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Abstract

There are many settings where researchers are interested in estimating average treatment effects
and are willing to rely on the unconfoundedness assumption, which requires that the treatment
assignment be as good as random conditional on pre-treatment variables. The unconfoundedness
assumption is often more plausible if a large number of pre-treatment variables are included in
the analysis, but this can worsen the finite sample properties of standard approaches to treatment
effect estimation. There are some recent proposals on how to extend classical methods to the high
dimensional setting; however, to our knowledge, all existing method rely on consistent estimability of
the propensity score, i.e., the probability of receiving treatment given pre-treatment variables. In this
paper, we propose a new method for estimating average treatment effects in high dimensional linear
settings that attains dimension-free rates of convergence for estimating average treatment effects under
substantially weaker assumptions than existing methods: Instead of requiring the propensity score
to be estimable, we only require overlap, i.e., that the propensity score be uniformly bounded away
from 0 and 1. Procedurally, out method combines balancing weights with a regularized regression
adjustment.

Keywords: Causal Inference, Potential Outcomes, Propensity Score, Sparse Estimation

1 Introduction

In many observational studies, researchers are interested in estimating average causal effects. A common
approach is to assume that conditional on observed features of the units, assignment to the treatment is as
good as random, or unconfounded; see, e.g., Rosenbaum and Rubin [1983] and Imbens and Rubin [2015]
for general discussions. There is a large literature on adjusting for differences in observed features between
the treatment and control groups under unconfoundedness; some popular methods include regression,
matching, propensity score weighting and subclassification, as well as doubly-robust combinations thereof
[e.g., Abadie and Imbens, 2006, Heckman et al., 1998, Hirano et al., 2003, Robins and Rotnitzky, 1995,
Rosenbaum, 2002].

In practice, in order to make the assumption of unconfoundedness more plausible, researchers may
need to account for a substantial number of features or observed confounders. For example, in an obser-
vational study of the effect of flu vaccines on hospitalization, we may be concerned that only controlling
for differences in the age and sex distribution between controls and treated may not be sufficient to
eliminate biases. In contrast, controlling for detailed medical histories and personal characteristics may
make unconfoundedness more plausible. But the formal asymptotic theory in the earlier literature only
considers the case where the sample size increases while the number of features remains fixed, and so
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approximations based on those results may not yield valid inferences in settings where the number of
features is large, possibly even larger than the sample size.

There has been considerable recent interest in adapting methods from the earlier literature to high-
dimensional settings. Belloni et al. [2014, 2016] show that biases can arise when applying standard
high-dimensional methods such as the lasso to estimating the outcome relationship. The reason for this
bias is that the lasso focuses solely on accurate prediction of outcomes, at the expense of adjusting for
covariates that affect treatment assignment, that is, covariates that enter in the propensity score. Belloni
et al. [2014] propose an augmented variable selection scheme to avoid this effect, while Farrell [2015]
discusses how a doubly robust approach to average treatment effect estimation in high dimensions can
also be used to compensate for the bias of the lasso. Despite the breadth of research on the topic, a
common requirement of all these methods is that they all rely on consistent estimability of the propensity
score, i.e., the conditional probability of receiving treatment given the features. For example, several of
the above methods assume that the propensity scores can be consistently estimated using a sparse logistic
model.

In this paper, we show that efficient inference of average treatment effects in high dimensions is possible
under substantially weaker assumptions. Rather than assuming that the propensity score is estimable,
we only require overlap, i.e., that the propensity score be uniformly bounded away from 0 and 1 for all
values in the support of the pretreatment variables. In particular, our results do not rely on a sparse
propensity model—or even a well-specified logistic propensity model. Given this overlap assumption,
as well as standard linearity and sparsity assumptions on the model relating outcomes to pretreatment
variables, we show that our estimator has at most the same asymptotic error as the best semi-parametric
average treatment effect estimators in low dimensions [Bickel et al., 1998].

Our approach builds on the classical literature on weighted estimation of treatment effects, going
back to the work of Rosenbaum and Rubin [1983] who showed that controlling for the propensity score is
sufficient to remove all biases associated with observed covariates. Recent studies have sought to extend
the applicability of this result by using machine learning techniques to estimate the propensity score,
in combination with conventional methods for estimating average treatment effects given the estimated
propensity score: McCaffrey et al. [2004] recommend estimating the propensity score using boosting and
then use inverse propensity weighting, while Westreich et al. [2010] consider support vector machines,
neural networks, and classification trees. In related approaches, Chan et al. [2015], Graham et al. [2012,
2016], Hainmueller [2012], Imai and Ratkovic [2014] and Zubizarreta [2015] propose weighting methods
where the weights are not equal to the inverse of the propensity score but are chosen explicitly to optimize
balance between the covariate distributions in the treatment and control groups.

None of these methods, however, achieve systematically good performance in high dimensions. The
reason plain propensity-based methods fall short in high dimensions is closely related to the reason why
pure lasso regression adjustments are not efficient: In high dimensions, it is not in general possible to
exactly balance all the features, and small imbalances can result in substantial biases in the presence of
strong effects. Our proposal starts from an attempt to remove these biases by first fitting a standalone
pilot model to capture any strong effects, and then applying weighting to the residuals.

We study the following two-stage approximate residual balancing algorithm that tightens the connec-
tion between the estimation strategy and the goal of estimating the average treatment effect. First, we
fit a regularized linear model for the outcome given the features separately in the two treatment groups.
In the current paper we focus on the elastic net [Zou and Hastie, 2005] and the lasso [Chen et al., 1998,
Tibshirani, 1996] for this component, and present formal results for the latter. In a second stage, we
re-weight the first stage residuals using weights that approximately balance all the features. Here we
follow Zubizarreta [2015] in focusing on the properties of the weights in terms of the implied balance
and their variance, rather than the fit of the propensity score, as the formal criterion to choose weights.
Approximate balancing on all pretreatment variables (rather than exact balance on a subset of features,
as in a regularized regression, or weighting using a regularized propensity model that may not be able to
capture all relevant dimensions) allows us to guarantee that bias that might arise from failing to adjust
for a large number of potentially weak confounders can be bounded.

In our simulations, we find that three features of the algorithm are important: (i) the direct covariance
adjustment based on the outcome data with regularization to deal with the large number of features,
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(ii) the weighting using the relation between the treatment and the features, and (iii) the fact that the
weights are based on direct measures of balance rather than on estimates of the propensity score, again
with regularization to take account of the many features.

The finding that both weighting and regression adjustment are important is similar to conclusions
drawn from the earlier literature on doubly robust estimation in low dimensions [Robins and Rotnitzky,
1995, Robins et al., 1995], where combining both techniques was shown to weaken the assumptions
required to achieve consistent estimation of average treatment effects. In our setting, this pairing is not
just helpful in terms of robustness, and is in fact required for efficiency: Neither regression adjustments
nor approximately balanced weighting of the outcomes alone can achieve the optimal rate of convergence.
Meanwhile, the finding that weights designed to achieve balance perform better than weights based on the
propensity score is consistent with findings in Chan et al. [2015], Graham et al. [2012, 2016], Hainmueller
[2012], and Zubizarreta [2015]. The current paper is the first to combine direct covariance adjustment
with such balancing weights in a high-dimensional setting where regularization is required.

Note that if we are not willing to assume an approximately sparse propensity model as in Belloni
et al. [2014], then the average treatment effect is a generic dense functional of the outcome model. As
shown by Cai and Guo [2015], constructing valid confidence intervals of length O(1/

√
n) for such a dense

functional is in general impossible no matter how sparse the outcome model is; see also related results
by Collier et al. [2015] for the Gaussian sequence model. We avoid the impossibility result of Cai and
Guo [2015] by exploiting the overlap assumption that the propensity score is bounded away from zero
and one, which enables us to take advantage of special structure in the causal inference problem.

Our paper is structured as follows. First, in Section 2, we motivate our two-stage procedure using a
simple bound for its estimation error. Then, in Section 3, we provide a formal analysis of our procedure
under high-dimensional asymptotics, and we identify conditions under which approximate residual bal-
ancing is asymptotically Gaussian and allows for practical inference about the average treatment effect
with dimension-free rates of convergence. Finally, in Section 4, we conduct a simulation experiment, and
find our method to perform well in a wide variety of settings relative to other proposals in the literature.

2 Estimating Average Treatment Effects in High Dimensions

2.1 Setting and Notation

Our goal is to estimate average treatment effects in the potential outcome framework, or Rubin Causal
Model [Rubin, 1974, Imbens and Rubin, 2015]. For each unit in a large population there is pair of
(scalar) potential outcomes, (Yi(0), Yi(1)). Each unit is assigned to the treatment or not, with the
treatment indicator denoted by Wi ∈ {0, 1}. Each unit is also characterized by a vector of covariates or
features Xi ∈ Rp, with p potentially large, possibly larger than the sample size. For a random sample of
size n from this population, we observe the triple (Xi, Wi, Y

obs
i ) for i = 1, . . . , n, where

Y obs
i = Yi(Wi) =

{
Yi(1) if Wi = 0,

Yi(0) if Wi = 1,
(1)

is the realized outcome, equal to the potential outcome corresponding to the actual treatment received.
The total number of treated units is equal to nt and the number of control units equals nc. We will
frequently use the short-hand Xc and Xt for the feature matrices corresponding only to control or
treated units respectively. We write the propensity score, i.e., the conditional probability of receiving the
treatment given features, as e(x) = P[Wi = 1|Xi = x] [Rosenbaum and Rubin, 1983].

We focus primarily on the expected treatment effect for the treated sample,

τ =
1

nt

∑
{i:Wi=1}

E
[
Yi(0)− Yi(1)

∣∣Xi

]
. (2)

We note that the average treatment effect for the controls can be handled similarly, and the overall
average effect is a weighted average of the two.
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Throughout the paper we assume unconfoundedness, i.e., that conditional on the pretreatment vari-
ables, treatment assignment is as good as random [Rosenbaum and Rubin, 1983]:

Assumption 1 (Unconfoundedness).

Wi ⊥⊥ (Yi(0), Yi(1))
∣∣ Xi. (3)

Given unconfoundedness, there is a well established semiparametric efficiency theory for estimating
average treatment effects. Assuming overlap and some regularity conditions, the semiparametric efficiency
bound for regular estimators µc with a fixed number of covariates implies that no estimator can improve
on an asymptotic variance of V = E

[
P [W = 1]

−2
e2(Xi) · σ2

c (Xi) / (1− e(Xi)
]

[Bickel et al., 1998, Hahn,
1998, Hirano et al., 2003, Robins and Rotnitzky, 1995, Robins et al., 1995]. This asymptotic variance is
induced by the influence function

ψ(y, x, w) = −(1− w)
e(x)

P [W = 1] (1− e(x))
(y − µc(x)) , (4)

so that E[ψ(Y obs
i , Xi,Wi)

2] = V. Our goal is to construct an estimator that attains this efficiency bound
in high dimensions, without requiring special assumptions—such as sparsity—on the propensity model.1

For our analysis, we assume a linear model for the potential outcomes in both groups.

Assumption 2 (Linearity).

µc(x) = E
[
Yi(0)

∣∣X = x
]

= x · βc, µt(x) = E
[
Yi(1)

∣∣X = x
]

= x · βt, (5)

for w ∈ {0, 1} and x ∈ Rp.

In fact, we will only use the linear model for the control outcome because we focus on the average effect
for the treated units, but if we were interested in the overall average effect we would need linearity in both
groups. The linearity assumption is strong, but it may be plausible, especially if the researcher includes
transformations of the basic features in the design. Given this linearity, we can write the estimand as

τ = µt − µc, where µt = Xt · βt, µc = Xt · βc, and Xt =
1

nt

∑
{i:Wi=1}

Xi. (6)

Here, estimating the first term is easy: µ̂t = Y t =
∑
{i:Wi=1} Y

obs
i /nt is unbiased for µt, and in fact

we do not require linearity for the treated outcomes. In contrast, estimating µc is a major challenge,
especially in settings where p is large, and it is the main focus of the paper.

2.2 Baselines and Background

We begin by reviewing two classical approaches to estimating µc, and thus also τ , in the above linear
model. The first is a weighting-based approach, which seeks to re-weight the control sample to make it
look more like the treatment sample; the second is a regression-based approach, which seeks to adjust for
differences in features between treated and control units by fitting an accurate model to the outcomes.
Neither approach alone performs well in a high-dimensional setting with a generic propensity score.
However, in Section 2.3, we show that these two approaches can be fruitfully combined to obtain better
estimators for τ .

1We note that the above efficiency bounds are only known to be optimal in a low-dimensional semiparametric setting
following, e.g., Newey [1994]. Our goal of reaching the asymptotic rate V is thus only motivated by an aesthetic or heuristic
connection to earlier work, and not by a matching efficiency theory for high-dimensional, linear average treatment effect
estimation. Developing such a formal theory would be of considerable interest.
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2.2.1 Weighted Estimation

A first approach is to re-weight the control dataset using weights γi to make the weighted covariate
distribution mimic the covariate distribution in the treatment population. Given the weights we estimate
µ̂c as

µ̂c =
∑

{i:Wi=0}

γi Y
obs
i . (7)

The standard way of selecting weights γi uses the propensity score:

γi =
e(Xi)

1− e(Xi)

/ ∑
{i:Wj=0}

e(Xj)

1− e(Xj)
, (8)

where e(x) = P
[
Wi = 1

∣∣Xi = x
]

is the propensity score [Rosenbaum and Rubin, 1983]. To implement
these methods researchers typically substitute an estimate of the propensity score into the expression for
the weights (8). Such inverse-propensity weights with a flexibly estimated propensity score have desirable
asymptotic properties [Hirano et al., 2003] in settings where the asymptotics is based on a fixed number
of covariates.

The finite-sample performance of methods based on (8) can be poor, however, both in settings with
limited overlap in covariate distributions and in settings with many covariates. In the latter case recently
proposed methods include (regularized) logistic regression, boosting, support vector machines, neural
networks, and classification trees [McCaffrey et al., 2004, Westreich et al., 2010]. But since estimating the
treatment effect then involves dividing by 1− ê(Xi), small inaccuracies in ê(Xi) can have large effects; this
problem is often quite severe in high dimensions. To our knowledge, methods based on inverse propensity
weighting are not known to have good asymptotic properties in high-dimensional settings.

Recently, there have been proposals to select weights γi by focusing on balance directly, rather than
on fit of the propensity score [Deville and Särndal, 1992, Chan et al., 2015, Graham et al., 2012, 2016,
Hainmueller, 2012, Hellerstein and Imbens, 1999, Imai and Ratkovic, 2014, Zhao, 2016, Zubizarreta, 2015].
This is a subtle but important improvement. The motivation behind this approach is that, in a linear
model, the bias for estimators based on (7) depends solely on Xt −

∑
{i:Wi=0} γiXi. Therefore getting

the propensity model exactly right is less important than accurately matching the moments of Xt.
In high dimensions, however, exact balancing weights do not in general exist. When p � nc, there

will in general be no weights γi for which Xt −
∑
{i:Wi=0} γiXi = 0, and even in settings with p < nc

but p is large such estimators would not have good properties. Zubizarreta [2015] extends the balancing
weights approach to allow for weights that achieve approximate balance instead of exact balance, and
considers the tradeoff between precision of the resulting estimators and the bias from lack of balance.
We find, however, that only achieving approximate balancing leads to estimators for τ that still have
substantial bias in many settings.

2.2.2 Regression Adjustments

A second approach is to compute an estimator β̂c for βc using the nc control observations, and then
estimate µc as

µ̂c = Xt · β̂c. (9)

In a low-dimensional regime with p� nc, the ordinary least squares estimator for βc is a natural choice,
and yields an accurate and unbiased estimate of µc. In high dimensions, however, the problem is more
delicate: accurate unbiased estimation of βc is in general impossible, and methods such as the lasso, ridge
regression, or the elastic net may perform poorly when plugged into (9), in particular when Xt is far
away from Xc, the average covariate values for the controls.

As stressed by Belloni et al. [2014, 2016], the problem with plain lasso regression adjustments is that
features with a substantial difference in average values between the two treatment arms can generate large
biases even if the coefficients on these features in the outcome regression are small. Thus, a regularized
regression that has been tuned to optimize goodness of fit on the outcome model is not appropriate
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whenever bias in the treatment effect estimate due to failing to control for potential confounders is of
concern. To address this problem, Belloni et al. [2014] propose running least squares regression on the
union of two sets of selected variables, one selected by a lasso regressing the outcome on the covariates,
and the other selected by a lasso logistic regression for the treatment assignment. We note that estimating
µc by a regression adjustment µ̂c = Xt · β̂c, with β̂c estimated by ordinary least squares on a selected
variables, is implicitly equivalent to running (7) with weights γ chosen to balance the selected features.

The Belloni et al. [2014] approach works well in settings where both the outcome regression and the
treatment regression are at least approximately sparse. However, when the propensity is not sparse, we
find that the performance of such double-selection methods is often poor. Moreover, Cai and Guo [2015]
formally establish that minimax rates for inference about a ·βc for generic dense vectors a are quite poor,
even when βc is very sparse. Thus, methods relying on regression adjustments alone may not be able
deliver accurate inference about τ for generic propensity models.

2.3 Approximate Residual Balancing

Here we propose a new method combining weighting and regression adjustments to overcome the lim-
itations of each method. In the first step of our method, we use a regularized linear model, e.g., the
lasso or the elastic net, to obtain a first pilot estimate of the treatment effect. In the second step, we do
“approximate balancing” of the regression residuals to estimate treatment effects: that is, we weight the
residuals using weights that achieve approximate balance of the covariate distribution between treatment
and control groups. This step compensates for the potential bias of the pilot estimator that arises due to
confounders that may be weakly correlated with the outcome but are important due to their correlation
with the treatment assignment. We find that the regression adjustment is effective at capturing strong
effects; the weighting on the other hand is effective at capturing small effects. The combination leads to
an effective and simple-to-implement estimator for average treatment effects in a wide variety of settings
with many features.

We focus on a meta-algorithm that first computes an estimate β̂c of βc, using the full sample of control
units. This estimator may take a variety of forms, but typically it will involve some form of regularization
to deal with the number of features. Second we compute weights γi that balance, at least approximately,
covariate distributions. Then our estimator for µc has the general form

µ̂c = Xt · β̂c +
∑

{i:Wi=0}

γi

(
Y obs
i −Xi · β̂c

)
. (10)

In other words, we fit a model parametrized by βc to capture some of the big signals, and then use
a non-parametric re-balancing of the control data on the features to extract left-over signal from the
residuals Y obs

i −Xi · β̂c. Ideally, we would hope for the first term to take care of any strong effects, while
the re-balancing of the residuals can efficiently take care of the small spread-out effects. Our theory and
experiments will verify that this is in fact the case.

A major advantage of the functional form in (10) is that it yields a simple and powerful theoretical
guarantee, as stated below. Recall that Xc is the feature matrix for the control units. Consider the
difference between µ̂c and µc for our proposed approach:

µ̂c − µc =
(
Xt −X>c γ

)
·
(
β̂c − βc

)
+ γ · ε,

where ε is the intrinsic noise εi = Yi(0)−Xi · βc. With only the regression adjustment and no weighting,
the difference would be

µ̂c,reg − µc =
(
Xt −Xc

)
·
(
β̂c − βc

)
+ 1 · ε/n,

and with only the weighting the difference would be

µ̂c,weight − µc =
(
Xt −X>c γ

)
· βc + γ · ε.
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Without any adjustment, just using the average outcome for the controls as an estimator for µc, the
difference between the estimator for µc and its actual value would be

µ̂c,no−adj − µc =
(
Xt −Xc

)
· βc + 1 · ε/n.

The regression reduces the first term, capturing part of the bias, from (Xt−Xc)·βc to (Xt−Xc)·(β̂c−βc),
which will be substantial reduction if (β̂c−βc) is small relative to βc. The weighting further reduces this

to (Xt −X>c γ) · (β̂c − βc), which may be helpful if there is a substantial difference between Xt and Xc.
This argument shows the complimentary nature of the regression adjustment and the weighting.

The following result formalizes the notion that the combination of regression and weighting can
improve the properties of the estimators substantially. All proofs are given in Section 5.

Proposition 1. The estimator defined in (10) satisfies

|µ̂c − µc| ≤
∥∥Xt −X>c γ

∥∥
∞

∥∥∥β̂c − βc∥∥∥
1

+

∣∣∣∣∣∣
∑

{i:Wi=0}

γi εi

∣∣∣∣∣∣ . (11)

The result (11) decomposes the error of µ̂c into two parts. The first is the main term, depending on
the design Xc, and affected by the dimension of the covariates; the second term is a variance term that
does not depend on the dimension of the covariates. The upshot is that the main term, which encodes the
high-dimensional nature of the problem, involves a product of two factors that can both other be made
reasonably small; more specifically, we will focus on regimes where the first term scales as O(

√
log(p)/n),

while the second term scales as O(k
√

log(p)/n) where k is the sparsity of the outcome model. Thus,
(11) will often enable us us to control high-dimensional bias effects better than only weighting or only
estimation of βc.

In order to exploit Proposition 1, we need to make concrete choices for the weights γ and the parameter
estimates β̂c. We define approximately balancing weights as

γ = argminγ̃

{
(1− ζ) ‖γ̃‖22 + ζ

∥∥Xt −X>c γ̃
∥∥2
∞ subject to

∑
γ̃i = 1, γ̃i ≥ 0

}
, (12)

for some ζ ∈ (0, 1). When we wish to stress the dependence of these weights on ζ, we will write γ(ζ).
Most of the time we omit this dependence to simplify the exposition. These weights, which are closely
related to a recent proposal by Zubizarreta [2015], are designed to make both terms of (11) small. In
contrast, the inverse propensity score weights do not take the variance component into account at all. We
refer to these weights as approximately balancing since they seek to make the mean of the re-weighted
control sample, namely X>c γ, match the treated sample mean Xt as closely as possible. Below, we show
that we can find a ζ that achieves our objective of bounding both terms of (11); in our simulations we
use ζ = 1/2, which balances the square of the bias term and the variance.

Meanwhile, for estimating β̂c there are a number of possibilities. One is to use the lasso [Chen et al.,
1998, Tibshirani, 1996] as there are several well-known results that let us control its 1-norm error [Hastie
et al., 2015]. In our simulations we use the elastic net [Zou and Hastie, 2005] to estimate βc. Note that
we do not need to select a sparse model, we just need to regularize the estimator. Using a combination
of L1 and L2 regularization may therefore work well in practice. So, specifically, we calculate β̂c as

β̂c = arg min
βc

 ∑
{i:Wi=0}

(Y obs
i −X>i βc)2 + λ

(
(1− α) ‖βc‖22 + α ‖βc‖1

)
.

 . (13)

For some of the theoretical analysis we focus on the lasso case with α = 1. Our complete algorithm is
described in Procedure 1.

One question is why the balancing weights perform better than the propensity score weights, a finding
that is also reported in Chan et al. [2015], Hainmueller [2012], and Zubizarreta [2015]. To gain intuition
for this issue in a simple parametric context, suppose the propensity score has the following logistic form,

e(x) =
exp(x · θ)

1 + exp(x · θ)
.
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Procedure 1. Approximately Residual Balancing with Elastic Net

The following algorithm estimates the average treatment effect on the treated by approximately
balanced residual weighting. Here, ζ ∈ (0, 1), α ∈ (0, 1) and λ > 0 are tuning parameters. This
procedure is implemented in our R package balanceHD; we default to ζ = 0.5 and α = 0.9, and select
λ by cross-validation using the lambda.1se rule from the glmnet package [Friedman et al., 2010].

1. Compute positive approximately balancing weights γ as

γ = argminγ̃

(1− ζ) ‖γ̃‖22 + ζ
∥∥Xt −X>c γ̃

∥∥2
∞ s.t.

∑
{i:Wi=0}

γ̃i = 1 and γ̃i ≥ 0

 . (14)

2. Fit βc in the linear model using an elastic net,

β̂c = argminβ

 ∑
{i:Wi=0}

γi
(
Y obs
i −Xi · β

)2
+ λ

(
(1− α) ‖β‖22 + α ‖β‖1

) . (15)

3. Estimate the average treatment effect τ as

τ̂ = Y t −

Xt · β̂c +
∑

{i:Wi=0}

γi

(
Y obs
i −Xi · β̂c

) . (16)

In that case the inverse propensity score weights would be proportional to γi ∝ exp(x · θ). The efficient
estimator for θ is the maximum likelihood estimator,

θ̂ml = arg max
θ

n∑
i=1

{WiXi · θ − ln(1 + exp(Xi · θ))} .

An alternative, less efficient, estimator for θ is the method of moments estimator θ̂mm that balances the
covariates exactly:

Xt =
∑

{i:Wi=0}

Xi
exp(Xi · θ)∑

{j:Wj=0} exp(Xj · θ)
,

with implied weights γi ∝ exp(Xi · θ̂mm). The weights are very similar to those based on the estimated

propensity score, with the only difference that the parameter estimates θ̂ differ. The estimator θ̂mm leads
to weights that achieve exact balance on the covariates, in contrast to either the true value θ, or the
maximum likelihood estimator θ̂ml. The point of this discussion is that the goal of balancing (leading to

θ̂mm) is different from the goal of estimating the propensity score (for which θ̂ml is optimal).

2.4 Related Work

The idea of combining weighted and regression-based approaches to treatment effect estimation has a
long history in the causal inference literature. In a low-dimensional setting where both methods are
already consistent on their own, they can be combined to get “doubly robust” estimates of τ [Robins
and Rotnitzky, 1995, Robins et al., 1995, Van der Laan and Robins, 2003]. These methods, which first
calculate the weights based on propensity score estimates and then estimate βc by weighted least squares,
are guaranteed to be consistent if either the outcome model or the propensity model is well specified,
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although they do not always have good properties when the estimated propensity score is close to zero
or one [Hirano et al., 2003, Kang and Schafer, 2007]. Farrell [2015] studies the behavior of doubly robust
estimators in high dimensions, and establishes conditions under which they can reach efficiency when
both the propensity function and the outcome model are consistently estimable.

Our method has strong parallels with the double-robustness approach, although we modify it in
two aspects: We estimate the regression function µc(x) = x · βc without weights, and we construct the
weights by balancing arguments, rather than by estimating the propensity score. These differences enable
us to provide efficient estimates of τ in high-dimensional linear models under weaker conditions on the
propensity score; however, this gain in efficiency comes at the cost of losing doubly robust consistency
guarantees.

Our method is also related to the semiparametric efficiency bound literature. In low dimensions, i.e.,
with a fixed number of features, efficient estimators of µc are asymptotically equivalent to

µ̃c =
1

Nt

N∑
i=1

{
e(Xi)(µc(Xi)− µc)− (1−Wi)

e(Xi)

1− e(Xi)
(Yi − µc(Xi))

}
; (17)

see, e.g., Hahn [1998]. Bickel et al. [1998] suggest estimating the components of this asymptotic linear
representation (i.e., e(x) and µc(x)), and substituting them into the function as a general approach to
obtaining an efficient estimator for the parameter of interest. A key component of our modification,
motivated by the difficulty of accurately estimating inverse propensity weights in some settings, is that
we use balancing weights instead of the propensity score weights e(Xi)/(1−e(Xi)). A second modification
is that we estimate the regression function using regularization methods.

Intriguingly, in low dimensions, doubly robust methods are not necessary for achieving semipara-
metric efficiency; this rate can be achieved by either non-parametric inverse-propensity weighting or
non-parametric regression adjustments on their own [Chen et al., 2008, Hirano et al., 2003]. At best,
the use of non-parametric doubly robust methods can only improve on the second-order properties of
the the average treatment effect estimate [Rothe and Firpo, 2013]. Conversely, in high-dimensions, we
have found that both weighting and regression adjustments are required for

√
n-consistency; this finding

mirrors the results of Belloni et al. [2016] and Farrell [2015].
Our approximately balancing weights (12) are inspired by the work of Chan et al. [2015], Graham

et al. [2012, 2016], Hainmueller [2012], Hirano et al. [2001], Imai and Ratkovic [2014], and Zubizarreta
[2015]. Most closely related, Zubizarreta [2015] proposes estimating τ using the re-weighting formula (7)
with weights

γ = argminγ̃

{
‖γ̃‖22 subject to

∑
γ̃i = 1, γ̃i ≥ 0,

∥∥Xt −X>c γ̃
∥∥
∞ ≤ t

}
, (18)

where the tuning parameter is t; he calls these weights stable balancing weights. The main conceptual
difference between our setting and that of Zubizarreta [2015] is that he considers problem settings where
p < nc, and then considers t to be a practically small tuning parameter, e.g., t = 0.1σ or t = 0.001σ.
However, in high dimensions, the optimization problem (18) will not in general be feasible for small values
of t; and in fact the bias term

∥∥Xt −X>c γ
∥∥
∞ becomes the dominant source of error in estimating τ . We

call our our weights γ “approximately” balancing in order to remind the reader of this fact. Similar
estimator have been considered in Graham et al. [2012, 2016] and Hainmueller [2012] in a setting where
exact balancing is possible, with slightly different objection function; for example, Hainmueller [2012]
uses −

∑
i ln(γi) instead of

∑
i γ

2
i , leading to

γ = argminγ̃

− ∑
{i:Wi=0}

log (γ̃i) subject to
∑

γ̃i = 1, γ̃i ≥ 0,
∥∥Xt −X>c γ̃

∥∥
∞ = 0

 . (19)

This estimator has attractive conceptual connections to logistic regression and maximum entropy estima-
tion. In particular, in a low dimensional setting where W |X admits a well-specified logistic model, the
results of Owen [2007] imply that the methods of Graham et al. [2012, 2016] and Hainmueller [2012] are
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doubly robust; see also Newey and Smith [2004], Imbens et al. [1998], and Hirano et al. [2001]. In terms
of our immediate concerns, however, the variance of τ̂ depends on γ through ‖γ‖22 and not −

∑
log (γi),

so our approximately balancing weights should be more efficient than those defined in (19).
Finally, we note that while both our method and that of Belloni et al. [2014] rely on the lasso, we use

the lasso in conceptually different ways. Belloni et al. [2014] use the lasso purely as a variable selection
method to find the features that matter for estimating τ ; they then run a linear regression without
any shrinkage on the union of the two sets of selected variables. In contrast, our residual re-weighting
scheme enables us to simply use the lasso as an accurate predictive tool, and our analysis does not rely
on recovering a decent approximation to the full set of important pretreatment variables.

3 Theoretical Analysis

In this section, we provide a brief discussion of the theoretical properties of approximately balanced
estimation. We find that our method admits strong asymptotic performance guarantees that can be
verified using mostly elementary proof techniques paired with some well understood results about the
lasso as discussed by, e.g., Hastie et al. [2015]. We begin by studying regimes under which we can
achieve approximate balance using our weighting scheme, i.e., our procedure succeeds in making both∥∥Xt −X>c γ

∥∥
∞ and ‖γ‖22 small; we then use these results to provide study the behavior of τ̂ in Sections

3.2 and 3.3.
In this section, we consider a slightly more careful form of approximately balanced weighting, and

also require that the largest weight γi must be smaller than n
−2/3
c :

γ = argminγ̃

{
(1− ζ) ‖γ̃‖22 + ζ

∥∥Xt −X>c γ̃
∥∥2
∞ subject to

∑
γ̃i = 1, γ̃i ≥ 0, max

i
γ̃i ≤ n−2/3c

}
. (20)

This additional constraint will enable us to ensure asymptotic normality of our estimator. We do not
impose this additional constraint in our software, since it is often already satisfied by the solution to (12).

3.1 Achieving Approximate Balance

In high-dimensions, it is not in general possible to find a re-weighting vector γ for which
∥∥Xt −X>c γ

∥∥
∞ is

small. For example suppose that p = 2nc, that Xc = (Inc×nc
Inc×nc

), and that Xt consists of n times “1”
followed by n times “−1”; then

∥∥Xt −X>c γ
∥∥
∞ ≥ 1 for any γ ∈ Rnc , and the approximation error does

not improve as nc and p both get large. We will find, however, that there exist fairly natural conditions
under which we can achieve approximate balance with high probability even when p� nc.

The first such condition is to assume overlap, as is common in the literature on causal inference from
observational studies [Crump et al., 2009, Imbens and Rubin, 2015]. Informally, overlap requires that
each unit have a positive probability of receiving each of the treatment and control conditions, and thus
that the treatment and control populations cannot be too dissimilar. Without overlap, estimation of
average treatment effects relies fundamentally on extrapolation beyond the support of the features, and
thus makes estimation inherently sensitive to functional form assumptions.

Assumption 3 (Overlap). There is a constant 0 < η such that η ≤ e(x) ≤ 1− η for all x ∈ Rp.

For estimation of the average effect for the treated we in fact only need the propensity score to be
bounded from above by 1− η, but for estimation of the overall average effect we would require both the
lower and upper bound on the propensity score.

In order to guarantee approximate balance, we also need to bound the tail behavior of the features
Xi. Assumption 4 ensures that the features are sub-Gaussian.

Assumption 4 (Sub-Gaussian Features). There is a constant ν > 0 such that the distribution of
Xj conditional on W = w is sub-Gaussian with parameter ν2 after re-centering. In other words,
E
[
exp[t(Xij − E

[
Xij

∣∣Wi = w
]
)]
∣∣Wi = w

]
≤ exp[ν2t2/2] for any t > 0, j ∈ {1, ..., p} and w ∈ {0, 1}.
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Lemma 2. Suppose that we have n independent and identically distributed examples (Xi, Yi, Wi) drawn
from a joint distribution satisfying Assumptions 3 and 4. Then, for any δ > 0, with probability at least
1− δ, there exists a ζ ∈ (0, 1) for which the weights γ defined in (20) satisfy

∥∥Xt −X>c γ
∥∥
∞ ≤ ν

√√√√2 log

(
10 p

δ

)(
1

nt
+

(1− η)
2

nc η2

)
+O

(
1

nc

)
, and (21)

nt ‖γ‖22 ≤
1

ρ2
E

[(
e(Xi)

1− e(Xi)

)2
∣∣∣∣∣Wi = 0

]
+

(1− η)
2

(2− 2η + ρη)

ρ3 η3

√
1

2nc
log

(
10 p

δ

)
+O

(
1

nc

)
, (22)

where ρ = P [Wi = 1] /P [Wi = 0] is the odds ratio.

Lemma 2 shows that the “Overlap” and “Sub-Gaussian Features” assumptions allows us to provide
bounds on the imbalance for approximately balancing weights γ and the variance of the weights. These
bounds are essentially tight for the true propensity score weights, γ∗i ∝ e(Xi)/(1 − e(Xi)); thus, using
γ∗ instead of γ for approximate residual balancing would not improve on the guarantees we get from
Proposition 1.

Note that the above result only guarantees the existence of a ζ ∈ (0, 1) that achieves good balance
and satisfies a bound on the variance, but does not tell us what the value of that ζ is. However, because
the right-hand side terms of (21) and (22) depend on observables, we can simply try many different values
of ζ to find one that yields weights γ satisfying both conditions.

3.2 Gaussian Asymptotics

The main goal of our paper is to use the approximately balancing weights discussed above to construct
efficient estimators for average treatment effects in high-dimensional linear models, where µc(x) = x · βc
for some βc in Rp. Building on Proposition 1, we focus on the problem of finding estimators β̂c for which
‖β̂c − βc‖1 is small. This is a well-studied problem in the mathematical statistics literature, and we will
be able to leverage recent theoretical results. In order to accurately estimate βc under L1 norm, we make
a sparsity assumption on βc.

Assumption 5 (Sparsity). We have a sequence of problems indexed by n, p, and k such that the
parameter vector βc is k-sparse, i.e., ‖βc‖0 ≤ k, and that k log(p)/

√
n→ 0.

The above sparsity requirement is quite strong. However, many analyses that seek to establish asymp-
totic normality in high dimensions rely on such an assumption. For example, Javanmard and Montanari
[2014], Van de Geer et al. [2014], and Zhang and Zhang [2014] all make this assumption when seeking to
provide confidence intervals for individual components of βc; furthermore, Cai and Guo [2015] show that
efficient inference about the entries of βc is in general impossible unless k �

√
n / log(p), or the sparsity

level k is known a-priori. Belloni et al. [2014] use a similar assumption where they allow for additional
non-zero components, but they assume that beyond the largest k components with k satisfying the same
sparsity condition, the remaining non-zero elements of βc are sufficiently small that they can be ignored,
in what they refer to as approximate sparsity. The only exception to this assumption we are aware of
is in recent work by Javanmard and Montanari [2015], who show that inference of βc is possible even
when k � n / log(p) in a setting where X is a random Gaussian matrix with either a known or extremely
sparse population precision matrix.

We also require that the design Xc satisfy a form of the restricted eigenvalue condition [Bickel et al.,
2009]. This type of assumption is standard in the literature on high-dimensional estimation [e.g., Belloni
et al., 2014, Meinshausen and Yu, 2009, Negahban et al., 2012, Van De Geer and Bühlmann, 2009]. Below,
we follow the framework of Negahban et al. [2012].

Assumption 6 (Restricted Eigenvalue). For 1 ≤ k ≤ p, define the set Ck as

Ck =

β ∈ Rp : ‖β‖1 ≤ 4

k∑
j=1

∣∣βij ∣∣ for some 1 ≤ i1 < ... < ij ≤ p

 . (23)
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Then, Xc satisfies the {k, ω}-restricted eigenvalue condition for ω > 0 if

1

nc
‖Xcβ‖22 ≥ ω ‖β‖

2
2 for all β ∈ Ck. (24)

Our analysis builds on well-known bounds on the estimation error of the lasso [Bickel et al., 2009,
Candès and Tao, 2007, Meinshausen and Yu, 2009]; the following result depends directly on Corollary 2
of Negahban et al. [2012].

Theorem 3. Suppose that we have n independent and identically distributed training examples sat-
isfying Assumptions 1–6, and write ρ = P [W = 1] /P [W = 0]. Suppose, moreover, that we have
homoskedastic noise: Var[εi(w)

∣∣Xi] = σ2 for all i = 1, ..., n, and also that the response noise
εi(w) := Yi(w)− E[Yi(w)

∣∣Xi] is uniformly sub-Gaussian with parameter υ2 > 0. Finally, suppose that
we use Procedure 1 for estimation, with the lasso penalty parameter set to λn = 5νυ

√
log (p) /nc in-

stead of selecting λn by cross-validation. Then, there exists a sequence ζn ∈ (0, 1) for which the weights
γ = γ(ζn) defined in (20) satisfy (21) and (22) with δ = 1/p, and yield

µ̂c − µc

‖γ‖2
⇒ N

(
0, σ2

)
and

τ̂ − τ√
n−1t + ‖γ‖22

⇒ N
(
0, σ2

)
, (25)

where τ is the expected treatment effect on the treated (2). Moreover,

lim sup
n→∞

nc ‖γ‖22 ≤ ρ−2 E

[(
e (Xi)

1− e (Xi)

)2
∣∣∣∣∣Wi = 0

]
. (26)

This result shows that we can achieve asymptotic inference about τ with a 1/
√
n rate of convergence,

irrespective of the dimension of the features, subject to the effectively the same sparsity assumptions
on the Y -model as used by the rest of the high-dimensional inference literature, including Belloni et al.
[2014] and Farrell [2015]. However, unlike this literature, we make no assumptions on the propensity
model beyond overlap, and do not require it to be estimated consistently. We also note that, recently,
Bloniarz et al. [2015] proved an analogue to Theorem 3 for lasso regression adjustments to randomized
controlled trials. Our result shows that, in observational studies, lasso regression adjustments are still
helpful—but now need to be paired with an approximate residual balancing step.

The rate over convergence implied by (26) is the same as what we would get if we actually knew the
true propensities and could use them for weighting; we achieve this rate although we have no guarantees
that our balancing weights γi approximate the underlying propensity weights e(Xi)/(1 − e(Xi)). We
also note that the rate in Theorem 3 matches the semiparametric efficiency bound for estimating average
treatment effects given homoskedasticity [Hahn, 1998, Hirano et al., 2003], i.e., the upper bound (26)
is equivalent to the efficiency bound (4) for inference of average treatment effects in a low-dimensional
semiparametric setting.

3.3 Inference under Heteroskedasticity

The previous section established that, in the homoskedastic setting, approximate residual balancing has
a Gaussian limit distribution. This result naturally suggests that our method should also allow for
asymptotic inference about τ . Here, we verify that this is in fact the case; and, moreover, we show that
our proposed confidence intervals are heteroskedaticity robust.

Corollary 4. Under the conditions of Theorem 3, suppose instead that we have heteroskedastic noise

υ2min ≤ Var
[
εi(Wi)

∣∣Xi, Wi

]
≤ υ2 for all i = 1, ..., n. (27)

Then, the following holds:

(µ̂c − µc)
/√

V̂c ⇒ N (0, 1) , V̂c =
∑

{i:Wi=0}

γ2i

(
Yi −Xi · β̂c

)2
. (28)
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In order to provide inference about τ , we also need error bounds for µ̂t. Under sparsity assumptions
comparable to those made for βc in Theorem 3, we can verify that

(µ̂t − µt)
/√

V̂t ⇒ (0, 1) , V̂t =
1

n2t

∑
{i:Wi=1}

(
Yi −Xiβ̂t

)2
, (29)

where β̂t is obtained using the lasso with λn = 5νυ
√

log (p) /nc. Moreover, µ̂c and µ̂t are independent
conditionally on X and W , thus implying that (τ̂ − τ) / (V̂c + V̂t)

1/2 ⇒ N (0, 1). This last expression is
what we use for building confidence intervals for τ .

3.4 Approximate Residual Balancing as Debiased Estimation

Much of the existing literature on high-dimensional inference relies a 2-step debiasing algorithms. For ex-
ample, in order to provide confidence intervals for individual parameters βi in high-dimensional regression
problems, Javanmard and Montanari [2014] center their confidence intervals at

β̂(debiased) = β̂ +MX>
(
Y −Xβ̂

)
, (30)

where β̂ is the plain lasso estimate, and M is the solution to a quadratic program chosen such as to make
the second term acts as an approximate Newton step; see also Van de Geer et al. [2014]. In this context,
we can also understand the residual balancing step of our algorithm as an analogous debiasing step for
the plain lasso-based estimator µ̂c = Xt · β̂c.

Now, despite the cosmetic similarity, we emphasize that the conceptual reasons for why both methods
work are quite different. For example, trying to estimate µc as Xt · β̂(debiased) would not work well
at all. Moreover, the minimax results of Cai and Guo [2015] imply that no method that simply seeks
to debias estimates of β can achieve efficient inference about τ . Here, our overlap assumption has
enabled us to obtain qualitatively different guarantees from the existing literature on high dimensional
inference [Javanmard and Montanari, 2014, Van de Geer et al., 2014, Zhang and Zhang, 2014]; and, to
our knowledge, our result is the first to provide sparsity-adaptive inference about a dense functional of
βc, namely in our case τ .

4 Simulation Experiments

In order to evaluate the finite-sample performance of our method, we first compare its performance in
estimating τ to several other proposals available in the literature. After that, we consider the coverage
of our confidence intervals as proposed in Section 3.3. All numbers reported in Tables 1–5 are averaged
over 1000 simulation replications.

4.1 Methods under Comparison

In addition to approximate residual balancing as described in Procedure 1, the methods we use as
baselines are as follows: naive, or difference-in-means estimation τ̂ = Y t − Y c, which simply ignores
the covariate information X; elastic net estimation [Zou and Hastie, 2005], or equivalently, Procedure 1
with trivial weights γi = 1/nc; approximately balanced estimation [Zubizarreta, 2015], or equivalently,
Procedure 1 with trivial parameter estimates β̂c = 0; inverse-propensity weighting, which uses (7)
and (8), together with propensity estimates ê(Xi) obtained by elastic net logistic regression, with the
propensity scores trimmed at 0.05 and 0.95; inverse-propensity residual weighting, which pairs
elastic net regression adjustments with the above inverse-propensity weights by plugging both into (10)
[Farrell, 2015]; and ordinary least squares after model selection where, in the spirit of Belloni et al.
[2014], we run lasso linear regression for Y

∣∣X, W = 0 and lasso logistic regression for W
∣∣X, and then

compute the ordinary least squares estimate for τ on the union of the support of the three lasso problems.
Whenever there is a “λ” regularization parameter to be selected, we use cross validation with the

lambda.1se rule from the glmnet package [Friedman et al., 2010]. In Belloni et al. [2014], the authors
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(a) Low-dimensional version of the many clusters
simulation setting. The blue and red dots denote
control and treated X-observations respectively.
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(b) Schematic of misspecified simulation setting,
along the first covariate (Xi)1. The “treatment ef-
fect” curve is not to scale along the Y -axis.

Figure 1: Illustrating simulation designs.

recommend selecting λ using more sophisticated methods, such as the square-root lasso [Belloni et al.,
2011]. However, in our simulations, our implementation of Belloni et al. [2014] still attains excellent
performance in the regimes the method is designed to work in. Similarly, our confidence intervals for τ are
built using a cross-validated choice of λ instead of the fixed choice assumed by Corollary 4, as motivated
by recent results [Chatterjee and Jafarov, 2015, Reid et al., 2016]. Our implementation of approximate
residual balancing, as well as all the discussed baselines, is available in the R-package balanceHD.

4.2 Simulation Designs

We consider four different simulation settings. Our first setting is a two-cluster layout, where half
the data is drawn as Xi ∼ N (Ci, Ip×p), while Ci ∈ {0, δ} such that P

[
Ci = 0

∣∣Wi = 0
]

= 0.8 and

P
[
C1 = 0

∣∣Wi = 1
]

= 0.2. We consider two settings for the between-cluster vector δ: a “dense” setting
where δ = 4/

√
n 1, and a “sparse” setting where δj = 40/

√
n 1 ({j = 1 modulo 10}). We generated our

data as Yi = Xi · β + 10Wi + εi with Wi = Bernoulli(0.5) and εi ∼ N (0, 1), where β is one of:

dense : β ∝ (1, 1/
√

2, ..., 1/
√
p), harmonic : β ∝ (1/10, 1/11, ..., 1/ (p+ 9)) ,

moderately sparse : β ∝ (10, ..., 10︸ ︷︷ ︸
10

, 1, ..., 1︸ ︷︷ ︸
90

, 0, ..., 0︸ ︷︷ ︸
p−100

), and very sparse : β ∝ (1, ..., 1︸ ︷︷ ︸
10

, 0, ..., 0︸ ︷︷ ︸
p−10

).

In each case we scaled β such that ‖β‖2 = 10. Finally, we set n = 300 and p = 800.
Our second many-cluster layout is closely related to the first, except now we have 20 cluster centers

Ci ∈ {c1, ..., c20}, where all the cluster centers are independently generated as ck ∼ N (0, Ip×p). To
generate the data, we first draw Ci uniformly at random from one of the 20 cluster centers and then set
Wi = 1 with probability η for the first 10 clusters and Wi = 1 with probability 1−η for the last 10 clusters;
we tried both η = 0.1 and η = 0.25. We used the same choices of β as above, except now we normalized
them to ‖β‖2 = 18. We again used n = 300 and p = 800. We illustrate this simulation concept in Figure
1a; we purposefully chose a treatment assignment mechanism where log-linear propensity estimators may
not perform well to highlight the fact our method only relies on overlap.

To test the robustness of all considered methods, we also ran a misspecified simulation. Here, we
first drew Xi ∼ N (0, Ip×p), and defined latent parameters θi = log(1 + exp(−2 − 2 ∗ (Xi)1))/0.915.
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We then drew Wi ∼ Bernoulli(1 − e−θi), and finally Yi = (Xi)1 + · · · + (Xi)10 + θi(2Wi − 1)/2 + εi
with εi ∼ N (0, 1). We varied n and p. This simulation setting, loosely inspired by the classic program
evaluation dataset of LaLonde [1986], is illustrated in Figure 1b; note that the average treatment effect
on the treated is much greater than the overall average treatment effect here.

Finally, we considered a two-stage setting closely inspired by an experiment of Belloni et al. [2014].
Here Xi ∼ N (0, Σ) with Σij = 0.5|i−j|, and θi = Xi · β1 + εi1. Then, Wi ∼ Bernoulli(1/(1 + eθi)), and
finally Yi = Xi ·β2 +0.5Wi+εi2 where εi1 and εi2 are independent standard Gaussian. Following Belloni
et al. [2014], we set the structure model as (β)j ∝ 1/j2 for j = 1, ..., p. However, for the propensity
model, we once follow their paper and use a “sparse” propensity model (βP )j ∝ 1/j2, but also try a
“dense” propensity model (βP )j ∝ 1. We set n = 100 and p = 200. Note that this sparse setting is in
fact very sparse; adjusting for differences in the two most important covariates removses 95% of the bias
associated with all the covariates. In contrast, for example, in the first and fifth columns in Table 1 it
would require adjusting for differences in the 700 or 90 most important covariates to remove 95% of the
bias associated with all the covariates.

4.3 Accuracy Results

In the first two experiments, for which we report results in Tables 1 and 2, the outcome model Y |X is
reasonably sparse, while the propensity model has overlap but is not in general sparse. In fact, for Table
2, the propensity model does not even have a linear log odds ratio. Here approximate residual balancing
does well, while none of the other methods can successfully fit large effects while mitigating bias due to
small effects. When β is very sparse, methods that only seek to fit β—namely the elastic net and least
squares with model selection—do quite well. We find that in general the balancing performs substantially
better than propensity score weighting, with or without direct covariate adjustment. We also find that
combining direct covariate adjustment with weighting does better than weighting on its own, irrespective
of whether the weighting is based on balance or on the propensity score.

Encouragingly, approximate residual balancing also does a good job in the misspecified setting from
Table 3. It appears that our stipulation that the approximately balancing weights (12) must be non-
negative (i.e., γi ≥ 0) helps prevent our method from interpolating too aggressively. Conversely, least
squares with model selection does not perform well despite both the outcome and propensity models
being sparse; apparently, it is more sensitive to the misspecification here.

Finally, in Table 4, we find that the method of Belloni et al. [2014] has excellent performance—as
expected—when both the propensity and outcome models are sparse. However, if we make the propensity
model dense, its performance decays substantially, and both approximate residual balancing and the
elastic net do better.

4.4 Coverage Results

We evaluate coverage of confidence intervals in the “many-cluster” setting for different choices of β, n,
and p; results are given in Table 5. We see that coverage is generally better with more (η = 0.25) rather
than less (η = 0.1) overlap, and with sparser choices of β. Moreover, coverage rates appear to improve
as n increases, suggesting that we are in a regime where the asymptotics from Corollary 4 are beginning
to apply.

5 Proofs

Proof of Proposition 1

First, we can write

µ̂c = X
>
t β̂ + γ>

(
Yc −Xcβ̂

)
= X

>
t β̂ + γ>Xc

(
β − β̂

)
+ γ>εc.

15

Proceedings 61th ISI World Statistics Congress, 16-21 JULY 2017, Marrakech (Session IPS058) P. 339



Beta Model dense harmonic moderately sparse very sparse
Propensity Model dense sparse dense sparse dense sparse dense sparse

Naive 2.847 3.158 1.920 2.136 0.817 0.812 0.453 0.456
Elastic Net 1.822 0.445 1.127 0.304 0.296 0.113 0.034 0.029

Approximate Balance 1.670 0.621 1.133 0.442 0.499 0.224 0.289 0.182
Approx. Resid. Balance 1.576 0.207 0.973 0.183 0.243 0.080 0.027 0.024

Inverse Prop. Weight 2.368 1.511 1.594 1.029 0.686 0.415 0.384 0.251
Inv. Prop. Resid. Weight 2.234 1.610 1.458 1.107 0.534 0.426 0.239 0.231

Double-Select + OLS 1.814 0.228 1.126 0.209 0.290 0.096 0.034 0.024

Table 1: Root-mean-squared error
√

E [(τ̂ − τ)2]/τ in the two-cluster setting.

Beta Model dense harmonic moderately sparse very sparse
Overlap (η) 0.1 0.25 0.1 0.25 0.1 0.25 0.1 0.25

Naive 0.672 0.498 0.688 0.484 0.686 0.484 0.714 0.485
Elastic Net 0.451 0.302 0.423 0.260 0.181 0.114 0.031 0.021

Approximate Balance 0.470 0.317 0.498 0.292 0.489 0.302 0.500 0.302
Approx. Resid. Balance 0.412 0.273 0.399 0.243 0.172 0.111 0.030 0.021

Inverse Prop. Weight 0.491 0.396 0.513 0.376 0.513 0.388 0.533 0.380
Inv. Prop. Resid. Weight 0.463 0.352 0.479 0.326 0.389 0.273 0.363 0.248

Double-Select + OLS 0.679 0.368 0.595 0.329 0.239 0.145 0.047 0.023

Table 2: Root-mean-squared error
√

E [(τ̂ − τ)2]/τ in the many-cluster setting.

n 400 1000
p 100 200 400 800 1600 100 200 400 800 1600

Naive 1.72 1.73 1.73 1.72 1.74 1.71 1.70 1.72 1.70 1.72
Elastic Net 0.44 0.46 0.50 0.51 0.54 0.37 0.39 0.39 0.40 0.42

Approximate Balance 0.48 0.55 0.61 0.63 0.70 0.24 0.30 0.38 0.40 0.45
Approx. Resid. Balance 0.24 0.26 0.28 0.29 0.32 0.16 0.17 0.18 0.19 0.20

Inverse Prop. Weight 1.04 1.07 1.11 1.13 1.18 0.82 0.84 0.88 0.89 0.94
Inv. Prop. Resid. Weight 1.29 1.30 1.31 1.31 1.33 1.25 1.25 1.26 1.25 1.28

Double-Select + OLS 0.28 0.29 0.31 0.31 0.34 0.24 0.25 0.25 0.25 0.26

Table 3: Root-mean-squared error
√
E [(τ̂ − τ)2]/τ in the misspecified setting.

Propensity Model sparse dense
First Stage Sig. Strength ‖βP ‖2 = 1 ‖βP ‖2 = 4 ‖βP ‖2 = 1 ‖βP ‖2 = 4

Structure Sig. Strength (‖β‖2) 1 4 1 4 1 4 1 4
Naive 1.998 7.761 3.466 13.605 0.692 2.264 0.782 2.577

Elastic Net 1.272 1.376 2.755 3.165 0.529 0.645 0.590 0.774
Approximate Balance 1.017 3.570 1.785 6.552 0.705 2.063 0.811 2.505

Approx. Resid. Balance 0.775 0.874 1.550 1.959 0.563 0.637 0.634 0.765
Inverse Prop. Weight 1.692 6.454 2.591 10.080 0.690 2.217 0.774 2.495

Inv. Prop. Resid. Weight 1.449 4.325 2.434 7.666 0.601 1.381 0.670 1.591
Double-Select + OLS 0.608 0.703 0.985 1.223 0.634 0.695 1.366 1.323

Table 4: Root-mean-squared error
√

E [(τ̂ − τ)2]/τ in the two-stage setting of Belloni et al. [2014].
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βj ∝ 1 ({j ≤ 10}) βj ∝ 1/j2 βj ∝ 1/j
n p η = 0.25 η = 0.1 η = 0.25 η = 0.1 η = 0.25 η = 0.1

200 400 0.90 0.84 0.94 0.88 0.84 0.71
200 800 0.86 0.76 0.92 0.85 0.82 0.71
200 1600 0.84 0.74 0.93 0.85 0.85 0.73
400 400 0.94 0.90 0.97 0.93 0.90 0.78
400 800 0.93 0.91 0.95 0.90 0.88 0.76
400 1600 0.93 0.88 0.94 0.90 0.86 0.76
800 400 0.96 0.95 0.98 0.96 0.96 0.90
800 800 0.96 0.94 0.97 0.96 0.94 0.90
800 1600 0.95 0.92 0.97 0.95 0.93 0.86

Table 5: Coverage for approximate residual balancing confidence intervals as constructed in Section 3.3,
with data generated as in the many cluster setting. The target coverage is 0.95.

Thus,

µ̂c − µc = X
>
t

(
β̂ − β

)
+ γ>Xc

(
β − β̂

)
+ γ>εc

=
(
Xt −X>c γ

)> (
β̂ − β

)
+ γ>εc,

and so the desired conclusion follows by Hölder’s inequality.

Proof of Lemma 2

In order to verify this claim it suffices to show that, with probability 1− δ, there exists a weight vector
γ satisfying both (21) and (22), as well as the equality constraint

∑
{i:Wi=0} γi = 1. Here, we take a

constructive approach, and define

γ∗i =
e (Xi)

1− e (Xi)

/ ∑
{i:Wi=0}

e (Xi)

1− e (Xi)

for all i for which Wi = 0, and 0 else. Our goal is to verify that our construction succeeds with probability
at least 1− δ. Notice that these weights also trivially satisfy γ∗i ≤ n

−2/3
c once nc is large enough.

To do so, first note that because
∑
γ∗i = 1, our main quantity of interest Xt −Xcγ

∗ is translation
invariant (i.e., we can map Xi → Xi + c for any c ∈ Rp without altering the quantity). Thus, we can
without loss of generality re-center our problem such that E

[
Xi

∣∣Wi = 1
]

= 0. Given this re-centering,
we use standard manipulations of sub-Gaussian random variables to check that, conditionally on nc and
nt and for every j = 1, ..., p:

• Xt,j = n−1t

∑
{i:Wi=1}Xij is sub-Gaussian with parameter ν2/nt by Assumption 4.

• Aj := n−1c

∑
{i:Wi=0}Xij e(Xi)/(1 − e(Xi)) is sub-Gaussian with parameter ν2(1 − η)2/(nc η

2) by

Assumption 4 and because e(Xi) ≤ 1− η. Note that, by construction E [Aj ] = E
[
Xj

∣∣W = 1
]
, and

so given our re-centering E [Aj ] = 0.

• D := n−1c

∑
{i:Wi=0} e(Xi)/(1− e(Xi))−ρ is sub-Gaussian with parameter (1− η)2/(4nc η

2), where

ρ = P [W = 1] /P [W = 0] denotes the odds ratio.

• V := n−1c

∑
{i:Wi=0}(e(Xi)/(1 − e(Xi))

2 is sub-Gaussian with parameter (1 − η)4/(4nc η
4) after

re-centering.
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Next, we apply a union bound, by which, for any δ > 0, the following event Eδ occurs with probability
at least 1− δ:

‖A‖∞ ≤ ν (1− η) /(η
√
nc)
√

2 log(10 p δ−1),∥∥Xt −A
∥∥
∞ ≤ ν

√
1/nt + (1− η)

2
/ (nc η2)

√
2 log(10 p δ−1),

|D| ≤ (1− η) /(2η
√
nc)
√

2 log(10 δ−1), and

V ≤ E [V ] + (1− η)
2
/(2η2

√
nc)
√

2 log(10 δ−1).

We then see that on the event Eδ,∥∥Xt −X>c γ
∗∥∥
∞ =

∥∥∥Xt − (ρ+D)
−1
A
∥∥∥
∞
≤
∥∥Xt −A

∥∥
∞ +

∣∣∣∣ D

ρ+D

∣∣∣∣ ‖A‖∞
≤ ν

√
1

nt
+

(1− η)
2

nc η2

√
2 log

(
10 p

δ

)
+O

(
1

nc

)
.

Moreover, noting that

E [V ] = E

[
e(Xi)

2

(1− e(Xi))
2

∣∣Wi = 0

]
≤ (1− η)2

η2
,

we see that on εδ,

nc ‖γ∗‖22 =
V

(ρ+D)
2 ≤

E [V ]

ρ2
+

(
1

2
+

1− η
ρ η

)
(1− η)

2

ρ2η2

√
2

nc
log

(
10

δ

)
+O

(
1

nc

)
.

Thus, there exists a γ satisfying all desired constraints; thus, there must also be some ζ ∈ (0, 1) for which
(20) yields such a solution.

Proof of Theorem 3

First, note that by Assumptions 4 and 5, the design matrix is column standardized in the sense that,
with probability tending to 1, n−1c

∑
{i:Wi=0}X

2
ij ≤ (5/4)2ν2 for all j = 1, ..., p. Thus, given Assumption

5, 6, and the sub-Gaussianity of the noise εi(w), Corollary 2 of Negahban et al. [2012] shows that if we
obtain β̂c by running the lasso with λ = 5 ν υ

√
log(p)/nc, then, with probability tending to 1,∥∥∥β̂c − βc∥∥∥

1
≤ 5ν

4

24 υ

ω
k

√
log p

nc
. (31)

Formally, to get this result, we first scale down the design by a factor 5ν/4, and then apply the cited
result verbatim; note that we also need to re-scale the restricted eigenvalue parameter ω.

Next, given our hypotheses and picking ζ according to Lemma 2 with δ = p−1, we find that with
probability tending to 1,

∥∥Xt −X>c γ
∥∥
∞ ≤ ν

√√√√5 log (p)

(
1

nt
+

(1− η)
2

nc η2

)
and

nc ‖γ‖22 ≤
1

ρ2
E

[(
e(Xi)

1− e(Xi)

)2 ∣∣Wi = 0

]
+

(1− η)
2

(2− 2η + ρη)

2ρ3η3

√
5

nc
log (p).

Given these inequalities, we work from the representation in Proposition 1 to establish our desired asymp-
totic normality result. First, given the above scalings, we see that

√
n
∥∥Xt −X>c γ

∥∥
∞

∥∥∥β̂c − βc∥∥∥
1

= OP
(
k log(p)√

n

)
.
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Thus, thanks to Assumption 5 and Proposition 1, we see that

µ̂c − µc =
∑

{i:Wi=0}

γi εi(0) + op

(
1√
n

)
. (32)

Given this expression, we only need to verify that

1

‖γ‖2

∑
{i:Wi=0}

γi εi(0)⇒ N
(
0, σ2

)
. (33)

Because
∑
γi = 1 and ‖γ‖0 ≤ nc, we immediately see that ‖γ‖−12 ≤ 1/

√
nc; thus, Slutsky’s inequality

with (32) and (33) implies the first part of (25). Meanwhile, the second part of (25) follows immediately
by noting that nt(µ̂t−µt) is asymptotically normal with variance σ2, and is uncorrelated with µ̂c. Finally,
(26) follows directly from Lemma 2.

We now turn to verifying (33) using Lyapunov’s method; our goal is to establish a central limit
theorem conditionally on on γ. First, note that by unconfoundedness (Assumption 1), γi is independent
of εi(0) conditional on Xi. Thus, given our homoskedasticity assumption,

E

 ∑
{i:Wi=0}

γi εi(0)
∣∣ γ
 = 0 and Var

 ∑
{i:Wi=0}

γi εi(0)
∣∣ γ
 = σ2 ‖γ‖22 .

Next, we can again use unconfoundedness to verify that

E

 ∑
{i:Wi=0}

(γi εi(0))
3 ∣∣ γ

 =
∑

{i:Wi=0}

γ3i E
[
(εi(0))

3 ∣∣Xi

]
≤ C3 υ

3
∑

{i:Wi=0}

γ3i ≤ C3 υ
3 n−2/3c ‖γ‖22

for some universal constant C3, where the last inequality follows by sub-Gaussianity of ε and by noting
the upper bound on γi in (20). Thus,

E

 ∑
{i:Wi=0}

(γi εi(0))
3 ∣∣ γ

 / Var

 ∑
{i:Wi=0}

γi εi(0)
∣∣ γ
3/2

= O
(
n−2/3c ‖γ‖−12

)
= oP (1),

and so Lyapunov’s theorem implies that (33) holds.

Proof of Corollary 4

First of all, we can use the argument of Theorem 3 verbatim to show that

(µ̂c − µc)
/√

Vc ⇒ N (0, 1) , Vc =
∑

{i:Wi=0}

γ2i Var
[
εi(0)

∣∣Xi

]
.

To establish this claim, note that our bias bound (32) did not rely on homskedasticity, and the Lyapunov
central limit theorem remains valid as long as the conditional variance of εi(0) remains bounded from
below. Thus, in order to derive the pivot (28), we only need to show that V̂c/Vc →p 1; the desired
conclusion then follows from Slutsky’s theorem. Now, to verify this latter result, it suffices to check that

1

Vc

∑
{i:Wi=0}

γ2i (Yi −Xi · βc)2 →p 1, and (34)

1

Vc

∑
{i:Wi=0}

γ2i

(
Xi ·

(
βc − β̂c

))2
→p 0. (35)
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To show the first convergence result, we can proceed as in the proof of Theorem 3 to verify that there is
a universal constant C4 for which

Var

 ∑
{i:Wi=0}

γ2i (Yi −Xi · βc)2
∣∣ γ
 ≤ C4 υ

4 ‖γ‖44 ≤ C4 υ
4 n−4/3c ‖γ‖22 ,

and so (34) holds by Markov’s inequality. Meanwhile, to establish (35), we focus on the case
lim inf log(p)/ log(n) > 0. We omit the argument in the ultra-low dimensional case since, when p� n0.01,
there is no strong reason to run our method instead of classical methods based on ordinary least squares.
Now, we first note the upper bound∑

{i:Wi=0}

γ2i

(
Xi ·

(
βc − β̂c

))2
≤ ‖γ‖22

∥∥∥Xc

(
βc − β̂c

)∥∥∥2
∞
≤ ‖γ‖22 ‖Xc‖2∞

∥∥∥βc − β̂c∥∥∥2
1
,

where the second step uses Hölder’s inequality as in the proof of Proposition 1. Then, thanks to (27), we
only need to check that

‖Xc‖2∞
∥∥∥βc − β̂c∥∥∥2

1
→p 0.

We can use sub-Gaussianity of Xi (Assumption 4) and the bound (31) on the L1-error of β̂c to find a
constant C(ν, ω, υ) for which

‖Xc‖2∞
∥∥∥βc − β̂c∥∥∥2

1
≤ C(ν, ω, υ) log (p nc) k2

log (p)

nc

with probability tending to 1. Then, noting our sparsity condition on k (Assumption 5), we find that

log (p nc) k2
log (p)

nc
� log (p nc)

log(p)
,

which is bounded from above whenever lim inf log(p)/ log(n) > 0.
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