σijµj , σii, i = j; aij = σij , i < j; i, j = 1, . . . , p)T ,

t(x) = (xi, −x2i /2; i = 1, . . . , p ,−xixj , i < j; i, j = 1, . . . , p)T ,

Here the vector π denotes the m = p+ p+ p(p− 1)/2 parameters in the order listed, and the vector t = t(x)
denotes the corresponding functions of x. Let

W0(x) = (w0,`1`2), w0`1`2 = ∇Et`1(x)T ∇Et`2(x);

d0(x) = (d0`), d0` = −∆Et`(x) (`, `1, `2 = 1, . . . ,m),
(7)

with the Euclidean gradient and the Laplacian given by

∇Et`(x) = (∂t`(x)/∂x1, . . . , ∂t`(x)/∂xp)
T , ∆Et`(x) =

p∑
i=1

∂2t`(x)/∂x2i .
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Let us assume the random sample from the normal distribution is {xh, h = 1, . . . , n} then the score matching
estimator π̂SME is

π̂SME = W̄−10 d̄0,where (8)

W̄0 =
n∑
h=1

W0(xh)/n, d̄0 =
n∑
h=1

d0(xh)/n,

and W0(x) and d0(x) are given by (7).
The univariate case. Let us consider the univariate case of x distributed as N(µ, σ2) so in (6), we have
t1(x) = x, t2(x) = −x2/2, π1 = µ/σ2, π2 = 1/σ2. Here, ∇t`(x) = dt`(x)/dx so that ∇t(x) = (1,−x)T and

W0(x) =

[
1 −x
−x x2

]
, W̄0(x) =

[
1 −x̄
−x̄ S2 + x̄2

]
,

where x̄ and S2 are respectively the sample mean and variance. Further, from ∆t`(x) = d2t`(x))/dx2, we get
∆t1(x) = 0,∆t2(x) = −1 so d0(x) = (0,−1)T = d̄0 . Hence, we have from (8)

π̂ =

[
µ̂/σ̂2

1/σ̂2

]
= W̄−10 d̄0 =

[
x̄/S2

1/S2

]
so that as expected, we obtain

µ̂ = x̄, σ̂2 = S2.

Thus we have shown that the SME is the exact MLE in this case.
The multivariate case. The corresponding result holds for the multivariate case but a direct proof is
somewhat involved so we limit our attention here to the bivariate normal case. For this case, in (6), we have

t1(x) = x1, t2(x) = x2, t3(x) = −x21/2, t4(x) = −x22/2, t5(x) = −x1x2;

π1 = µ1σ
11 + µ2σ

12, π2 = µ1σ
12 + µ2σ

22, π3 = σ11, π4 = σ22, π5 = σ12.

We will show that the following result holds:

W̄0π̂MLE = d̄0 (9)

and π̂MLE is obtained from π on plugging in µ̂ = x̄, Σ̂ = S, where x̄ and S are respectively the sam-
ple mean mean vector and covariance matrix. Using ∇t1(x) = (1, 0)T , ∇t2(x) = (0, 1)T , ∇t3(x) =
(−x1, 0)T , ∇t4(x) = (0,−x2)T , ∇t5(x) = (−x2.− x1)T , we can construct W0(x) matrix, which leads to

W̄0(x) =


1 0 −x̄1 0 −x̄2
0 1 0 −x̄2 −x̄1
−x̄1 0 −S11 − x̄21 0 S12 + x̄1x̄2

0 −x̄2 0 −S22 − x̄22 S12 + x̄1x̄2
−x̄2 −x̄1 S12 + x̄1x̄2 S12 + x̄1x̄2 S11 + S22 + x̄21 + x̄22

 . (10)

Let S−1 = (Sij), then we have

π̂MLE = (x̄1S
11 + x̄2S

12, x̄1S
12 + x̄2S

22, S11, S22, S12)T . (11)

Now, we calculate W̄−10 π̂MLE from (10)–(11).Then using the following relationships from SS−1 = I into the
resulting expression,

S11S
11 + S12S

12 = S22S
22 + S12S

12 = 1, S11S
12 + S12S

22 = S12S
11 + S22S

12 = 0,

we find that W̄−10 π̂MLE = (0, 0, 1, 1, 0)T . Further, ∆t1(x) = 0, ∆t2(x) = 0, ∆t3(x) = −1, ∆t4(x) =
−1, ∆t5(x) = 0, so d = (0, 0, 1, 1, 0)T = d̄0. Hence the proof.
It is to be noted that Hyvärinen (2005) has given a proof which avoids using the the canonical parametric
representation of the normal distribution.
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3 The multivariate von Mises distribution

The probability density function of θT = (θ1, θ2, . . . , θp) (w.r.t. the uniform measure) with zero mean vector
of the multivariate von Mises (MvM) distribution (Mardia et al., 2008) is proportional to

exp{κT c(θ) +
1

2
s(θ)TΛ s(θ)}, (12)

where −π < θi ≤ π, κi ≥ 0, −∞ < λij < ∞, κT = (κ1, . . . , κp), (Λ)ij = λij = λji, i 6= j, λii = 0.
Further, c(θ)T = (cos(θ1), . . . , cos(θp)), s(θ)T = (sin(θ1, . . . , sin(θp)), so the number of parameters are
m = p(p+ 1)/2. Write

Ci = cos θi, Si = sin θi, i = 1, . . . , p.

We have t(θ)T = (t1(θ)T , t2(θ)T ) where t1(θ)T = (C1, . . . , Cp) and t2(θ)T = (S1S2, S1S3, . . . , Sp−1Sk) in
lexicographical order. It can be seen that the E(d) and E(W ) in (3) for this case depend only on the
following moments of the multivariate wrapped normal distribution.

E(Ci), E(SiSj), E(CiSiSj), E(SiCjSj), E(C2
i S

2
j ) + E(C2

j S
2
i ), E(C2

i SjSk) (13)

where i, j, k = 1, . . . , p, i 6= j 6= k.

4 The SMA for univariate wrapped normal distribution

Using the von Mises distribution with the concentration parameter κ as f and the wrapped normal with the
concentration parameter σ2 as f∗ in equation (3), it is found that

κ = E(cos θ)/E(sin2 θ), (14)

where the expectations are with respect to the wrapped normal distribution. This leads to the following
SMA for the wrapped normal case:

κ =
2c

(1− c4)
, (15)

where c = exp{− 1
2σ

2}. The standard approximation (see, for example, Mardia and Jupp, 2000) is κ = A−1(c),
where A(c) = I1(c)/I0(c) and Ip(κ) is the modified Bessel function of the first kind of pth order given by

Ip(κ) =
∞∑
r=0

(κ)2r+p/(r!(r + p)!).

On plotting the two approximations, we have found that the SMA values are always a bit smaller but there
is hardly any difference for small or large σ. In fact, the maximum relative difference in the two functions is
about 0.17 at c=0.74, κ= 2.29 and σ2=0.60.

5 Moments for the multivariate wrapped normal distribution

Suppose θT = (θ1, θ2, . . . , θp) has a multivariate wrapped normal (MWN) distribution; that is,

θj = xj mod 2π, j = 1, . . . , p ,

where x ∼ Np(0,Σ). One reason for choosing this distribution is that its trigonometric moments have explicit
expressions. If δ is a p × 1 vector with integer coefficients, then we can obtain the following from the joint
characteristic function of θ (see, for example, Kent and Mardia, 2009; Kurz, 2015)

E{cos(δT θ)} = exp{−1

2
δTΣδ}, E{sin(δT θ)} = 0. (16)
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In particular, for j, k = 1, . . . , p,

E{cos(θj)} = exp{−1

2
σjj} = cj , say, E{sin(θj)} = 0,

E{cos(θj ± θk)} = exp{−1

2
(σjj ± 2σjk + σkk)}, E{sin(θj ± θk)} = 0.

Combining the two versions of the last two expressions yields

E{cos(θj) cos(θk)} = cjck cosh(σjk), E{sin(θj) sin(θk)} = cjck sinh(σjk), E{sin(θj) cos(θk)} = 0.

Higher moments. We will now obtain third order moments for the MWN distribution as it was pointed
out that for the multivariate SMA, we only need the additional moment of the form E(S1S2C

2
3 ) for the

trivariate vector (θ1, θ2, θ3). In fact, we have

E(S1S2C
2
3 ) = E(S1S2)/2 + E(S1S2 cos(2θ))/2 (17)

so we need only the moment E(S1S2 cos 2θ) to obtain E(S1S2 cos 2θ). We have from the characteristic
function (16),

E{cos(θ1 ± θ2 + θ3)} = c1c2c3 exp{∓σ12 ∓ σ23 − σ13}.
and after some algebra, we get

E(S1S2 cos(2θ)) =
1

2
[c1c2c

4
3((exp{−σ23}(sinh(σ12 + 2σ13)

+ exp{−σ13} sinh(σ12 + 2σ23) + exp{−σ12} sinh 2(σ13 + σ23))].
(18)

Hence, we can write down the expression for E(S1S2C
2
3 ) noting E{sin(θ1) sin(θ2)} = c1c2 sinh(σ12).

6 The SMA for the MWN case

First, we start with the bivariate case. Let us now write the two angles as θ and φ. Further, let cθ =
cos θ, sθ = sin θ, cφ = cosφ, sφ = sinφ. Then, we have

W =

 E(s2θ) 0 −E(sθcθsφ)
0 E(s2φ) −E(sθsφcφ)

−E(sθcθsφ) −E(sθsφcφ) E(c2θs
2
φ) + E(s2θc

2
φ)

 , d =

 E(cθ)
E(cφ)

2E(sθsφ)

 . (19)

The parameters for the wrapped normal are σ11, σ12, σ22 and will be linked to the parameters of the BvM
κ1, κ2, λ12. We need the the following moments of the wrapped normal distribution for the SMA:

E(cθ), E(cφ), E(sθsφ), E(s2θ), E(s2φ), E(sθcθsφ), E(sθsφcφ), E(c2θs
2
φ) + E(s2θc

2
φ).

Let W = (wij) and dT = (d1, d2, d3). From Section 3 using the joint characteristic function (3.1), we find
that

d1 = E(cθ) = exp{−1

2
σ11} = c1, say, d2 = E(cφ) = exp{−1

2
σ22} = c2, say, d3 = E(sθsφ) = c1c2 sinh(σ12).

(20)

Further, for the symmetric matrix W = (wij), the elements are given by

w11 = E(s2θ) = (1− c41)/2, w22 = E(s2φ) = (1− c42)/2,

w33 = E(c2θs
2
φ) + E(s2θc

2
φ) = (1− c41c42 cosh(4σ12))/2, w12 = 0,

w13 = −E(sθcθsφ) = −c41c2 sinh(2σ12)/2, w23 = −E(sθsφcφ) = −c1c42 sinh(2σ12)/2.

(21)

Hence we can now substitute these in (3) to get the SMA for this case. Golden et al. (2017) have applied this
approximation for a diffusion process for the wrapped normal case. Kurz et al. (2015) have presented other
methods for parameter estimation of bivariate circular densities, the bivariate wrapped normal in particular,
and it would be interesting to compare these different methods. Further, we can obtain algorithmically the
SMA for the MWN as all moments are known in terms of the covariance matrix Σ from Section 5.
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7 Conclusions

The SME solves one of the challenging problems for directional distributions as it bypasses the normalising
constants; in contrast, even for the univariate von Mises case (Section 4), we need to compute the Bessel
functions for the MLE. For MvM, we simply need to solve a linear equation (namely of the form of equation
(8)). The talk will give some cutting edge applications from structural molecular biology (Boomsma, et al.
2008; Mardia 2013) but this work also has potential for streaming data as SME is easy to compute in real
time. The paper introduces for the first time a general method for approximating two distributions such
as multivariate wrapped normal distribution by a multivariate von Mises distribution; in contrast, even for
the univariate case, the standard approximation involves a ratio of two Bessel functions. There are other
approaches for approximating distributions but these are not as unified or simplistic in comparison to the
SMA method.
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