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There has been considerable theoretical development in recent years on empirical likelihood
inference for complex surveys, including notably the work by Wu and Rao (2006), Chen and
Kim (2014) and Berger and De La Riva Torres (2016) on confidence intervals for finite popula-
tion parameters. Existing approaches to empirical likelihood inference under the design-based
framework are not practically useful since they require the first order inclusion probabilities
of the survey design as well as the calibration variables and their known population means or
totals, which are not reported in the public-use data files and hence are not available to survey
data users. In this paper we develop empirical likelihood methods for analyzing public-use
survey data that contain only the variables of interest and the final adjusted and calibrated
survey weights along with final replication weights. Asymptotic distributions of the empiri-
cal likelihood ratio statistics are derived for parameters defined through estimating equations.
Finite sample performances of the empirical likelihood ratio confidence intervals, with compar-
isons to methods based on the estimating equation theory, are investigated through simulation
studies. The proposed approaches make empirical likelihood a practically useful tool for users
of complex survey data.

1. Empirical Likelihood and Estimating Equations for Complex Surveys

Let U = {1, 2, · · · , N} be the set of the survey population, where N is the population size.
Let (yi, xi) be the measures of the study variable y and auxiliary variables x for unit i and let
FN = {(yi, xi), i = 1, · · · , N}. Let {(yi, xi), i ∈ S} be survey sample data set. In this section
we assume that πi = P (i ∈ S) are available.

There are two major types of analysis for complex survey data: estimation of descriptive
population quantities such as the population mean or analytical use of survey data for statistical
modelling. Under both scenarios, the finite population parameters θN of dimension p can be
defined as the solution to the census estimating equations

(1) UN(θ) =
N∑
i=1

g(xi, yi, θ) = 0 ,

where g(x, y, θ) is an estimating function of dimension r (≥ p). Under normal circumstances
we have r = p but over-identified scenarios with r > p do arise in practice due to additional
calibration constraints or known moment conditions over certain variables.

Standard empirical likelihood inference with independent observations as introduced by
Owen (1988) with parameters defined by estimating equations as discussed by Qin and Lawless
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(1994) consists of three ingredients:

`(p) =
∑
i∈S

log(pi) ,(2) ∑
i∈S

pi = 1 ,(3) ∑
i∈S

pig(xi, yi, θ) = 0 ,(4)

where `(p) given by (2) is the empirical log-likelihood function and p = (p1, · · · , pn) is the
probability measure over the n sampled units, the equation (3) is the normalization constraint
to ensure that p is a discrete probability measure, and the equations (4) are the constraints
induced by the parameters θ. The use of log(pi) implicitly requires that pi > 0.

When the sample data set {(yi, xi), i ∈ S} is obtained from a complex survey, naive
applications of the standard empirical likelihood method produce invalid results under the
design-based framework. There have been three major modified approaches in the survey
sampling literature on using the empirical likelihood method for complex survey data, and
their relations to the standard ingredients (2), (3) and (4) can be described as follows.

(1) The pseudo empirical likelihood approach (PEL): Chen and Sitter (1999) suggested to replace
`(p) by `PEL0(p) =

∑
i∈S di log(pi), where di = π−1i are the basic design weights, while constraints

(3) and (4) remain unchanged. The use of `PEL0(p) is motivated by the fact that `PEL0(p)
is the Horvitz-Thompson estimator for the “conceptual” census empirical likelihood function∑N

i=1 log(pi). Wu and Rao (2006) used a modified version `PEL0(p) = n
∑

i∈S d̃i(S) log(pi), where

d̃i(S) = di/
∑

j∈S dj, which facilitates the construction of the pseudo empirical likelihood ratio
confidence intervals for population parameters. Rao and Wu (2010a) expended the method
for multiple frame surveys and Rao and Wu (2010b) developed Bayesian pseudo empirical
likelihood method for survey data analysis. However, all existing results on pseudo empirical
likelihood methods focus primarily on inferences for a scalar parameter. General statistical
tools involving a vector of parameters are not available.

(2) The population empirical likelihood approach (POEL): Chen and Kim (2014) defined the
population empirical log-likelihood function as `POEL =

∑N
i=1 log(ωi) with normalization con-

straint
∑N

i=1 ωi = 1. The survey data and parameters are forced into the “population system”
through the constraints

∑
i∈S ωiπ

−1
i = 1 and

∑
i∈S ωi{g(xi, yi, θ)π

−1
i } = 0. Chen and Kim

(2014) focused on Poisson sampling and rejective sampling, and the method hasn’t been de-
veloped for general unequal probability sampling designs or general inferential problems for
analytical use of survey data.

(3) The sample empirical likelihood approach (SEL): The method was first mentioned very
briefly by Chen and Kim (2014) as a remark but detailed exploration was not pursued in their
paper. The idea is to use the standard empirical log-likelihood function `SEL0(p) =

∑
i∈S log(pi)

from (2) and the standard normalization constraint (3). The constraints induced by the pa-
rameters are modified as

∑
i∈S pi{g(xi, yi, θ)π

−1
i } = 0.

A related recent development was presented in the two papers by Berger and Torres (2016)
and Oguz and Berger (2016). The empirical log-likelihood function used by Berger and Torres
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(2016) is given by l(m) =
∑

i∈S log(mi), where the mi satisfy the so-called design constraint∑
i∈S miπi = n. The mi can be interpreted as survey weights, since the design constraint

reduces to
∑

i∈S mi = N under simple random sampling. The constraints for the parameters
are specified as

∑
i∈S mig(xi, yi, θ) = 0. It can be seen that, if we let pi = miπin

−1, the
formulation used by Berger and Torres (2016) is equivalent to the sample empirical likelihood
approach.

None of the existing empirical likelihood methods can be used for statistical analysis
with public-use survey data files since the initial inclusion probabilities πi are not available,
and calibration variables along with their known population totals are typically not given to
the end users of the data files. On the other hand, the availability of replication weights for
public-use data sets provides a unique opportunity to develop empirical likelihood as a general
statistical tool for survey data analysis.

2. Empirical Likelihood Inference with Public-Use Survey Data

Consider the following version of a micro survey data file, which is released by the survey agency
for public use:{(

yi, xi, wi, w
(1)
i , . . . , w

(B)
i

)
, i = 1, 2, . . . , n

}
,

where the yi and xi are possibly vector-values survey variables included in the data set, the
wi is the final survey weight for unit i after unit nonresponse adjustment and/or calibration

weighting. Also included in the data file are B final replication weights w
(1)
i , . . ., w

(B)
i associated

with unit i. The detailed survey design information such as the original design weights di = 1/πi
and the known auxiliary population information are assumed to be unavailable to the users of
the data file. It is also assumed that the finite population size N is unknown.

The survey weighted estimating equations for the vector of parameters θN are given by

(5) Ûn(θ) =
∑
i∈S

wi g(xi, yi, θ) = 0

For standard scenarios where r = p, i.e., the number of equations is the same as the number of
parameters, the survey weighted estimator θ̂N for θN is the solution to (5). Let gi(θ) = g(xi, yi, θ)
and assume that gi(θ) is a smooth function of θ. The approximate design-based variance of θ̂N
has the well-known sandwich form

V ar
(
θ̂N
) .

= Γ−1V ar
{
Ûn(θN

}(
Γ−1
)′
,

where Γ = Γ(θN) and Γ(θ) =
∑N

i=1 ∂gi(θ)/∂θ.
We consider smooth estimating functions and allow over-identified estimating equations

system with r ≥ p. Practically useful results for the special case of r = p and for a scalar
parameter (i.e., p = 1) will be spelled out whenever is possible. For asymptotic development,
we assume that there is sequence of finite populations and a sequence of survey designs with
both the population size N and the sample size n going to infinity; see Isaki and Fuller (1982)
for further detail. Note that θN refers to the true value of the finite population parameters.
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Assumption A. The final survey weights (w1, w2, . . . , wn) and the finite population values
FN = {(yi, xi), i = 1, · · · , N} are such that Ûn(θN) =

∑
i∈S wigi(θN) is asymptotically normally

distributed with mean zero and variance-covariance matrix at the order O(N2/n).

Let η̂(b)(θN) =
∑

i∈S w
(b)
i gi(θN) be the replicated versions of Ûn(θN) =

∑
i∈S wigi(θN) using

the bth set of replication weights (w
(b)
1 , w

(b)
2 , . . . , w

(b)
n ), b = 1, 2, . . . , B, assuming θN is a known

number.

Assumption B. The replication variance estimator

(6) v
{
Ûn(θN)

}
=

1

B

B∑
b=1

{
η̂(b)(θN)− Ûn(θN)

}{
η̂(b)(θN)− Ûn(θN)

}′
is a design-consistent estimator for the true variance-covariance matrix V ar

{
Ûn(θN)

}
.

2.1 The pseudo empirical likelihood approach
Let w̃i(S) = wi/

∑
k∈Swk, i ∈ S be the normalized final survey weights. Let the pseudo

empirical log-likelihood function be defined as

lPEL(p) = n
∑
i∈S

w̃i(S) log(pi) .

For the special case of equal final survey weights, we have w̃i(S) = 1/n and lPEL(p) =
∑

i∈S log(pi).
Maximizing lPEL(p) subject to the normalization constraint (3), i.e.,

∑
i∈S pi = 1, gives p̂ =

(p̂1, . . . , p̂n), where p̂i = w̃i(S). Let p̂(θ) = (p̂1(θ), . . . , p̂n(θ)) be the maximizer of lPEL(p) under
the normalization constraint (3) and the parameter constraint (4), i.e.,

∑
i∈S pi gi(θ) = 0, for a

fixed value of θ. It can be shown that

p̂i(θ) =
w̃i(S)

1 + λgi(θ)
,

where the Lagrange multiplier λ is the solution to

(7) gPEL(λ) =
∑
i∈S

w̃i(S)gi(θ)

1 + λgi(θ)
= 0 ,

which can be solved using the modified Newton-Raphson method presented in Chen, Sitter and
Wu (2002) and the R code described in Wu (2005). The maximum pseudo empirical likelihood
estimator θ̂ is the maximizer of

lPEL

{
p̂(θ)

}
= n

∑
i∈S

w̃i(S) log
{
p̂i(θ)

}
with respect to θ, which is the same as the solution to∑

i∈S

p̂i gi(θ) =
∑
i∈S

w̃i(S) gi(θ) = 0 ,

since it achieves the global maximum under the normalization constraint. For the population
mean θN = µy = N−1

∑N
i=1 yi, the maximum pseudo empirical likelihood estimator is given by

θ̂ =
∑

i∈S w̃i(S)yi =
∑

i∈Swiyi/
∑

i∈Swi.
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Our primary interest is to construct pseudo empirical likelihood ratio confidence intervals
for θ with the public-use survey data file. The pseudo empirical log-likelihood ratio statistic
for θ is given by

rPEL(θ) = lWR

{
p̂(θ)

}
− lWR

(
p̂
)

= −n
∑
i∈S

w̃i(S) log
{

1 + λgi(θ)
}
.

Under the regularity conditions described in Wu and Rao (2006) on the final survey weights wi

and the variable ui = gi(θN), we can show that λ = O
(
n−1/2

)
, maxi∈S |λgi(θN)| = op(1) and

λ =
{∑

i∈S

w̃i(S)gi(θ)
}
/
[∑
i∈S

w̃i(S)
{
gi(θ)

}2]
+ op

(
n−1/2

)
.

This leads to the following asymptotic expansion to the pseudo empirical log-likelihood ratio
statistic:

−2rPEL(θ) = n
{∑

i∈S

w̃i(S)gi(θ)
}2

/
[∑
i∈S

w̃i(S)
{
gi(θ)

}2]
+ op

(
1
)
,

which further leads to the following major asymptotic result. Note that the adjusting factor
âPEL used in the theorem is of order Op(1).

Theorem 1. Under Assumptions 1 and 2, the adjusted pseudo empirical log-likelihood ratio
statistic −2rPEL(θ)/âPEL converges in distribution to a χ2 random variable with one degree of
freedom when θ = θN , where the adjusting factor âPEL is computed as

âPEL = v
{
Ûn(θ̂)

}
/
[
n−1N̂

∑
i∈S

wi

{
gi(θ̂)

}2]
,

with v
{
Ûn(θ̂)

}
being the replication variance estimator given in Assumption 2 but replacing θN

by θ̂, and N̂ =
∑

i∈Swi.

It is important to notice that the adjusting factor âPEL as well as −2rPEL(θ) for a given
θ can be computed based solely on the public-use survey data file. No additional information
is required. The 1 − α level pseudo empirical likelihood ratio confidence interval for θN can
therefore be constructed as

(8) C1 =
{
θ
∣∣∣ −2rPEL(θ)/âPEL ≤ χ2

1(α)
}
,

where χ2
1(α) is the upper α quantile from the χ2 distribution with one degree of freedom.

2.2 The sample empirical likelihood approach
The sample empirical likelihood approach can be adapted for public-use survey data. We

start with the standard empirical log-likelihood function

lSEL(p) =
∑
i∈S

log(pi) .
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Maximizing lSEL(p) under the normalization constraint (3), i.e.,
∑

i∈S pi = 1, gives p̂i = n−1,
i ∈ S. The constraint for the parameter θ defined through (1) is formed using the transformed
variable wigi(θ) and is given by

(9)
∑
i∈S

pi
{
wigi(θ)

}
= 0 .

Let p̂(θ) = (p̂1(θ), . . . , p̂n(θ)) be the maximizer of lSEL(p) under the normalization constraint
(3) and the parameter constraint (9) for a fixed θ. It follows from standard empirical likelihood
method that

p̂i(θ) =
1

n

1

1 + λ{wigi(θ)}

for i ∈ S, where the Lagrange multiplier λ is the solution to the equation

gSEL(λ) =
1

n

∑
i∈S

wigi(θ)

1 + λ{wigi(θ)}
= 0 .

The empirical log-likelihood ratio statistic for θ under the current setting is given by

rSEL(θ) = lBT

{
p̂(θ)

}
− lBT

(
p̂
)

=
∑
i∈S

log{np̂i(θ)} = −
∑
i∈S

log{1 + λwigi(θ)} .

It can be shown that

−2rSEL(θ) =
{∑

i∈S

wigi(θ)
}2

/
[∑
i∈S

{
wigi(θ)

}2]
+ op(1) .

Theorem 2. Under Assumptions 1 and 2, the adjusted empirical log-likelihood ratio statistic
−2rBT(θ)/âBT converges in distribution to a χ2 random variable with one degree of freedom when
θ = θN , where the adjusting factor âBT is computed as

âBT = v
{
Ûn(θ̂)

}
/
[∑
i∈S

{
wigi(θ̂)

}2]
,

with v
{
Ûn(θ̂)

}
being the replication variance estimator given in Assumption 2 but replacing θN

by θ̂.

It should be emphasized once again that the adjusting factor âSEL and the empirical
likelihood ratio function −2rSEL(θ) for a given θ can be computed based on the public-use
survey data file. No additional information is required. The 1 − α level empirical likelihood
ratio confidence interval for θN can be constructed as

(10) C2 =
{
θ
∣∣∣ −2rSEL(θ)/âSEL ≤ χ2

1(α)
}
.

REFERENCES: Omitted!
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