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Abstract

Standard statistical methods that do not take proper account of the complexity of survey design can lead
to erroneous inferences when applied to survey data. In particular, the actual type I error rates of tests of
hypotheses based on standard tests can be much bigger than the nominal level. Methods that take account of
survey design features in testing hypotheses have been proposed, including Wald tests and quasi-score tests
(Rao, Scott and Skinner 1998) that involve the estimated covariance matrices of parameter estimates. The
bootstrap method of Rao and Wu (1988) is often applied at Statistics Canada to estimate the covariance
matrices, using the data file containing columns of bootstrap weights. Standard statistical packages often
permit the use of survey weighted test statistics and it is attractive to approximate their distributions under
the null hypothesis by their bootstrap analogues computed from the bootstrap weights supplied in the data
file. Beaumont and Bocci (2009) applied this bootstrap method to testing hypotheses on regression parame-
ters under a linear regression model, using weighted F statistics. In this paper, we present a unified approach
to the above method by constructing bootstrap approximations to weighted likelihood ratio statistics and
weighted quasi-score statistics. We report the results of a simulation study on testing hypothesis under the
generalized linear model setup.

Keywords: Likelihood ratio test; Pseudo maximum likelihood estimation; Resampling; Score test.

1. Introduction
Testing statistical hypothesis is one of the fundamental problem of statistics. In the parametric model
approach, testing statistical hypothesis can be implemented using Wald test, likelihood ratio test, or score
test. In each test, a test statistic is computed and then is compared with the 100α%-quantile of the reference
distribution which is the limiting distribution of the test statistic under the null hypothesis. The limiting
distribution is often a chi-squared distribution due to the central limit theorem of the point estimators.
In survey sampling, however, the limiting distribution of the test statistic is not generally a chi-squared
distribution. Rather, it can be expressed as a weighted sum of p independent random variables from χ2(1)
distribution and the weights depend on unknown parameters. To handle such problem, one may consider
some correction of the test statistics to obtain a chi-square limiting distribution. Such approach usually
involves computing the design effect (Rao and Scott, 1984) to the test statistics. Rao, Scott and Skinner
(1998) uses this approach to obtain quasi-score test in survey data.
In this paper, we use a different approach of computing the limiting distribution using parametric bootstrap.
Use of bootstrap to compute the limiting distribution of the test statistics under complex sampling has been
discussed by Beaumont and Bocci (2009), but he mainly discussed the idea in the context of Wald test, but
did not discuss any extension to likelihood ratio test nor to score test. In this proposed bootstrap approach,
we present a unified approach of using the bootstrap method to obtain the limiting distribution of the test
statistics under complex sampling. The sampling design is allowed to be informative. The proposed method
can be applicable to any of the Wald test, likelihood ratio test, or score test. The proposed method is also
directly applicable to the test of independence for categorical survey data which does not involve computing
Rao-Scott correction.
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In Section 2, basic setup is introduced and the bootstrap method for Wald test, discussed in Beaumont and
Bocci (1984), is presented. In Section 3, the proposed bootstrap test using survey-weighted log-likelihood
ratio is introduced. In Section 4, the proposed bootstrap test using survey-weighted quasi-score is presented.
Results from simulation studies are presented in Section 6.

2. Basic Setup
Suppose that a finite population UN of size N is generated from a superpopulation model with density f(y; θ)
for some θ ∈ Θ ⊂ Rp. From the finite population UN , a probability sample A of size n is selected with wi
being the sampling weight for unit i. We are interested in making inference about θ. The pseudo maximum
likelihood estimator (PMLE) of θ is then obtained by

θ̂ = arg max
θ∈Θ

lw(θ),

where lw(θ) = N−1
∑
i∈A wi ln f(yi; θ).

Often, the solution θ̂ can be often obtained by solving the weighted score equation

Ŝw(θ) :=
∂

∂θ
lw(θ) = 0. (1)

Under some regularity conditions (Fuller, 2009), we can establish

√
n
(
θ̂ − θ

)
L−→ N(0, nV (θ̂)) (2)

where
V (θ̂) = I−1

θ V (Ŝw)I−1′

θ , (3)

Iθ = E{I(θ;Y )}, I(θ; y) = −∂2 ln f(y; θ)/∂θ∂θ′, and V (Ŝw) is the variance of Ŝw(θ) in (1).
Using the second order Taylor expansion, we can obtain

lw(θ) = lw(θ̂) + Ŝw(θ̂)′(θ − θ̂)− 1

2
(θ − θ̂)′Îw(θ̂)(θ − θ̂) + op(n

−1)

= lw(θ̂)− 1

2
(θ − θ̂)′E{Îw(θ)}(θ − θ̂) + op(n

−1),

where
Îw(θ) = N−1

∑
i∈A

wiI(θ; yi) (4)

and I(θ; y) is defined after (3). Thus, if we define

Wn(θ) = −2n
{
lw(θ)− lw(θ̂)

}
(5)

as a statistics for the likelihood ratio test, we can obtain

Wn(θ) = n(θ − θ̂)′E{Îw(θ)}(θ − θ̂) + op(1) (6)

and, using (2),

n(θ − θ̂)′E{Îw(θ)}(θ − θ̂) L−→
p∑
i=1

ciZ
2
i (7)

where c1, · · · , cp are the eigenvalues of D = nV (θ̂)E{Îw(θ)} and Z1, · · · , Zp are p independent random
variables from the standard normal distribution. Therefore, we can establish a version of Wilks’ theorem in
survey sampling:

Wn(θ)
L−→ G ≡

p∑
i=1

ciZ
2
i . (8)
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Unless the sampling design is the simple random sampling, the limiting distribution does not reduce to the
standard chi-squared distribution. If p = 1 then we can use c−1

1 Wn as the test statistic with χ2(1) distribution
as the limiting distribution under the null hypothesis.

3. Bootstrap calibration
We propose using a bootstrap method to approximating the limiting distribution in (7). Such a bootstrap
calibration is very attractive because there is no need to derive the analytic form of the limiting distribution
of the test statistic. To apply the bootstrap method, let w∗i be the bootstrap weight of unit i and let

T̂ ∗ =
∑
i∈A w

∗
i yi be the bootstrap replicate of T̂ =

∑
i∈A wiyi, which is design unbiased for T =

∑
i∈U yi.

We assume that bootstrap weights are constructed such that the limiting distribution of
√
nN−1(T̂ ∗ − T̂ )

approximate the sampling distribution of
√
nN−1(T̂ − T ). That is,

lim
n→∞

sup
x

∣∣∣Pr{√nN−1(T̂ ∗ − T̂ ) ≤ x} − Pr{
√
nN−1(T̂ − T ) ≤ x}

∣∣∣ = 0 (9)

in probability. Under simple random sampling or stratified random sampling, Bickel and Freedman (1984)
proves (9). Extension to other complex designs to satisfy (9) is still an open problem in survey sampling.
To discuss (9), we consider Poisson sampling. For each i ∈ A, obtain m∗i ∼ Bin(N̂i, πi) independently, where

N̂i = wi and πi = w−1
i . The bootstrap weight is computed as w∗i = wim

∗
i .

Using the above bootstrap weights, we can compute

l∗w(θ) = N−1
∑
i∈A

w∗i ln f(yi; θ),

the pseudo log-likelihood function based on the bootstrap sample. Let θ̂∗ be the maximizer of l∗w(θ). The

following lemma shows that the bootstrap replicate
√
n(θ̂∗ − θ̂) approximates the sampling distribution of√

n(θ̂ − θ) in large samples.

Lemma 1 Under some regularity conditions, we have

√
n(θ̂∗ − θ̂) L→ N(0, V̂ (θ̂)) (10)

almost everywhere, as n→∞, where

V̂ (θ̂) = {Îw(θ̂)}−1V̂ (Ŝw){Îw(θ̂)}−1′
.

Note that Lemma 1 is a bootstrap version of the CLT in (2) for the pseudo MLE of θ. Now, to establish a
bootstrap version of the Wilks’ theorem in (8), we compute

W ∗n(θ̂) = −2n
{
l∗w(θ̂)− l∗w(θ̂∗)

}
(11)

as the bootstrap version of Wn(θ) in (5). The following theorem shows that W ∗ in (15) follows the same
asymptotic distribution of Wn in (13).

Theorem 1 Under some regularity conditions, for sufficiently large n,

W ∗n
L−→ G (12)

where G is the same stable distribution in (8).

4. Likelihood ratio test
Now, let Θ0(⊂ Θ) be the parameter space under the null hypothesis. Thus, the null hypothesis can be written

as H0 : θ ∈ Θ0. For example, if θ = (θ1, θ2) and H0 : θ2 = θ
(0)
2 for some fixed constant θ

(0)
2 , we can write

Θ0 = {θ = (θ1, θ2) ∈ Θ; θ2 = θ
(0)
2 }.
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Let θ̂
(0
1 be the PMLE of θ1 under H0 : θ2 = θ

(0)
2 . The profile PMLE θ̂

(0)
1 can be obtained by maximizing

lw(θ1, θ
(0)
2 ) with respect to θ1.

The (psuedo) likelihood ratio test statistic for testing H0 : θ2 = θ
(0)
2 is defined as

Wn = −2n
{
lw(θ̂(0))− lw(θ̂)

}
(13)

where θ̂(0) = (θ̂
(0)
1 , θ

(0)
2 ). Under simple random sampling, Wn in (13) follows from χ2(q) distribution with

q = p− p0 and p0 = dim(Θ0).
The following theorem, proved by Lumley and Scott (2014), presents the limiting distribution of the likelihood
ratio test statistics in (13).

Theorem 2 Under some regularity conditions, for sufficiently large n,

Wn
L−→ G1 ≡

q∑
i=1

ciZ
2
i (14)

under H0 : θ2 = θ
(0)
2 , where c1 ≥ c2 ≥ · · · ≥ cq > 0 are the eigenvalues of P = nV (θ̂2)E{Iw22·1(θ)} and

Z1, · · · , Zq are q independent random samples from the standard normal distribution, where

Iw22·1(θ) = Iw22(θ)− Iw21(θ){Iw11(θ)}−1Iw12(θ)

and Iwij(θ) = −E{∂2lw(θ)/(∂θi∂θ
′
j)} for i, j = 1, 2.

Lumley and Scott (2014) proposed using the eigenvalues of the design effect matrix P̂ = nV̂ (θ̂2)Iw22·1(θ̂).
The computation for P̂ can be cumbersome. We consider an alternative method using a novel application of
the bootstrap method in the next section.
Now, to discuss the hypothesis testing, the bootstrap replicate of the LR test statistics is computed by

W ∗n = −2n
{
l∗w(θ̂

∗(0)
1 , θ̂2)− l∗w(θ̂∗)

}
, (15)

where θ̂
∗(0)
1 = arg maxθ1 l

∗
w(θ1, θ̂2) and θ̂∗ = arg maxθ l

∗
w(θ). Thus, the bootstrap version of the profile MLE

θ̂1(θ
(0)
2 ) is computed by maximizing the bootstrap profile likelihood at θ2 = θ̂2.

The following theorem shows that W ∗ in (15) follows the same asymptotic distribution of Wn in (13).

Theorem 3 Under some regularity conditions, for sufficiently large n,

W ∗n
L−→ G1 (16)

under H0 : θ2 = θ
(0)
2 , where G1 is defined in Theorem 2.

By Theorem 3, we can use the bootstrap distribution of W ∗n in (15) to approximate the sampling distribution

of the original test statistic under H0. Thus, the p-value for testing H0 : θ2 = θ
(0)
2 using Wn can be obtained

by computing the proportion of W ∗n greater than Wn.

5. Quasi-score test

We now consider a bootstrap method for the quasi-score test for H0 : θ2 = θ
(0)
2 under the setup of Section

4. The quasi-score test can be extended when only the first and the second moment conditions are assumed.
We will first present the idea under the parametric model assumptions and then discuss quasi-score test.
Since Ŝw(θ̂) = 0, we can use Taylor expansion of Sw(θ̂) with respect to θ to get

θ̂ − θ = [E{Iw(θ)}]−1
Ŝw(θ) + op(n

−1/2). (17)
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Partitioning θ = (θ1, θ2)′, Ŝw(θ) = [Ŝw1(θ), Ŝw2(θ)]′, and

Îw(θ) =

[
Îw11(θ) Îw12(θ)

Îw21(θ) Îw22(θ)

]
,

we can establish

θ̂2 − θ2 =
[
E{Îw2·1(θ)}

]−1

Sw2·1(θ) + op(n
−1/2), (18)

where
Îw2·1(θ) = Îw22(θ)− Îw21(θ){Îw11(θ)}−1Îw12(θ)

and
Ŝw2·1(θ) = Ŝw2(θ)− Îw21(θ){Îw11(θ)}−1Sw1(θ).

Thus, the quasi-score test for H0 : θ2 = θ
(0)
2 can be constructed by computing

X2
s = Ŝw2·1(θ̂(0))′{Îw2·1(θ̂(0))}−1Ŝw2·1(θ̂(0)),

where θ̂(0) is the MLE of θ under H0. Since θ̂(0) satisfies Sw1(θ̂(0)) = 0, we can write

X2
s = Ŝw2(θ̂(0))′{Îw2·1(θ̂(0))}−1Ŝw2(θ̂(0)). (19)

Under SRS, X2
s will follow χ2(q) distribution. Under complex sampling, it will have the same asymptotic

distribution as Wn in (13).
The bootstrap calibration method applied to X2

s can be used to construct a bootstrap test. That is, we can
compute

X2∗
s = Ŝ∗w2(θ̂∗(0))′{Î∗w2·1(θ̂∗(0))}−1Ŝ∗w2(θ̂∗(0))

to approximate the limiting distribution of X2
s in (19). The bootstrap distribution can be used to control

the size of the test based on X2
s in (19).

6. Simulation Study
To test our theory, we perform a limited simulation study. The finite population of N = 10, 000 with
measurement (x, y) is generated from the following way:

1. The finite population is partitioned into 5 groups of size Ng = 2, 000, g = 1, 2, 3, 4, 5.

2. In group g, generate xgi ∼ N(−1 + 0.5g, 1) and compute pgi with

logit(pgi) = β1 + β2xgi,

where (β1, β2) = (−1, 0.5). Generate ygi ∼ Bernoulli(pgi).

3. Construct 10 strata by a cross-classification of groups and y-values. For example, stratum one consists
of elements with y = 1 in group 1 and stratum two consists of elements with y = 0 in group 2.

From the finite population, we perform stratified random sampling with size nh = 20 for each h = 1, · · · , H.
The sampling weights are computed using whi = n−1

h Nh. The sampling design is a special case of case-control
design and the sampling design is informative in the sense that we cannot ignore the sampling weights into
estimation of βs.
We are interested in testing H0 : β2 = 0.5. We considered three setups for the simulation: β2 = 0.5, 0.4, 0.3.
Four test procedures are considered:

1. Naive LR method: Use Wn in (13) with reference distribution χ2(1).

2. Naive score method: Use X2
s in (19) (with normalized weights) with reference distribution χ2(1).

3. Bootstrap LR method: Use Wn in (13) with the boostrap-based reference distribution.

4. Bootstrap score method: Use X2
s in (19) with bootstrap reference distribution.
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We used α = 0.05 significant level for each test. In the bootstrap, we used M = 1, 000 bootstrap samples.
Table 1 presents the results of the simulation study based on B = 1, 000 Monte Carlo samples. The simulation
results shows good performance of the proposed bootstrap estimators. (The testing power at β2 = 0.5 is close
to the significance level α = 0.05.) Bootstrap score test is slightly better than bootstrap LR test in terms of
statistical power.

Table 1: Power of the test procedures

Method β2
0.5 0.4 0.3

Naive LR 0.001 0.021 0.083
Naive Score 0.002 0.022 0.098
Bootstrap LR 0.056 0.171 0.494
Bootstrap Score 0.055 0.182 0.514
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Appendix

A. Proof of Lemma 1
Let Ŝ∗w(θ) = ∂l∗w(θ)/∂θ be the score function derived from l∗w(θ) = N−1

∑
i∈A w

∗
i ln f(yi; θ). We first show

that √
n
{
Ŝ∗w(θ)− Ŝw(θ)

}
L−→ N [0, nV̂ {Ŝw(θ)}], (A.1)

almost everywhere, which in turn implies

√
nŜ∗w(θ̂)

L−→ N [0, nV̂ {Ŝw}], (A.2)

because Ŝw(θ̂) = 0.
To show (A.1), note that we can write

Ŝ∗w(θ)− Ŝw(θ) =
1

N

∑
i∈A

N̂i

(
m∗i

N̂iπi
− 1

)
S(θ; yi)

where m∗i ∼ Bin(N̂i, πi), we can apply Lindeberg central limit theorem to show that, conditional on the
sample, √

n
{
Ŝ∗w(θ)− Ŝw(θ)

}
L−→ N

[
0, nV∗{Ŝ∗w(θ)}

]
, (A.3)
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where

V∗{Ŝ∗w(θ)} =
1

N2

∑
i∈A

N̂i
(1− πi)
πi

S(θ; yi)
⊗2

is the variance of Ŝ∗w(θ) over the bootstrap distribution and B⊗2 = BB′. Since N̂i = wi = π−1
i ,

V∗{Ŝ∗w(θ)} =
1

N2

∑
i∈A

(1− πi)
π2
i

S(θ; yi)
⊗2 = V̂ {Ŝw(θ)}.

Therefore, (A.3) implies (A.1).

Now, using that Ŝ∗w(θ) converges uniformly in probability to Ŝw(θ) and θ̂ is the unique solution to Ŝw(θ) = 0

almost everywhere, the solution θ̂∗ to Ŝ∗w(θ) = 0 converges in probability to θ̂ almost everywhere. Thus,
using the second order Taylor expansion, we can obtain

0 = Ŝ∗w(θ̂∗) = Ŝ∗w(θ̂)−
{
Î∗w(θ̂)

}
(θ̂∗ − θ̂)

= Ŝ∗w(θ̂)−
{
Îw(θ̂) + op(1)

}
(θ̂∗ − θ̂)

where Î∗w(θ) = −∂Ŝ∗w(θ)/∂θ and Îw(θ) is defined in (4). Therefore, we have

θ̂∗ − θ̂ =
{
Îw(θ̂)

}−1

Ŝ∗w(θ̂) + op(n
−1/2). (A.4)

Combining (A.2) with (A.4), we can establish (10).

B. Proof of Theorem 1
Using (10) and by the second order Taylor expansion, we have

l∗w(θ̂) = l∗w(θ̂∗) + Ŝ∗w(θ̂∗)′(θ̂ − θ̂∗)− (θ̂∗ − θ̂)′Î∗w(θ̂)(θ̂∗ − θ̂) + op(n
−1). (B.1)

Since Ŝ∗w(θ̂∗) = 0 and Î∗w(θ̂) = Îw(θ̂) + op(1), we have

−2n
{
l∗w(θ̂)− l∗w(θ̂∗)

}
= n(θ̂∗ − θ̂)′Îw(θ̂)(θ̂∗ − θ̂) + op(1)

= nS∗w(θ̂)′{Îw(θ̂)}−1S∗w(θ̂) + op(1), (B.2)

where the second equality follows from (A.4). Now, by (A.2), we can show that W ∗n converges in distribu-
tion to the weighted sum of p independent chi-squared distribution where the weights are the eigenvalues of
n{Îw(θ̂)}−1V̂ {Ŝw} which converges in probability to nI−1

θ V {Ŝw(θ)}. Therefore, (12) is established.

C. Proof of Theorem 3
Since θ̂∗(0) = (θ̂

∗(0)
1 , θ̂2) where θ̂

∗(0)
1 is the maximizer of l∗w(θ1, θ̂2), we can obtain, similarly to (B.1),

l∗w(θ̂) = l∗w(θ̂∗) + Ŝ∗w1(θ̂∗(0))′(θ̂1 − θ̂∗(0)
1 )− (θ̂

∗(0)
1 − θ̂1)′Î∗w11(θ̂)(θ̂

∗(0)
1 − θ̂1) + op(n

−1).

where Ŝ∗w1(θ) = ∂l∗w(θ)/∂θ1 and Î∗w11(θ) = ∂2l∗w(θ)/(∂θ1∂θ
′
1). By definition of θ̂∗(0), we have Ŝ∗w1(θ̂∗(0)) = 0.

Thus, using Î∗w11(θ̂) = Îw11(θ̂) + op(1), we have

−2n
{
l∗w(θ̂)− l∗w(θ̂∗(0))

}
= n(θ̂

∗(0)
1 − θ̂1)′Îw11(θ̂)(θ̂∗1 − θ̂1) + op(1)

= nS∗w1(θ̂)′{Îw11(θ̂)}−1S∗w1(θ̂) + op(1), (C.1)

where the last equality follows from

θ̂
∗(0)
1 − θ̂1 =

{
Îw11(θ̂)

}−1

Ŝ∗w1(θ̂) + op(n
−1/2).
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Thus, combining (B.2) with (C.1), we have

W ∗n = −2n
{
l∗w(θ̂∗(0))− l∗w(θ̂∗)

}
= −2n

{
l∗w(θ̂)− l∗w(θ̂∗)

}
+ 2n

{
l∗w(θ̂)− l∗w(θ̂∗(0))

}
= n

(
S∗w1(θ̂)

S∗w2(θ̂)

)′ [
Îw11(θ̂) Îw12(θ̂)

Îw21(θ̂) Îw22(θ̂)

]−1(
S∗w1(θ̂)

S∗w2(θ̂)

)
−nS∗w1(θ̂)′{Îw11(θ̂)}−1S∗w1(θ̂) + op(1)

= n{S∗w2(θ̂)− B̂21S
∗
w1(θ̂)}′{Îw22·1(θ̂)}−1{S∗w2(θ̂)− B̂21S

∗
w1(θ̂)}

where
B̂21 = Îw21(θ̂){Îw11(θ̂)}−1

and
Îw22·1(θ̂) = Îw22(θ̂)− Îw21(θ̂){Îw11(θ̂)}−1Îw12(θ̂).

Therefore, by (A.2), using the same argument for proving Theorem 1, we can show that W ∗n converges
in distribution to the weighted sum of q independent chi-squared distribution where the weights are the
eigenvalues of n{Îw22·1(θ̂)}−1V̂ {Ŝw2|1} which converges in probability to nI−1

22·1V {Ŝw2·1(θ)}.
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