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Abstract

Survey weighting may be desirable when estimating regression models if sampling is informative. The paper
reviews alternative approaches to weighting when fitting regression models to public use survey data. The
focus will be on two main approaches to improving estimation efficiency whilst avoiding biasing effects of
informative sampling: (i) stabilizing weights using functions of the explanatory variables; (ii) smoothing
weights using functions of the dependent (as well as explanatory) variables.
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1. Introduction
Survey weights are often used in regression analysis of survey data to ensure consistent estimation of regression
coefficients when sampling is informative, that is when sample inclusion may be related to the outcome
variable conditional on covariates (Fuller, 2009, Sect. 6.3). Thus, for a standard linear model

yi = x′iβ + ei. (1)

the survey weight wi may be used in a weighted least squares estimator β̂ = (
∑
wixix

′
i)
−1 ∑wixiyi of β.

A number of approaches have been proposed to modify general-purpose survey weights for use in specific
regression analyses, primarily with a view to improving efficiency. In this paper, we first illustrate this idea
of weight modification by reference to calibration and then focus on two approaches: (i) stabilizing weights
using functions of the explanatory variables; (ii) smoothing weights using functions of the dependent (as well
as explanatory) variables.

We frame our discussion within a setting where a researcher has access to a public use dataset and wishes to
use survey routines in standard statistical software to conduct regression analysis. We explain this context
further in the next section.

2. Public Use Data
We assume that the researcher has access to a microdata file, which contains n records corresponding to
responding sampled units in a set denoted s = {1, . . . , n}. The record for unit i ∈ s contains values (yi,xi)
of the the outcome and explanatory variables, respectively, and a survey weight wi, which may be used as
above in the weighted least squares estimator β̂ of β for model (1). Moreover, it is assumed that the file
contains further identifiers or replicate weights, which enable valid variance estimation. These might consist
of primary sampling unit and stratum identifiers, plus possibly finite population corrections and further (e.g.
secondary) sampling unit identifiers, as are used in standard survey software to construct linearization vari-
ance estimators for standard stratified multistage designs, or they may consist of a series of replicate weights,

w
(1)
i , . . . , w

(B)
i , to enable construction of replication variance estimators.

We shall assume that the survey weights and identifiers/replicate weights enable consistent point and vari-
ance estimation for relevant regression parameters. In practice, unit non-response arises in most surveys and
our notion of consistency here refers not only to repeated sampling under a probability design but also to
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the non-response mechanism. We suppose that the survey weights wi are designed to correct for bias from
nonresponse as well as from sampling. Consistent variance estimation, in the presence of weighting for both
nonresponse and sampling, can in fact be quite complex (e.g. Kim and Kim, 2007) but we shall, nevertheless,
assume that standard variance estimators (as are used in standard survey software) using the identifiers in
the public use data will provide consistent variance estimation.

We shall be interested in transformations of the survey weights wi which can be undertaken with the public
use file. For practical purposes, it is desirable not only that the weighted estimator β̂ remains consistent for
β under transformation of the wi, but also that consistent variance estimation for β̂ can still be achieved
either, for linearization variance estimators by applying the same approach as for the original weighted es-
timator using the survey identifiers on the file or, for replication variance estimators, through some natural
corresponding transformation of the replicate weights. The latter case typically involves applying the same
transformation to the replicate weights as to the basic weight wi and this is illustrated in the next section
for calibration.

3. Calibrated Weights
Weight transformation may be illustrated by the case of calibration. Suppose the user of the data file has
available the population totals tz of a vector of variables z which are all included in the file and, for which,
it may be assumed that t̂z =

∑
s wizi is consistent for tz. In this case, weight calibration may be of in-

terest (Lumley and Scott, 2017). This is achieved by transforming the weights wi into calibrated weights
wci which minimise a measure of distance between the wci and the wi such that the calibration constraint∑

s wcizi = tz holds. Following Deville and Särndal (1992), the user might take wci = wiF (z′iλ), where F (.)
is a specified function, such as F (z′iλ) = 1 + z′iλ in the case of generalized regression estimation, and λ is
determined by the calibration constraint. Calibrated replicate weights may then be constructed similarly as

w
(b)
ci = w

(b)
i F (z′iλ

(b)), where λ(b) is determined by the calibration constraint
∑

s w
(b)
ci zi = tz. The replication

variance estimator remains valid when the weights wi and w
(b)
i are replaced by wci and w

(b)
ci (Rust and Rao,

1996).

Adaptation of the public use file and the calibration weights for linearization variance estimation seems some-
what less straightforward, unless calibration is explicitly handled in the survey software. Rao et al. (2002)
discuss how this estimator needs to be modified as a result of calibration. The replacement of the weights wi

by the calibrated weights wci provides part of the modification needed but, more importantly, the regression
residuals in model (1) need themselves to be regressed on zi to construct modified residuals.

4. Stabilized Weights
Several authors have proposed modifying the weight wi by a function of xi. Specifically, under the model in
(1), where ei has expectation zero and constant variance, Skinner and Mason (2012) propose to replace wi

in a survey weighted least squares estimator of β by wiq̂i, where qi = E(wi | xi)
−1 and the estimate q̂i of

qi is obtained from fitting an auxiliary weight model relating wi to xi. Related approaches are discussed by
Magee (1998), Pfeffermann and Sverchkov (1999), Fuller (2009, sect. 6.3) and Kim and Skinner(2013). The
term ’stabilized weights’ is recommended by Lumley and Scott (2017), following Robins et al. (2000).

Stablizing weights can offer major efficiency gains, especially for sampling designs where there are ’design’
variables amongst the covariates xi, which strongly influence sample inclusion probabilities, for example such
as in probability proportional to size sampling in business surveys, where the size of a business may be com-
mon covariate. Weight stabilization also has the attractive robustness property that the weighted estimator
of β remains consistent even if the auxiliary weight model is misspecified.

It is clear that the fitting of the auxiliary model and hence weight stabilization can be implemented using a
public use file. As discussed by the authors above, the error in estimating the auxiliary weight model can be
ignored to first order when estimating the variance of the weighted least squares estimator of β with weights
wiq̂i. It follows that this variance can be estimated consistently using a linearization variance estimator
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simply by modifying the weight wi and without further modification of the file or the variance estimation
procedure.

Similarly, the replication variance estimator should remain valid if, in addition, the replication weights are
scaled in the same way as wi by q̂i. This differs from calibration in that we do not propose here to fit the
auxiliary model E(wi | xi) anew for each replicate, using a replicate weight in place of the dependent variable
wi. It does not appear that this would be helpful, in particular given the occurrence of zero weights for many
replication methods.

5. Smoothed Weights
Beaumont (2008) proposed smoothing Horvitz-Thompson weights wi when estimating the total of a variable
yi by smoothed weights w̃i = E(wi | yi, Ii), where Ii is the sample inclusion indicator and the auxiliary
weight model E(wi | yi, Ii) requires estimating, as for stabilized weights. Kim and Skinner (2013) pro-
posed extending this approach for a regression model, such as in (1), by taking the smoothed weights as
w̃i = E(wi | xi, yi, Ii). They proposed alternative auxiliary weight models, particularly of parametric form
E(wi | xi, yi, Ii) ≡ w̃(xi, yi;φ), and approaches to estimating such models.

Unlike for stabilized weights, the weighted estimator of β based on smoothed weights does not remain con-
sistent in general under misspecification of the auxiliary weight model (Kim and Skinner, 2013) and this may
be seen as a disadvantage. On the other hand, there may be significant efficiency gains of the smoothed
estimator when the weights wi exhibit major variation in ways that are unrelated to yi given xi.

As for stabilized weights, it is clear that weight smoothing can be implemented using a public use file. As-
suming a parametric model w̃i ≡ w̃(xi, yi;φ), the basic smoothed weights may be expressed as w̃(xi, yi; φ̂),

where φ̂ is obtained by regressing wi on xi and yi using the sample data. Note that, given the conditioning
on Ii = 1, it is not necessary to use survey weighting in the estimation of φ.

Variance estimation is more complex than with stabilized weights since errors in the estimation of the aux-
iliary weight model cannot be ignored. Kim and Skinner (2013) derive a linearization variance estimator
which could, in principle, be used with a public use file. This variance estimator simplifies somewhat if the
sampling fraction n/N is negligible, in which case the variance estimator could be obtained from standard
software, using modified residuals, as for calibrated weights.

As to replication variance estimation, Beaumont (2008) does propose a bootstrap approach for the problem
of estimating a population total and it is possible that this could be extended to the regression case. As
for linearization, it seems likely that this will be more straightforward in the case when n/N is negligible,
although in this case, it is still necessary to account for the error in estimating the auxiliary weight model.

It is possible that this might be achieved by constructing smoothed replicate weights w
(b)
i by regressing w

(b)
i

on xi and yi, but this requires further research.
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