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Functional Data
Source: Jin-Ting Zhang, Analysis of Variance for Functional Data,2014

Figure: Example of Functional Data.
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Figure: Example of Functional Data.
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Functional Data Analysis (FDA)
Aim

• To represent the data in ways that aid further analysis
• To display the data so as to highlight various characteristics
• To study important sources of pattern and variation amongthe data
• To explain variation in an outcome or dependent variable byusing input or independent variable information
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The advantages of FDA over Time Series,Multivariate Data Analysis and Repeated Measures

• Continuity of data
• Less information loss
• Capturing complex structures
• Solution for high dimensionality
• Flexibility in Handling Unevenly Spaced or Missing Data
• Practical Application in Real-World Contexts
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Spline Methodology
A functional data set

(ti , yi), i = 1,2, . . . ,n,

• Data Fitting: To fit the data with a smooth curve.
• Function Approximation: For approximating complexfunctions.
• Curve Shaping: To ensure specific behaviors at certain pointson the curve.

Some common types of splines include:
• Linear Splines
• Cubic Splines
• B-Splines
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Given data points:
(x0, y0), (x1, y1), . . . , (xn, yn)

For instance:
(0,1), (1,2), (2,0), (3,2), (4,3)

Let’s define a cubic polynomial for each interval:
Si(x) = ai + bi(x − xi) + ci(x − xi)

2 + di(x − xi)
3, i = 0,1, . . . ,n − 1

Here, Si(x) is the polynomial in the i-th interval (i.e., xi ≤ x ≤ xi+1).
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To determine the splines, the following conditions must besatisfied: 1. Fitting Condition: The spline curve should pass througheach data point:
Si(xi) = yi and Si(xi+1) = yi+1

2. First Derivative Continuity: The first derivative of the curveshould be continuous across intervals:
S′

i (xi+1) = S′
i+1(xi+1)

3. Second Derivative Continuity: The second derivative of the curveshould be continuous across intervals:
S′′

i (xi+1) = S′′
i+1(xi+1)

4. Natural Spline Boundary Conditions (Optional): The secondderivatives at the endpoints should be zero:
S′′

0(x0) = 0 and S′′
n−1(xn) = 0

Using these conditions, the coefficients ai , bi , ci , and di aredetermined.
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In a smoothed spline, the curve does not pass exactly through allthe data points. Instead, a balance parameter (λ) is used tominimize the following function:
n∑

i=0

(yi − S(xi))
2 + λ

∫ xn

x0

(S′′(x))2dx

Where: - (yi − S(xi))
2 measures the fit of the spline to the data. -∫ xn

x0
(S′′(x))2dx measures the smoothness of the curve. - λ controlsthe balance between fitting the data and the smoothness of thecurve. A small λ value results in a curve that fits the data closely,while a large λ value yields a smoother curve.
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The degree of smoothing of the yj measurement values is decidedby considering the number of basis functions (K ). For the desired xfunction, a basis system consisting of K basis functions is selected.These basis functions are denoted by ϕk , k = 1, . . . ,K . Thefunctional data to be generated is obtained from the linearcombination of the basis functions:
y(t) =

K∑
k=1

ckϕk (t) = c′ϕ(t).

The c1, c2, . . . , ck parameters are the coefficients that determinethe shape and form of the function corresponding to this basisfunction. Considering the functional data to be created for Nindividuals, it can be represented as:
yi(t) =

K∑
k=1

cikϕk (t), i = 1,2, . . . ,N.
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Figure: Example of Functional Data.
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Smoothing parameter (lambda): 0.0100Piecewise polynomial coefficients: Interval [0.000000, 1.000000]:-0.881708 (x3) + 0.000000(x2) + 1.654376(x) +
1.052902Interval[1.000000,2.000000] :
2.025448(x3) +−2.645124(x2) +−0.990748(x) +
1.825571Interval[2.000000,3.000000] :
−1.560332(x3) + 3.431221(x2) +−0.204651(x) +
0.215147Interval[3.000000,4.000000] :
0.416592(x3) +−1.249775(x2) + 1.976795(x) + 1.881385
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Descriptive Statistics
Functional Mean

x(t) = N−1
N∑

i=1

xi(t)

Functional Variance
varX (t) = (N − 1)−1

N∑
i=1

[xi(t)− x̄(t)]2,

Covariance Function
covX (t1, t2) = (N − 1)−1

N∑
i=1

{xi(t1)− x̄(t1)}{xi(t2)− x̄(t2)}.
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Stochastic Process (SP)
A stochastic process is a collection of random variables indexed bytime or space, often written as:

{y(t) : t ∈ T},

We write y(t) ∼ SP(η, γ) for simplicity. When γ(s, t) has finite trace:
tr(γ) =

∫
T
γ(t , t)dt < ∞,

it has the following singular value decomposition (SVD) :
γ(s, t) =

m∑
r=1

λrϕr (s)ϕr (t),

where λ1, λ2, . . . , λm are all the decreasingly ordered positiveeigenvalues of γ(s, t), and ϕ1(t), ϕ2(t), . . . , ϕm(t) are the associatedorthonormal eigenfunctions.
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As the covariance function γ(s, t) is symmetric with respect to s and
t , we have

tr(γ⊗2) =

∫∫
T
γ2(s, t)ds dt .

By the SVD of γ(s, t), we can show that
tr(γ) = m∑

r=1

λr , tr(γ⊗2) =
m∑

r=1

λ2
r .
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Gaussian Process
A process y(t), t ∈ T is Gaussian with mean function η(t), t ∈ T andcovariance function γ(s, t), s, t ∈ T , denoted as GP(η, γ), if and onlyif for any p time points, tj , j = 1,2, . . . ,p, the random vector

[y(t1), . . . , y(tp)]T

follows a multivariate normal distribution Np(η, Γ), where
η = [η(t1), . . . , η(tp)]T

and
Γ = (γ(ti , tj)) : p × p.
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Wishart Process

Wishart processes are natural generalizations of Wishart randommatrices. Throughout, we use WP(n, γ) to denote a Wishart processwith n degrees of freedom and a covariance function γ(s, t). Ageneral Wishart process W (s, t) ∼ WP(n, γ) can be written as
W (s, t) =

n∑
i=1

Wi(s, t) =
n∑

i=1

vi(s)vi(t),

where Wi(s, t) = vi(s)vi(t), i = 1,2, . . . ,n, i i.i.d.∼ WP(1, γ) and vi(t),
i = 1,2, . . . ,n, i i.i.d.∼ GP(0, γ).
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One-sample Problem

Figure: Example of Functional Data.
where [a,b] is any time period of interest. When [a,b] = [−8,0],
[0,15], and [−8,15].
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H0 : η(t) ≡ −0.50, t ∈ [a,b],

versus
H1 : η(t) ̸= −0.50, for some t ∈ [a,b],

where [a,b] is any time period of interest. When [a,b] = [−8,0],
[0,15], and [−8,15].

y1(t), . . . , yn(t)
i.i.d.∼ SP(η, γ),

and we wish to test the following hypothesis testing problem:
H0 : η(t) ≡ η0(t), t ∈ T , versus H1 : η(t) ̸= η0(t), for some t ∈ T .

Nuri Celik (UC) Functional Data November 26, 2024 20 / 74



One-Sample Problem Assumptions (OS)
1 The functional sample is with η(t) ∈ L2(T ) and tr(γ) < ∞.
2 The functional sample is Gaussian.
3 The subject-effect function v1(t) satisfies

E||v1||4 = E
[(∫

T v2
1 (t)dt

)]2
< ∞.

4 The maximum variance ρ = maxt∈T γ(t , t) < ∞.
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Theorem
Under Assumptions OS1 and OS2, we have

√
n{η̂(t)− η(t)} ∼ GP(0, γ), (n − 1)γ̂(s, t) ∼ WP(n − 1, γ).

Theorem
Under Assumption OS1, as n → ∞, we have

√
n{η̂(t)− η(t)} d−→ GP(0, γ),

Theorem
Under Assumptions OS1, OS3, and OS4, as n → ∞, we have

√
n{γ̂(s, t)− γ(s, t)} d−→ GP(0,Φ),

where

Φ{(s1, t1), (s2, t2)} = E{v1(s1)v1(t1)v1(s2)v1(t2)} − γ(s1, t1)γ(s2, t2).
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Pointwise Test

Pointwise tests aim to test the null hypothesis in the one-sampleproblem at each time point t ∈ T . For any fixed t , the sub-problemis
H0t : η(t) = η0(t), versus H1t : η(t) ̸= η0(t).

Based on the estimators, the pivotal test statistic for the abovelocal hypothesis testing problem is
z(t) =

∆(t)√
γ̂(t , t)

=

√
n[ȳ(t)− η0(t)]√

γ̂(t , t)
.
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Figure: Example of Functional Data.
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L2-Norm Based Test
Under H0, when the Gaussian assumption is valid, the pivotal testfunction ∆(t) ∼ GP(0, γ) and when the Gaussian assumption is not
valid but n is large, we have ∆(t) d−→ GP(0, γ). The L2-norm-basedtest uses the squared L2-norm of ∆(t) as its test statistic:

Tn = ∥∆∥2 = n
∫

T
[ȳ(t)− η0(t)]2 dt .

It is easy to see that Tn will be small under the null hypothesis andit will be large under the alternatives. and under H0,
Tn

d
=

m∑
r=1

λr Ar , Ar
i.i.d.∼ χ2

1,

which is valid when the Gaussian assumption holds or isasymptotically valid when n is large.
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The null distribution of Tn can then be approximated by theWelch-Satterthwaite χ2-approximation, we have
Tn ∼ βχ2

d approximately, where β =
tr(γ⊗2)

tr(γ) , d = κ =
tr2(γ)

tr(γ⊗2)
.
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F Type Test
For the one-sample problem, recall that the L2-norm-based test isbased on ∥∆∥2 with the pivotal test function ∆(t) =

√
n[ȳ(t)− η0(t)].Under H0 and the Gaussian assumption, ∆(t) ∼ GP(0, γ) and

(n − 1)γ̂(s, t) ∼ WP(n − 1, γ) are independent. In addition,
E[∥∆∥2] = tr(γ), E[tr(γ̂)] = tr(γ).

Then it is natural to test using the following test statistic:
Fn =

∥∆∥2

tr(γ̂) =
n
∫

T [ȳ(t)− η0(t)]2dt
tr(γ̂) .

where
∥∆∥2 d

=
m∑

r=1

λr Ar , Ar
i.i.d.∼ χ2

1,

tr(γ̂) d
=

m∑
r=1

λr Er , Er
i.i.d.∼ χ2

n−1,
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Two Sample Problem
A general two-sample problem for functional data with a commoncovariance function can be formulated as follows. Suppose wehave two functional samples

y11(t), · · · , y1n1(t)
i.i.d .∼ SP(η1, γ), y21(t), · · · , y2n2(t)

i.i.d .∼ SP(η2, γ),

where η1(t) and η2(t) are the unknown mean functions of the twosamples, and γ(s, t) is their common covariance function, which isusually unknown. We wish to test the following hypotheses:
H0 : η1(t) ≡ η2(t), t ∈ T ,

versus
H1 : η1(t) ̸= η2(t), for some t ∈ T ,

where T is the time period of interest, often a finite interval [a,b]say with −∞ < a < b < ∞.
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To test the two-sample problem based on the two samples , anatural pivotal test function is
∆(t) =

n1n2

n
(ȳ1(t)− ȳ2(t)) ,

which is the scaled mean function difference of the two samples.When the null hypothesis is valid, this quantity will be small and itwill be large otherwise. Therefore, it is appropriate to use ∆(t) as apivotal test function for the two-sample problem . Notice that ∆(t)has its mean and covariance functions as
η∆(t) = E∆(t) =

n1n2

n
(η1(t)− η2(t)) ,

and Cov[∆(s),∆(t)] = γ(s, t).

Under the null hypothesis, we have E∆(t) ≡ 0, t ∈ T .
Nuri Celik (UC) Functional Data November 26, 2024 29 / 74



Two-Sample Problem Assumptions (TS)
1 The two samples are with η1(t), η2(t) ∈ L2(T ) and tr(γ) < ∞.
2 The two samples are Gaussian.
3 As n → ∞, the sample sizes satisfy n1/n → τ such that

τ ∈ (0,1).
4 The subject-effect functions

Vij(t) = yij(t)− ηi(t), j = 1,2, · · · ,ni ; i = 1,2 are i.i.d..
5 The subject-effect function v11(t) satisfies

E||v11||4 = E
(∫

T
v2

11(t)dt
)2

< ∞.

6 The maximum variance ρ = maxt∈T γ(t , t) < ∞.
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Theorem
Under Assumptions TS1 and TS2, we have

∆(t) ∼ GP(η∆, γ),

and
(n − 2)γ̂(s, t) ∼ WP(n − 2, γ).√
n1n2

n
(ȳ1(t)− ȳ2(t)) ∼ GP(0, γ).

Theorem
Under Assumptions TS1, TS3, and TS4, as n → ∞, we have

∆(t)− η∆(t)
d→ GP(0, γ),

Nuri Celik (UC) Functional Data November 26, 2024 31 / 74



Theorem
Under Assumptions TS1 and TS3 through TS6, as n → ∞, we have

√
n {γ̂(s, t)− γ(s, t)} d→ GP(0,Φ),

where

Φ {(s1, t1), (s2, t2)} = E {v11(s1)v11(t1)v11(s2)v11(t2)}−γ(s1, t1)γ(s2, t2).

Nuri Celik (UC) Functional Data November 26, 2024 32 / 74



Pointwise Tests
We here describe pointwise t-, z-, and bootstrap tests for thetwo-sample problem under various conditions. The key idea of apointwise test is to test the null hypothesis at each time point t ∈ T .For any fixed t ∈ T , the sub-problem is

H0t : η1(t) = η2(t), versus H1t : η1(t) ̸= η2(t).

Based on the sample mean functions and the pooled samplecovariance function given in (5.3), the pivotal test statistic is
z(t) =

[ȳ1(t)− ȳ2(t)]√
(1/n1 + 1/n2)γ̂(t , t)

=
∆(t)√
γ̂(t , t)

,

where ∆(t) is the pivotal test function.
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L2-Norm Based Test
For the two-sample problem, the L2-norm-based test uses thesquared L2-norm of the pivotal test function ∆(t) (5.4) as the teststatistic:

Tn =

∫
T
∆2(t)dt =

n1n2

n

∫
T
[ȳ1(t)− ȳ2(t)]

2 dt .

Under the null hypothesis, when the two functional samples areGaussian, we have ∆(t) ∼ GP(0, γ), and when the two samples arelarge and satisfy Assumptions TS1, TS3, and TS4, we have
∆(t) ∼ GP(0, γ) asymptotically. Therefore, we have

Tn
d
=

m∑
r=1

λr Ar , Ar
i.i.d .∼ χ2

1,

where λ1, λ2, · · · , λm are all the positive eigenvalues of the commoncovariance function γ(s, t).
Tn ∼ βχ2

d approximately,
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F Type Test
For the two-sample problem, recall that the L2-norm-based test isbased on the squared L2-norm ∥∆∥2 of the pivotal test function

∆(t) =
n1n2

n
(ȳ1(t)− ȳ2(t)) .

Under the null hypothesis and the Gaussian assumption,
∆(t) ∼ GP(0, γ) and (n − 2)γ̂(s, t) ∼ WP(n − 2, γ)

and they are independent. In addition, we have
E[∥∆∥2] = tr(γ), and E[tr(γ̂)] = tr(γ).

Therefore, it is natural to test using the following F-type teststatistic:
Fn =

∥∆∥2

tr(γ̂) =
n1n2

n

∫
T [ȳ1(t)− ȳ2(t)]2 dt

tr(γ̂) .
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When the variation of tr(γ̂) is not taken into account, thedistribution of Fn is essentially the same as that of the
L2-norm-based test statistic. To take this variation into account, theGaussian assumption is sufficient. In fact, under the Gaussianassumption and the null hypothesis, by Theorem 4.2, we have

∥∆∥2 d
=

m∑
r=1

λr Ar , Ar
i.i.d .∼ χ2

1,

and
tr(γ̂) d

=

∑m
r=1 λr Er

n − 2
, Er

i.i.d .∼ χ2
n−2,

where Ar ,Er are all independent and λ1, λ2, . . . , λm are all thepositive eigenvalues of γ(s, t). Equivalently, we can write
Fn

d
=

∑m
r=1 λr Ar∑m

r=1 λr Er/(n − 2)
.
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One-way ANOVA
We can define the one-way ANOVA problem for functional data asfollows. Suppose we have k independent samples:

yi1(t), . . . , yini (t), i = 1, . . . , k .

These k samples satisfy
yij(t) = ηi(t) + vij(t), vij(t)

i.i.d .∼ SP(0, γ),

where j = 1,2, . . . ,ni ; i = 1,2, . . . , k , and η1(t), η2(t), . . . , ηk (t) are theunknown group mean functions of the k samples,
vij(t), j = 1, . . . ,ni ; i = 1,2, . . . , k are the subject-effect functions,and γ(s, t) is the common covariance function. We wish to test thefollowing one-way ANOVA testing problem:

H0 : η1(t) ≡ η2(t) ≡ . . . ≡ ηk (t), t ∈ T .
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Based on the k samples, the group mean functions
ηi(t), i = 1,2, . . . , k and the common covariance function γ(s, t) canbe unbiasedly estimated as

η̂i(t) = ȳi.(t) = n−1
i

ni∑
j=1

yij(t), i = 1,2, . . . , k ,

γ̂(s, t) = (n − k)−1
k∑

i=1

ni∑
j=1

[yij(s)− ȳi.(s)][yij(t)− ȳi.(t)],

where and throughout this section n =
∑k

i=1 ni denotes the totalsample size. The estimated covariance function γ̂(s, t) is alsoknown as the pooled sample covariance function. Note that
η̂i(t), i = 1,2, . . . , k are independent and

E[η̂i(t)] = ηi(t), cov (η̂i(s), η̂i(t)) =
γ(s, t)

ni
, i = 1,2, . . . , k .
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Set η̂(t) = [η̂1(t), η̂2(t), . . . , η̂k (t)]T . It is an unbiased estimator of η(t).Then we have
E[η̂(t)] = η(t) and Cov (η̂(s), η̂(t)) = γ(s, t)D,

where D = diag
(

1
n1
, 1

n2
, . . . , 1

nk

) is a diagonal matrix with diagonal
entries 1

ni
, i = 1,2, . . . , k . That is, η̂(t) ∼ SPk (η, γD), where SPk (η, Γ)denotes a k -dimensional stochastic process having the vector ofmean functions η(t) and the matrix of covariance functions Γ(s, t).
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One-Way ANOVA Assumptions (KS)

1 The k samples are with η1(t), η2(t), . . . , ηk (t) ∈ L2(T ) andtr(γ) < ∞.
2 The k samples are Gaussian.
3 As n → ∞, the k sample sizes satisfy ni

n → τi , i = 1,2, . . . , k suchthat τ1, τ2, . . . , τk ∈ (0,1).
4 The subject-effect functions vij(t) = yij(t)− ηi(t),

j = 1,2, . . . ,ni ; i = 1,2, . . . , k are i.i.d.
5 The subject-effect function v11(t) satisfies E[|v11|4] < ∞.
6 The maximum variance ρ = maxt∈T γ(t , t) < ∞.
7 The expectation E[v2

11(s)v
2
11(t)] is uniformly bounded.
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Theorem
Under Assumptions KS1 and KS2, we have

D−1/2[η̂(t)− η(t)] ∼ GPk (0, γIk ), and (n− k)γ̂(s, t) ∼ WP(n− k , γ).

Theorem
Under Assumptions KS1, KS3, and KS4, as n → ∞, we have

D−1/2[η̂(t)− η(t)] d−→ GPk (0, γIk ).

Theorem
Under Assumptions KS1, KS3, KS4, KS5, and KS6, as n → ∞, we have

√
n{γ̂(s, t)− γ(s, t)} d−→ GP(0,V),

where

V{(s1, t1), (s2, t2)} = E{v11(s1)v11(t1)v11(s2)v11(t2)} − γ(s1, t1)γ(s2, t2).
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Pointwise Test
For the main-effect, post hoc, or contrast tests, we do not need toidentify the main-effect functions αi(t), i = 1,2, . . . , k . In fact, theyare not identifiable unless some constraint is imposed. If we dowant to estimate these main-effect functions, the most commonlyused constraint is

k∑
i=1

niαi(t) = 0,

involving the k sample sizes. Under this constraint, it is easy toshow that the unbiased estimators of the main-effect functions are
α̂i(t) = ȳi.(t)− ȳ..(t), i = 1,2, . . . , k ,

where
ȳ..(t) = n−1

k∑
i=1

ni∑
j=1

yij(t) = n−1
k∑

i=1

ni ȳi.(t)

is the usual sample grand mean function.
Nuri Celik (UC) Functional Data November 26, 2024 42 / 74



Let
SSHn(t) =

k∑
i=1

ni [ȳi.(t)− ȳ..(t)]2,

and
SSEn(t) =

k∑
i=1

ni∑
j=1

[yij(t)− ȳi.(t)]2.
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Theorem
Suppose Assumptions KS1 and KS2 hold. Then under the null
hypothesis, we have∫

TSSHn(t)dt d
=

m∑
r=1

λr Ar , Ar
i.i.d .∼ χ2

k−1,

∫
TSSEn(t)dt d

=
m∑

r=1

λr Er , Er
i.i.d .∼ χ2

n−k ,

where Ar ,Er , r = 1,2, . . . ,m are independent of each other, and
λ1, . . . , λm are all the positive eigenvalues of γ(s, t).
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Theorem
Suppose Assumptions KS1, KS3, and KS4 hold. Then under the null
hypothesis, as n → ∞, we have∫

TSSHn(t)dt d→
m∑

i=1

λr Ar , Ar
i.i.d .∼ χ2

k−1,

where λ1, . . . , λm are all the positive eigenvalues of γ(s, t).
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The pointwise F-test is conducted at each t ∈ T using the followingpointwise F statistic:
Fn(t) =

SSHn(t)/(k − 1)
SSEn(t)/(n − k)

.

From the classical linear model theory, it is easy to see that whenthe k samples are Gaussian, we have
Fn(t) ∼ Fk−1,n−k , t ∈ T .
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L2-Norm Based Test

Tn =

∫
T

SSHn(t)dt =
k∑

i=1

ni

∫
T
[ȳi.(t)− ȳ..(t)]2dt .

we have or approximately have
Tn =

m∑
r=1

λr Ar , Ar
i.i.d .∼ χ2

k−1,

where λr , r = 1,2, . . . ,m are all the positive eigenvalues of γ(s, t). Itfollows that we can approximate the null distribution of Tn by theWelch-Satterthwaite χ2-approximation method. we obtain
Tn ∼ βχ2

(k−1)κ approximately, where β =
tr(γ ⊗ 2)

tr(γ)
, κ =

tr2(γ)

tr(γ ⊗ 2)
.
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F Type Test
When the k samples are Gaussian, we can conduct an F-type testfor the main-effect test. The F-type test statistic is defined as

Fn =

∫
T SSHn(t)dt
(k − 1)

/∫
T SSEn(t)dt
(n − k)

.

we have
Fn

d
=

∑m
r=1 λr Ar

(k − 1)

/∑m
r=1 λr Er

(n − k)
,

where Ar
i.i.d .∼ χ2

k−1,Er
i.i.d .∼ χ2

n−k and they are all independent;
λ1, λ2, . . . , λm are all the positive eigenvalues of γ(s, t). We have

Fn ∼ F(k−1)κ̂,(n−k)κ̂ approximately,
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Figure: Example of Functional Data.
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Figure: All Stock Exchange Data.
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Figure: Example of Functional Data.
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COVID-19 in the U.S.:
• July 2020 marked the first wave of economic disruptionscaused by the pandemic, with the U.S. experiencing a sharprise in cases while some regions in Europe and Asia showedsigns of recovery.
• By December 2020, the rollout of vaccines in the U.S. created asense of optimism, potentially driving different marketbehaviors compared to Europe and Asia.
• In May 2021, the U.S. had gained significant momentum in itseconomic recovery, particularly due to accelerated vaccinationefforts, putting it ahead of Europe and Asia.
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Economic Stimulus Packages
• The U.S. implemented massive stimulus packages to mitigatethe economic effects of the pandemic:
• July 2020: Initial stimulus measures began to positivelyinfluence U.S. markets.
• December 2020: Discussions and approval of a second majorstimulus package further boosted confidence.
• May 2021: Additional infrastructure and recovery plans underthe Biden administration might have led to distinct marketmovements.
• In contrast, Europe and Asia may not have implementedstimulus packages as extensive or rapid as those in the U.S.
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• Performance of Technology Stocks (e.g., Apple, Amazon, Tesla)
• Monetary Policy and Interest Rates
• Geopolitical and Trade Factors
• Investor Sentiment
• Sectoral Composition Differences
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Three-way ANOVA
Consider the following three-way ANOVA model,

yijkl = µ0(t) + αi(t) + βj(t) + θk (t) + αβij(t) + αθik (t) + βθjk (t) (1)
+αβθijk (t) + ϵijkl(t),

t ∈ T , i = 1,2, ...,a; j = 1,2, ...,b; k = 1,2, ..., c; l = 1,2, ...,nijk

where µ0(t) is the grand mean function, αi(t), βj(t) and θk (t) are the
i th, j th and k th main-effect functions of factors A, B and C,respectively. αβij(t), αθik (t) and βθjk (t) are the interaction effectfunctions between the factors (A,B), (A,C) and (B,C). αβθijk (t) is the
(i , j , k)th interaction effect function between the factors A, B and C.All these samples are assumed to be independent of each otherand all the subject-effect functions
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Consider the ANOVA model, For this model, we are interested inthe following null hypotheses:

H0A : αi(t) = 0; i = 1,2, ...,a, t ∈ T , (2)
H0B : βj(t) = 0; j = 1,2, ...,b, t ∈ T ,

H0C : θi(t) = 0; k = 1,2, ..., c, t ∈ T ,

H0AB : αβij(t) = 0; i = 1,2, ...,a, j = 1,2, ...,b, t ∈ T ,

H0AC : αθik (t) = 0; i = 1,2, ...,a, k = 1,2, ..., c, t ∈ T ,

H0BC : βθjk (t) = 0; j = 1,2, ...,a, k = 1,2, ..., c, t ∈ T ,

H0ABC : αβθijk (t) = 0; i = 1,2, ...,a, j = 1,2, ...,b, k = 1,2, ..., c, t ∈ T ,
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η̂ijk (t) = ¯yijk .(t) = n−1
ijk

nijk∑
k=1

yijkl(t), i = 1,2, ...,a, j = 1,2, ...,b, k = 1,2, ..., c

(3)Based on this, we can also estimate the common covariancefunction unbiasedly by the following pooled sample covariancefunction

ˆγ(s, t) = (n − abc)−1
a∑

i=1

b∑
j=1

c∑
k=1

nijk∑
l=1

[
yijkl(s)− ¯yijk .(s)

][
yijkl(t)− ¯yijk .(t)

]
(4)where n =

∑a
i=1

∑b
j=1

∑c
k=1 nijk .. As all the abc cell samples areindependent and have the common covariance function γ(s, t)
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gi =
b∑

j=1

c∑
k=1

nijk/n, hj =
a∑

i=1

c∑
k=1

nijk/n and vk =
a∑

i=1

b∑
j=1

nijk/n

Let g,h and v be the vector representations and er ,p bep-dimensional unit vector whose rth component is 1 and others arezero, then we have
η0(t) =

[
gT ⊗ hT ⊗ vT

]
η(t), αi(t) =

[
(ei,a − g)T ⊗ hT ⊗ vT

]
η(t) (5)

βj(t) =
[
gT ⊗ (ei,b − h)T ⊗ vT

]
η(t), θk (t) =

[
gT ⊗ hT ⊗ (ei,c − v)T

]
η(t)

αβij(t) =
[
(ei,a − g)T ⊗ (ei,b − h)T ⊗ vT

]
η(t),

αθik (t) =
[
(ei,a − g)T ⊗ hT ⊗ (ei,c − v)T

]
η(t)

βθjk (t) =
[
gT ⊗ (ei,b − h)T ⊗ (ei,c − v)T

]
η(t)

and
αβθijk (t) =

[
(ei,a − g)T ⊗ (ei,b − h)T ⊗ (ei,c − v)T

]
η(t)Nuri Celik (UC) Functional Data November 26, 2024 58 / 74



η0(t) =
[
gT ⊗ hT ⊗ vT

]
η(t) =

1
n

a∑
i=1

b∑
j=1

c∑
k=1

nijk∑
l=1

yijkl(t)
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Aa = [Ia − 1agT ]⊗ hT ⊗ vT , Ab = gT ⊗ [Ib − 1bhT ]⊗ vT , (7)
Ac = gT ⊗ hT ⊗ [Ic − 1cvT ], Aab = [Ia − 1agT ]⊗ [Ib − 1bhT ]⊗ vT

Aac = [Ia − 1agT ]⊗ hT ⊗ [Ic − 1cvT ],Abc = gT ⊗ [Ib − 1bhT ]⊗ [Ic − 1cvT ]

and
Aabc = [Ia − 1agT ]⊗ [Ib − 1bhT ]⊗ [Ic − 1cvT ]

It can be noticed that Aa,Ab,Ac ,Aab,Aac ,Abc and Aabc are notfull-rank matrices and have
(a − 1), (b − 1), (c − 1), (a − 1)(b − 1), (a − 1)(c − 1), (b − 1)(c − 1)and (a − 1)(b − 1)(c − 1) ranks respectively.
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α̂i(t) =
[
(ei,a − g)T ⊗ hT ⊗ vT

]
η(t) = Aaη̂(t)

And define the following hypothesis matrices
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Ha = (Ia−1,−1a−1), Hb = (Ib−1,−1b−1), Hc = (Ic−1,−1c−1), (8)
Hab = Ha ⊗Hb, Hac = Ha ⊗Hc , Hbc = Hb ⊗Hc , and Habc = Ha ⊗Hb ⊗Hc

and
H0A : αi(t) = 0; i = 1,2, ...,a, t ∈ T = Haα(t) = 0

Sa = HaAa, Sb = HbAb, Sc = HcAc , Sab = HabAab, Sac = HacAac ,

Sbc = HbcAbc , and Sabc = HabcAabc ,

where S becomes a full-rank matrices with q. Therefore, the sum ofsquares of the corresponding null hypothesis and the sum ofsquares are obtained as
Nuri Celik (UC) Functional Data November 26, 2024 62 / 74



SSHn(t) = [Sη̂(t)]T (SDST )−1[Sη̂(t)]

and

SSEn(t) =
a∑

i=1

b∑
j=1

c∑
k=1

nijk∑
l=1

[
yijkl(t)− ¯yijk .(t)

]2
= (n − abc)γ̂(t , t).

Using pointwise testing method, we define the following teststatistics for each null hypothesis as,
Fn(t) =

SSHn(t)/q
SSEn(t)/(n − abc)

It can be noticed that the F statistic is obtained by using Pointwisetest methodology under the normality assumption. If the normalityassumption is not satisfied, L2-norm-based test,Welch-Satterthwaite χ2 approximation method or F-Type Test canbe used. .
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In this application, the scale is applied to 43 health employees inTurkey between January 2021 and December 2021 for monthly.The main purpose of the project is to determine the anxiety anddepression levels of health employees during Covid-19 pandemic.In this paper, we use only the anxiety point of the employees.Figure shows the data in functional form.

Figure: Example of Functional Data.
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In this data, there are three treatments: the gender (23 female, 20male), the profession (20 doctor, 23 nurse) and the age (13 25,25-40 and 14 40+). There are two levels of gender, two levels of theprofession and three level of the age also this data have 12different time of measurement. Our motivation is to determine isthere any significant difference between the treatment in differenttime points.
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Figure: Example of Functional Data.Nuri Celik (UC) Functional Data November 26, 2024 66 / 74
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Othe Functional Data Analysis

• Principal Component Analysis
• Canonical Correlation
• Clustering Analysis
• Discriminant Analysis
• Regression Models and Logistic Regression
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Thank you for listening :)
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Preda C, Saporta G, Lévéder C (2007) PLS classification of functionaldata. Comput Stat 22:223–235
Ramsay, J.O., Dalzell, C.J. (1991). Some tools for functional dataanalysis (with discussion). J. Roy. Statist. Soc. B 52, 539–572.
Ramsay, J.O., Silverman, B.W., 1997. Functional Data Analysis..Springer, New York.
Ramsay, J.O., Silverman, B.W., 2002. AppliedFunctional DataAnalysis. Springer, New York.
Ratcliffe S.J., Heller G.Z. and Leader L.R. (2002). Functional dataanalysis with application to periodically stimulated foetal heart ratedata. II: Functional logistic regression, Statistics in Medicine, 21,1115–1127

Nuri Celik (UC) Functional Data November 26, 2024 72 / 74



Tokushige S, Yadohisa H, Inada K (2007). Crisp and fuzzy k-meansclustering algorithms for multivariate functional data. Comput Stat,22, 1–16
Yamamoto M, Terada Y (2014). Functional factorial K-meansanalysis. Comput Stat Data Anal, 79, 33–148
Zhang JT (2013) Analysis of variance for functional data. Chapmanand Hall, London

Nuri Celik (UC) Functional Data November 26, 2024 73 / 74



The End
Questions? Comments?
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