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Functional Data

Source: Jin-Ting Zhang, Analysis of Variance for Functional Data,
2014
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The heights of 10 girls measured at 31 ages. The circles indicate the
unequally spaced ages of measurement.
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Mean temperature (deg C)
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Mean monthly temperatures for the Canadian weather stations. In
descending order of the temperatures at the start of the year, the stations are
Prince Rupert, Montreal, Edmonton, and Resolute.
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Functional Data Analysis (FDA)

Aim

To represent the data in ways that aid further analysis
To display the data so as to highlight various characteristics

To study important sources of pattern and variation among
the data

To explain variation in an outcome or dependent variable by
using input or independent variable information
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The advantages of FDA over Time Series,

Multivariate Data Analysis and Repeated Measures

Continuity of data
Less information loss

Capturing complex structures

Solution for high dimensionality
Flexibility in Handling Unevenly Spaced or Missing Data
Practical Application in Real-World Contexts
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Spline Methodology

A functional data set

(tiayi)a [ = 1,2,...,/7,

e Data Fitting: To fit the data with a smooth curve.

e Function Approximation: For approximating complex
functions.

e Curve Shaping: To ensure specific behaviors at certain points
on the curve.

Some common types of splines include:
e Linear Splines
e Cubic Splines
e B-Splines
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Given data points:

(X07y0)7 (X17y1)7 ceey (Xny}/n)

For instance:
(0,1),(1,2),(2,0),(3,2), (4,3)

Let's define a cubic polynomial for each interval:
Si(x) = a,-+b,-(x—x,-)+C,-(x—x,-)2+d,-(x—x,-)3, i=0,1,...,n—1

Here, Sj(x) is the polynomial in the i-th interval (i.e., x; < x < Xj1).

Nuri Celik (UC) Functional Data November 26, 2024 8/74



To determine the splines, the following conditions must be
satisfied: 1. Fitting Condition: The spline curve should pass through
each data point:

Si(x))=yi and  Si(Xit1) = Vi1

2. First Derivative Continuity: The first derivative of the curve
should be continuous across intervals:

Si(Xix1) = S;+1 (Xi+1)

3. Second Derivative Continuity: The second derivative of the curve
should be continuous across intervals:

S/ (Xit1) = Sq(Xit1)
4. Natural Spline Boundary Conditions (Optional): The second
derivatives at the endpoints should be zero:
So(x0)=0 and S;_4(xn)=0

Using these conditions, the coefficients a;, b;, ¢;, and d; are
determined.
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In a smoothed spline, the curve does not pass exactly through all
the data points. Instead, a balance parameter (1)) is used to
minimize the following function:

Z(}’i — S(x)))? + A/XH(S”(X))de
i=0 Xo

Where: - (y; — S(x;))? measures the fit of the spline to the data. -
f)g”(S”(x))zdx measures the smoothness of the curve. - A controls
the balance between fitting the data and the smoothness of the
curve. A small A value results in a curve that fits the data closely,

while a large X value yields a smoother curve.
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The degree of smoothing of the y; measurement values is decided
by considering the number of basis functions (K). For the desired x
function, a basis system consisting of K basis functions is selected.
These basis functions are denoted by ¢4,k =1,..., K. The
functional data to be generated is obtained from the linear
combination of the basis functions:

K
y(t) =" cean(t) = o)
k=1

The cq, ¢, ..., cx parameters are the coefficients that determine
the shape and form of the function corresponding to this basis
function. Considering the functional data to be created for N
individuals, it can be represented as:

K
yilt) = cwon(t), i=1,2,....N.
k=1
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- Cubic Spline Smoothing Example

@]

Original Data
Smoothed Spline

Figure: Example of Functional Data.
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Smoothing parameter (lambda): 0.0100

Piecewise polynomial coefficients: Interval [0.000000, 1.000000]:

-0.881708 (x®) + 0.000000(x?) + 1.654376(x) +
1.052902/nterval[1.000000, 2.000000] :

2.025448(x3) + —2.645124(x?) + —0.990748(x) +
1.825571 Interval[2.000000, 3.000000] :

—1.560332(x3) + 3.431221(x?) + —0.204651(x) +
0.215147Interval[3.000000, 4.000000] :

0.416592(x3) + —1.249775(x?) + 1.976795(x) + 1.881385
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Descriptive Statistics

Functional Mean

Z ‘

x(t)=N"1>"x(t)
i=1

Functional Variance

varX(t) Z[x,(t) —

Covariance Function

2|

covX(t, o) = (N —=1)""> {xi(t1) — X(t) H{xi(t2) — X(t2)}.

i=1

v
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Stochastic Process (SP)

A stochastic process is a collection of random variables indexed by
time or space, often written as:

) teT}

We write y(t) ~ SP(n,~) for simplicity. When ~(s, t) has finite trace:

tr(v) = /T'y(t, t)at < oo,

it has the following singular value decomposition (SVD) :

V(S 1) =D Mr(8)a(t),

r=1
where A1, Ao, ..., Ay are all the decreasingly ordered positive

eigenvalues of y(s, t), and ¢1(t), p2(t), ..., om(t) are the associated
orthonormal eigenfunctions.
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As the covariance function ~(s, t) is symmetric with respect to s and
t, we have

tr(7%2) = / /T +2(s. 1) ds dt.

By the SVD of (s, t), we can show that

m m
() =) A (7% =) A%
r=1 r=1
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Gaussian Process

A process y(t),t € T is Gaussian with mean function n(t),t € T and
covariance function (s, t),s,t € T, denoted as GP(n,~), if and only
if for any p time points, ;,j =1,2,..., p, the random vector

(t), ., y(to)]
follows a multivariate normal distribution Np(n, ), where

n= [n(t1)7 s 777(tp)]T
and

r=((t4):pxp.
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Wishart Process

Wishart processes are natural generalizations of Wishart random
matrices. Throughout, we use WP(n, v) to denote a Wishart process
with n degrees of freedom and a covariance function (s, t). A
general Wishart process W(s, t) ~ WP(n,~) can be written as

ZW(ST Z i(8)vi(t),

i=1

where Wi(s, t) = vi(s)vi(t), i = 1,2,...,n, i " WP(1,~) and vj(t),
i=1,2,...,n " GP(0,~).
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One-sample Problem

Log(Frogesterona)

g 8 .
)
£ 8
g 2
3 el
9 " @
Day W2 gy

The conceptive progesterone data example with (a) reconstructive indi-
vidual curves, (b) sample mean function with its 95% pointwise confidence bands,
and (c) sample covariance function.
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Hy : n(t) = —0.50, t € [a, b],

versus
Hy : n(t) # —0.50, for somet € [a, b],

where [a, b] is any time period of interest. When [a, b] = [-8, 0],
[0,15], and [-8, 15].

Vi), ya(t) 5 SP(n,7),

and we wish to test the following hypothesis testing problem:

Ho : n(t) =no(t), te T, versus Hy:n(t)#no(t), forsomete T.
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One-Sample Problem Assumptions (OS)
@ The functional sample is with n(t) € L?(T) and tr(y) < oc.
® The functional sample is Gaussian.
© The subject-effect function v4(t) satisfies
E||vi||* = E [([7 v3(t) at)]? < oo
@ The maximum variance p = maxc7y(t, t) < co.
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Under Assumptions OST and OS2, we have

Vn{i(t) —n(t)} ~ GP(0,7), (n—1)j(s,t) ~ WP(n—1,7).

Under Assumption OS1, as n — oo, we have

Vi) —n(t)} & GP(0,).

Under Assumptions OS1, OS3, and 0S4, as n — oo, we have

Vn{3(s,t) - 7(s, )} L GP(0, ®),

where

®i(s1, 1), (s2, )} = E{va(s1)va (t1)vi(s2)va (t2)} — (1, t1)7(S2, o).
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Pointwise Test

Pointwise tests aim to test the null hypothesis in the one-sample
problem at each time point t € T. For any fixed t, the sub-problem

is

Hot = n(t) = no(t), versus Hiz:n(t) # no(t).
Based on the estimators, the pivotal test statistic for the above
local hypothesis testing problem is

sty — B0 VAT (o)
A(t, 1) A(t, 1)
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L2-Norm Based Test

Under Hp, when the Gaussian assumption is valid, the pivotal test
function A(t) ~ GP(0,~) and when the Gaussian assumption is not

valid but nis large, we have A(t) LN GP(0,~). The L2-norm-based
test uses the squared L?-norm of A(t) as its test statistic:

To= 18I = n [ [7() = () ot.

It is easy to see that T, will be small under the null hypothesis and
it will be large under the alternatives. and under Hy,

m
d ii.d.
Th= Z)\rAn Ar HS X%a

r=1

which is valid when the Gaussian assumption holds or is
asymptotically valid when nis large.
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The null distribution of T, can then be approximated by the
Welch-Satterthwaite x2-approximation, we have

tr(v%2) dep— tr2(y)
tr(y) © C T r(79?)

T, ~ Bx2 approximately, where =
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F Type Test

For the one-sample problem, recall that the L2-norm-based test is
based on ||A||? with the pivotal test function A(t) = v/n[y(t) — no(t)].
Under Hp and the Gaussian assumption, A(t) ~ GP(0,~) and
(n—1)4(s,t) ~ WP(n—1,~) are independent. In addition,

E[|A] = tr(y), E[tr(9)] = tr(y).

Then it is natural to test using the following test statistic:

- IA[Z _ n [rly(2) —770(1‘)]2dt.
tr(%) tr(%)

where

m
d ii.d.
||AH2 = E )\rAr, Ar I’I'V X?

r=1

)

m
~ d i.i.d.
tr(y) = Z MNEr,  E A,

r=1
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Two Sample Problem

A general two-sample problem for functional data with a common
covariance function can be formulated as follows. Suppose we
have two functional samples

Yir(0), o Yin (1) K SP ), yer(1), - Yo () K SP(2, ),

where n4(t) and nx(t) are the unknown mean functions of the two
samples, and (s, t) is their common covariance function, which is
usually unknown. We wish to test the following hypotheses:

Ho :m(t) =mne(t), teT,

versus
Hy :my(t) # no(t), forsomete T,

where T is the time period of interest, often a finite interval [a, b]
say with —oco < a< b < oc.
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To test the two-sample problem based on the two samples, a
natural pivotal test function is

nne

A = =

(1 (1) = ¥2(1)) ,

which is the scaled mean function difference of the two samples.
When the null hypothesis is valid, this quantity will be small and it
will be large otherwise. Therefore, it is appropriate to use A(t) as a
pivotal test function for the two-sample problem . Notice that A(t)
has its mean and covariance functions as

nat) = EA(H) = T2 (53 (6) — ne(t)

and
CoVv[A(S), A(D)] = (s, 1).

Under the null hypothesis, we have EA(t) =0,te€ T.
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Two-Sample Problem Assumptions (TS)

@ The two samples are with 74 (t),n2(t) € L2(T) and tr(y) < oo.
® The two samples are Gaussian.

© As n — oo, the sample sizes satisfy ny/n — 7 such that
7€ (0,1).
@ The subject-effect functions
Vii(t) = yi(t) —ni(t), j=1,2,--- ,n;; i =1,2arei.id.
© The subject-effect function vy (t) satisfies

2
Bl =& ( [ 0 dt) <.

@ The maximum variance p = max;c7Y(f, t) < co.
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Under Assumptions TS1 and TS2, we have

A(t) ~ GP(na, ),

and
(n—2)4(s,t) ~ WP(n—2,7).

nnp
n

Under Assumptions TS1, TS3, and TS4, as n — oo, we have

(1(t) = y2(t)) ~ GP(0, 7).

A(t) - na(t) % GP(0,7),
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Under Assumptions TS1 and TS3 through TS6, as n — oo, we have

Vn{A(s,t) = 7(s, 1)} & GP(0,9),

where

®{(s1,t), (82, )} = E{wva1(s1)va1(tr)vi1(s2)vi1 ()} —(S1, t1)v(S2, t2)

v
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Pointwise Tests

We here describe pointwise t-, z-, and bootstrap tests for the
two-sample problem under various conditions. The key idea of a
pointwise test is to test the null hypothesis at each time pointt € T.
For any fixed t € T, the sub-problem is

Hot = 1 (t) = ma(t), versus  Hyz:nq(t) # n2(t).

Based on the sample mean functions and the pooled sample
covariance function given in (5.3), the pivotal test statistic is

VA +1/m)5(t 1) VALY

where A(t) is the pivotal test function.
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L2-Norm Based Test

For the two-sample problem, the L2-norm-based test uses the
squared L2-norm of the pivotal test function A(t) (5.4) as the test

statistic:
T,,:/A2(t)dt ”1”2/[y1 ()2 ot.
T

Under the null hypothesis, when the two functional samples are
Gaussian, we have A(t) ~ GP(0,~), and when the two samples are
large and satisfy Assumptions TS1, TS3, and TS4, we have

A(t) ~ GP(0,~) asymptotically. Therefore, we have

m
d j.i.d.
Th = Z)\rAra Ar S X%v
r=1
where i, Ao, -+, Ay are all the positive eigenvalues of the common
covariance function (s, t).

T, ~ Bx5 approximately,
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F Type Test

For the two-sample problem, recall that the L?>-norm-based test is
based on the squared L?-norm ||A||? of the pivotal test function

nyng

Al =="

(1 (1) = y(1)) -
Under the null hypothesis and the Gaussian assumption,
A(t) ~ GP(0,v) and (n—2)4(s,t) ~ WP(n—2,7)
and they are independent. In addition, we have
E[|AZ] =tr(y), and E[tr()] = tr(y).

Therefore, it is natural to test using the following F-type test

statistic:
_ Al _ i [7[7 (1) — ye(0)? dt
tr(§) n tr(%) ‘
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When the variation of tr(%) is not taken into account, the
distribution of Fj, is essentially the same as that of the
L2-norm-based test statistic. To take this variation into account, the
Gaussian assumption is sufficient. In fact, under the Gaussian
assumption and the null hypothesis, by Theorem 4.2, we have

m
d j.i.d.
HAHZ = Z)\rAr, Ar " X%,

r=1
and Ly E
A jid.
tr( ) I’n1 2" r7 El‘l'l\" X[27—27
where A, E; are all independent and A\, A2, ..., \p are all the

positive eigenvalues of (s, t). Equivalently, we can write

F d 271:1 ArAr
n — m .
> r=1 ArEr/(n=2)
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One-way ANOVA

We can define the one-way ANOVA problem for functional data as
follows. Suppose we have k independent samples:

yl1(t)77yln,(t); I:1,,k
These k samples satisfy

yi(t) = m() + vy, vy(t) "= SP(0, ),
wherej=1,2,...,n; i=1,2,...,k, and n1(t),n2(%), ..., nk(t) are the
unknown group mean functions of the kK samples,
vi(t), j=1,....,n;; i=1,2,... k are the subject-effect functions,
and ~(s, t) is the common covariance function. We wish to test the
following one-way ANOVA testing problem:

Hp - 771(1') = ng(t) =... = nk(t), teT.
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Based on the k samples, the group mean functions

ni(t), i =1,2,...,k and the common covariance function ~(s, t) can
be unbiasedly estimated as

nj
Hi(t) =7 () =) y(h), i=1,2,... kK

k

A(s, 1) 122[}’/ ($)ly;(t) = yi(D)],

i=1 j=1

where and throughout this section n = Y% . n; denotes the total
sample size. The estimated covariance function 4(s, f) is also
known as the pooled sample covariance function. Note that
ni(t), i=1,2,..., k are independent and

E (0] = (), cov(in(s). () = 2D i— 1.2,k
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Set 7(t) = [A1(t), Aiz(t), ..., Ak(1)] . It is an unbiased estimator of n(t).
Then we have

E[7(t)] = n(t) and  Cov(i(s),A(t)) = (s 1)D,

where D = diag (m STyt n%) is a diagonal matrix with diagonal

entries mo 1=1,2,..., k. Thatis, 7i(t) ~ SPk(n,7D), where SPy(n,T)
denotes a k-dimensional stochastic process having the vector of
mean functions 7(t) and the matrix of covariance functions '(s, t).
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One-Way ANOVA Assumptions (KS)

@ The k samples are with 7 (1), 72(1), . .., nk(t) € L?(T) and
tr(y) < oc.

® The k samples are Gaussian.

© As n — oo, the k sample sizes satisfy % —T1,i=1,2,...,ksuch
thatT1,7‘2,...,Tk S (0, 1).

O The subject-effect functions vj(t) = y;(t) — ni(t),
j=1.2,....n;i=1,2,... karei.i.d.

O The subject-effect function vy4(t) satisfies E[|v41]*] < occ.

@ The maximum variance p = max;c7Y(f, t) < cc.

@ The expectation E[vZ (s)vZ(t)] is uniformly bounded.
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Under Assumptions KS1 and KS2, we have

D~V2[i(t) — n(t)] ~ GP(0,~lk), and (n—k)3(s,t) ~ WP(n—k,7).

Under Assumptions KS1, KS3, and KS4, as n — oo, we have

D=V2[7(t) — n(t)] & GP(0,vk)-

Under Assumptions KS1, KS3, KS4, KS5, and KS6, as n — oo, we have

Vn{A(s,t) = 7(s, 1)} & GP(0,V),

where

Vi(si, ), (s2, &)} = E{var(s1)va1(t)vir(S2)vir (82)} —v(S1, t)v(S2, &), |
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Pointwise Test

For the main-effect, post hoc, or contrast tests, we do not need to
identify the main-effect functions «;(t), i = 1,2,..., k. In fact, they
are not identifiable unless some constraint is imposed. If we do
want to estimate these main-effect functions, the most commonly

used constraint is
k

> nmio(t) =0,

i=1
involving the k sample sizes. Under this constraint, it is easy to
show that the unbiased estimators of the main-effect functions are

&) =yi.(t) —y.(t), i=1,2,... kK,
where
k nj k
y. =0 Tyt =0 nigi(t)
i=1 j=1 i=1

is the usual sample grand mean function.
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Let P
SSHy(t) = nil7i.(1) - y.(D)]2,
i=1

and
k n

SSEx(1) =Y lyy(t) — 7i(t)P.

i=1 j=1
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Suppose Assumptions KST and KS2 hold. Then under the null
hypothesis, we have

m s
/ TSSHa(dt £ S N A, A 4F 2

=il

m
/ TSSEx(t)ot £ S NE,, E 2,

=il

where Ar, E;, r =1,2,...,mare independent of each other, and
A, ..., Am are all the positive eigenvalues of (s, t).
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Theorem

Suppose Assumptions KS1, KS3, and KS4 hold. Then under the null
hypothesis, as n — oo, we have

m .
/ TSSH(t)at % S\ A, A SN2

i=1

where )1, ..., A\m are all the positive eigenvalues of (s, t).
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The pointwise F-test is conducted at each t € T using the following
pointwise F statistic:

_ SSHy(t)/(k 1)

Folt) = SsE, (0 /(n—H0)°

From the classical linear model theory, it is easy to see that when
the k samples are Gaussian, we have

Fn(t) ~ Fk—1,n—k7 teT.
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L2-Norm Based Test

T, = / SSH(1)dt = Zn, / 7 (1) — 7. (]2,

we have or approximately have

m
ji.i.d.
Th= Z MNAr, Ar S Xi_w

r=1

where \,,r =1,2,..., mare all the positive eigenvalues of y(s, f). It
follows that we can approximate the null distribution of T, by the
Welch-Satterthwaite x2-approximation method. we obtain

tr(y®2) ()

2 - _
Tn ~ BX{k—1), approximately, where 8 = ) K= r2)
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F Type Test

When the k samples are Gaussian, we can conduct an F-type test
for the main-effect test. The F-type test statistic is defined as

[ SSHa(t)dt /[ SSE,,
Fo= " /T

we have - _
F, E Zr:‘l )\rAr Zr:1 )\rEr
"Tk=1) /) (n—k)

where A, K" y2 . E, "5 2 and they are all independent;

M, A2, ..., Am are all the positive eigenvalues of (s, t). We have

Fn ~ Fik—1)z,(n—k)» approximately,
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Figure: All Stock Exchange Data.
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COVID-19 in the U.S.:

e July 2020 marked the first wave of economic disruptions
caused by the pandemic, with the U.S. experiencing a sharp
rise in cases while some regions in Europe and Asia showed
signs of recovery.

e By December 2020, the rollout of vaccines in the U.S. created a
sense of optimism, potentially driving different market
behaviors compared to Europe and Asia.

e In May 2021, the U.S. had gained significant momentum in its
economic recovery, particularly due to accelerated vaccination
efforts, putting it ahead of Europe and Asia.
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Economic Stimulus Packages

e The U.S. implemented massive stimulus packages to mitigate
the economic effects of the pandemic:

e July 2020: Initial stimulus measures began to positively
influence U.S. markets.

e December 2020: Discussions and approval of a second major
stimulus package further boosted confidence.

e May 2021: Additional infrastructure and recovery plans under
the Biden administration might have led to distinct market
movements.

e In contrast, Europe and Asia may not have implemented
stimulus packages as extensive or rapid as those in the U.S.
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Performance of Technology Stocks (e.g., Apple, Amazon, Tesla)
Monetary Policy and Interest Rates

Geopolitical and Trade Factors

Investor Sentiment

Sectoral Composition Differences
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Three-way ANOVA

Consider the following three-way ANOVA model,

Vit = po(t) + ai(t) + Bi(t) + 0k(t) + aBj(t) + abi(t) + BOk(t) (1)
+a B0 (t) + €ijw(t),
teT,i=1,2,.,aj=12...bk=12 .cl=12 .0

where 1(t) is the grand mean function, «;(t), 5;(t) and 0,(t) are the
i, j" and k' main-effect functions of factors A, B and C,
respectively. afj(t), afi(t) and 30(t) are the interaction effect
functions between the factors (A,B), (A,C) and (B,C). a88k(t) is the
(i,j, k) interaction effect function between the factors A, B and C.
All these samples are assumed to be independent of each other
and all the subject-effect functions
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Consider the ANOVA model, For this model, we are interested in
the following null hypotheses:

Hoa: ai(t)=0;i=1,2,...,ateT, (2)
Hog : Bj(t) =0;j=1,2,...,b,tc T,
Hoc : 0i(t) =0;k=1,2,...,c, te T,
Hoas 0Bty =0;i=1,2,..aj=12 .. bteT,
Hoac : b (t) =0;i=1,2,....,a,k=1,2,...,c,te T,
Hosc : BOk(t) =0;j=1,2,...a k=12, cteT,
Honsc - B0 (1) =0:i=1,2,....,aj=1,2 ., bk=12 . cteT,
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n,]k

ﬁl}k() yjk - ’/k Z)ﬁkl(t I_1 2 j 727"‘7b7k:1727'~7c
3)

Based on this, we can also estimate the common covariance
function unbiasedly by the following pooled sample covariance
function

n,'j-k

a b
1(8,0) = (n—abe) T3S [yi(s) = i (9)] [yin(D) = e (1)

i=1 j=1 k=1 I=1
(4)

o

wheren=3%"%2, Zj; > k1 Nii.. As all the abc cell samples are
independent and have the common covariance function (s, t)
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b ¢ a ¢ a2 b
glzzznijk/n, hj:ZZn;jk/nandvk:ZZnijk/n

j=1 k=1 i=1 k=1 i=1 j=1
Let g, h and v be the vector representations and e, , be

p-dimensional unit vector whose rth componentis 1 and others are

zero, then we have

m(t) = g7 o hT @ vT|n(t), ai(t) = (e —8) @ hT o V|
[gT 2h’ @ (e v)T:
afi(t) = [(eia— )7 @ (65— h)T @ VT |n(h),
()
()

B(t) = [87 @ (eip— )T @ VT |n(0), 0(1)
ad(t) = |(e1a—8)T ©hT o (€0 —V)
BOK(t) = {gT ®(eip—h) @ (ejc—V)

and
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no(t) = |87 @ hT @ vT[n(t) =
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Az=la—1.8"1oh" av’, Ay =g" @[l - 1,h" oV’
Ac=g  oh" @l —1vT], Ay =[la— 128" @ [l — 1h" @V
Aac = [la — 1agT] oh’ @ [le — 1cVT]7Abc = gT ® [lp — 1th] ® [le — 1cVT

and
Aabc = [Ia - 1agT] ® [Ib - 1th] ® [lc - 1cVT]

It can be noticed that A,, Ap, Ac, Aab, Aac, Apc and Ay are not
full-rank matrices and have
(a—1),(b—1),(c—1).(a=1)(b-1),(a=1)(c—1),(b—-1)(c—1)
and (a—1)(b—1)(c — 1) ranks respectively.
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ai(t) = |(eia—8)" @h” @V |n(t) = Aai(1)

And define the following hypothesis matrices

Nuri Celik (UC) Functional Data November 26, 2024 61/74



Ha = (la-1,—1a-1), Hp = (Ip—1, —1p-1), He = (lc—1, —1c-
Hap = Ha ® Hp, Hae = Ha ® He, Hpe = Hp @ He, and Hgpe = Ha @ Hp @

and

Hoa:ai(t)=0;i=1,2,....,a,t € T=Haa(t) =0

Sa = HaAa7 Sb = HbAb7 Sc = HCA07 Sab = HabAab; Sac = HacAac7
Sbe = HpcApe, and Sape = HapcAape,

where S becomes a full-rank matrices with g. Therefore, the sum of
squares of the corresponding null hypothesis and the sum of
squares are obtained as
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SSHy(t) = [Si(t)]7 (SDST) " [Si(1)]

and

a b c¢ Nk 2

SSEA(t) =333 > [yiwlt) ~ ¥iie(D)] = (n— abo)3(t.0).

Using pointwise testing method, we define the following test
statistics for each null hypothesis as,

SSHy(t)/q
SSE,(t)/(n— abc)

It can be noticed that the F statistic is obtained by using Pointwise
test methodology under the normality assumption. If the normality
assumption is not satisfied, £2-norm-based test,
Welch-Satterthwaite x? approximation method or F-Type Test can
be used. .
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In this application, the scale is applied to 43 health employees in
Turkey between January 2021 and December 2021 for monthly.
The main purpose of the project is to determine the anxiety and
depression levels of health employees during Covid-19 pandemic.
In this paper, we use only the anxiety point of the employees.
Figure shows the data in functional form.

25

Figure: Example of Functional Data.
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In this data, there are three treatments: the gender (23 female, 20
male), the profession (20 doctor, 23 nurse) and the age (13 25,
25-40 and 14 40+). There are two levels of gender, two levels of the
profession and three level of the age also this data have 12
different time of measurement. Our motivation is to determine is
there any significant difference between the treatment in different

time points.
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(Gender) (Profession)

(Age) (Gender & Profession)

(Gender & Age) (Profession & Age)

(Gender & Profession & Age)

Functional Data November 26, 2024 66/74



e Schmidt SJ, Barblan LP, Lory I, Landolt MA (2021). "Age-related
effects of the COVID-19 pandemic on mental health of children
and adolescents.” European Journal of Psychotraumatology,
Taylor Francis.

e Gamsizkan Z, Sungur MA, Smith R (2021). "How do older age,
gender, and risk groups affect protective behaviours and
mental health in the COVID-19 pandemic?” International Journal
of Mental Health, Wiley Online Library.

e Steinegger B, Arola-Fernandez L, Chen X (2022). "Behavioural
response to heterogeneous severity of COVID-19 explains
temporal variation of cases among different age groups.”
Proceedings of the Royal Society B, Royal Society Publishing.

e Atchison C, Bowman LR, Vrinten C, Redd R (2021). "Early
perceptions and behavioural responses during the COVID-19
pandemic: a cross-sectional survey of UK adults.” BM/ Open,
BM] Publishing.

e Balkhi F, Nasir A, Zehra A, Riaz R (2020). "Psychological and
behavioral response to the coronavirus (COVID-19) pandemic.”
Cureus, NCBI.

Nuri Celik (UC) Functional Data November 26, 2024 67/74



Othe Functional Data Analysis

Principal Component Analysis
Canonical Correlation

Clustering Analysis
e Discriminant Analysis
® Regression Models and Logistic Regression
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Thank you for listening :)
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The End

Questions? Comments?
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