
 

 

 

Adaptive survey designs accounting for uncertainty and gradual change in survey design 

parameters 

 

Barry Schouten 

Statistics Netherlands, The Hague, The Netherlands – bstn@cbs.nl 

 

Nino Mushkudiani 

Statistics Netherlands, The Hague, The Netherlands – nmsi@cbs.nl 

 

1. Introduction 

Over the last two decades, there has been a strongly increasing interest in survey data collection 

monitoring, analysis, and intervention or adaptation. The main causes for this are the diversification of 

data collection that followed the emergence of online communication, the lack of predictability of 

survey response rates despite years of research into survey design, the gradual increase in costs per 

respondent when response rates are kept at traditional levels, and the availability of a wide range of 

data collection process data (termed paradata) see Kreuter (2013).  

The lack of predictability of data caused different streams of data collection. One of these consists of 

adaptive or responsive survey designs that adapt or tailor strategies and effort to known and relevant 

characteristics of sampled units from the target population, see Groves and Heeringa (2006), Wagner 

(2008) and Schouten, Calinescu and Luiten (2013). In order to adapt, accurate estimates of survey 

design parameters are not just needed at the overall population level, but also at the deeper level of 

population subgroups.  

Adaptive survey design leans heavily on estimated survey design parameters like contact propensities, 

participation propensities and costs per sample unit. Such parameters are needed to determine effective 

data collection strategies and to optimize survey quality under constraints on costs. Estimates for 

survey design parameters may, however, be inaccurate due to sampling variation and gradual change 

in time. 

A Bayesian analysis of survey data collection may be profitable when expert knowledge and/or 

historic survey data from the same or similar surveys are available. This knowledge and data may then 

be employed to set informative prior distributions to coefficients in regression models for survey 

design parameters and for survey variable outcomes. During or after data collection posterior 

distributions may be derived for the same parameters, but also for overall quality and cost measures. 

Even when survey design parameters change gradually in time or change from one survey to the other, 

including such informative priors in the model deduce posterior distributions that are more informative 

than without the prior knowledge.   

We demonstrate how a Bayesian analysis may be implemented and analyzed in monitoring survey 

data collection. Furthermore, we discuss the optimization and adaptation of survey design using the 

posterior distributions for survey design parameters, and quality and cost measures. We do so using 

two case studies. In the studies the choice of survey modes plays an important role. 

2. Adaptive strategies and design parameters 

To set up a general model that would describe all possible data collection designs in relation to 

available covariates from frame data, administrative data and paradata, is too complicated a goal. Here 

we intend to present models that have many features of designs but in their simplest forms. The 

included features are more than one data collection phase, baseline covariates as well as paradata, cost 

functions, and dependence on actions/decisions in earlier phases.  

First we introduce some notations. Let the survey design consist of a maximum of 𝑇 phases that are 

labelled 𝑡 = 1,2, … , 𝑇. We define 𝒮𝑡  as the collection of all possible actions in phase 𝑡  and let 𝑠𝑡 

represent the action in phase 𝑡. For different phases, the collections of actions may be different. The 
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action sets may contain 𝑠∅, which, if selected, implies that no attempt is made to obtain a response. We 

define the collection of survey strategies 

𝒮1,𝑇: = {(𝑠1, … , 𝑠𝑇): 𝑠𝑡 ∈ 𝒮𝑡, 𝑡 = 1,2, … , 𝑇} 

and let 𝑠1,𝑇 ∈ 𝒮1,𝑇 denote one possible strategy, i.e. sequence of actions. For a strategy 𝑠1,𝑇, we denote 

the actions in phase 𝑖 til 𝑗 by the vector 𝑠𝑖,𝑗.  

For a subject 𝑖 , we let 𝑥𝑖  be the vector of auxiliary variables that is linked from frame data, 

administrative data or paradata, 𝑥𝑖 consists of the following entries 

                                                   𝑥𝑖 = (𝑥0,1,𝑖, … , 𝑥0,𝑚0,𝑖, … , 𝑥𝑇,1,𝑖, … , 𝑥𝑇,𝑚𝑇,𝑖)′, 

where 𝑥0,𝑖 = (𝑥0,1,𝑖, … , 𝑥0,𝑚0,𝑖)′ contains the auxiliary variables available at the start of data collection, 

and 𝑥𝑡,𝑖 = (𝑥𝑡,1,𝑖, … , 𝑥𝑡,𝑚𝑡,𝑖)′ are the auxiliary variables that are observed for the fielded sample units 

in phase 𝑡. In the optimization of the adaptive survey designs (ASD), actions in phase 𝑡 can only be 

chosen based on 𝑥0,𝑖 to 𝑥𝑡−1,𝑖.  

The design of each survey has a range of features, e.g. advance letter, contact protocol, screener 

interview, number of phases, reminder protocol, use of incentive, mode of administration (web, 

telephone, face-to-face, mail), interviewer, refusal conversion procedure and type of questionnaire. 

The total of choices made for the design features (e.g. incentive, phases, first web mail then telephone 

interview) will define the data collection strategy or simply strategy. In non-adaptive surveys, these 

features are implemented uniformly over the whole sample. In adaptive surveys, part of the design 

features may be implemented differently for different sample units, i.e. there is a set of strategies, see 

Groves and Heeringa (2006), Wagner (2008), Coffey, Reist and White (2013). 

ASD either maximize a quality objective subject to cost constraints and other quality constraints or 

minimize a cost objective subject to quality constraints. The quality and cost constraints depend on the 

setting in which the survey is conducted. Three sets of survey design parameters suffice to compute 

most of the quality and cost constraints: 

1. Response propensities per unit 𝜌𝑖(𝑠1,𝑇) per strategy; 

2. Expected costs per sample unit 𝐶𝑖(𝑠1,𝑇) per strategy; 

3. Adjusted mode effects per unit 𝐷𝑖(𝑠1,𝑇) per strategy; 

In this paper we restrict attention to nonresponse error. The last set of parameters, the adjusted mode 

effects, are not considered here. There are two options in defining and modeling survey design 

parameters. Design parameters can be detailed to subgroups or to individual cases. Below we focus on 

individual design parameters.  

 

3. Modeling survey design parameters 

We introduce basic models for response propensities and costs. Therefore, we break down these 

parameters into their basic components, like the contact and participation propensities. For these basic 

components we will, first, make some general assumptions. We assume that making contact, obtaining 

participation and the costs associated with an individual sample unit are independent of contact, 

participation and the costs of any other individual sample unit.  

Some side remarks are in place. Below we introduce prior distributions for parameters that are shared 

by multiple design parameters. As a result, the propensities and costs of sample units may become 

dependent because they share the same underlying parameters. The assumptions then read as 

independence given the values of these parameters and likelihood functions can still be factorized as 

the product of individual likelihoods conditional on the parameters. Second, the three assumptions 

essentially ignore any impact of scale on data collection; it is assumed that there is a stable workload. 

Importantly, we allow for associations between contact propensities over phases, between 

participation propensities over phases, and between cost functions over phases.  

We define our approach only for contact propensity, a part of response propensity. Models for the 

response propensity and cost functions can be defines similarly. 
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Let 𝜅𝑡,𝑖(𝑠1,𝑡) be the propensity of a contact in phase 𝑡 under strategy 𝑠1,𝑡 given that the unit did not 

respond in earlier phases and is eligible for follow-up. We assume that design features in subsequent 

phases have no impact on making contact. The outcome(s) of the previous phase(s) can be included in 

the auxiliary vector, when contact propensities are considered to be dependent on whether there was a 

noncontact or a refusal. 𝜆𝑡,𝑖(𝑠1,𝑡) is the propensity of a participation in phase 𝑡 of subject 𝑖  under 

strategy 𝑠1,𝑡 given contact (and given that the unit did not respond in earlier phases and is eligible for 

follow-up). Then the response propensity in phase 𝑡 of a subject 𝑖 under strategy 𝑠1,𝑡, 𝜌𝑡,𝑖(𝑠1,𝑡), is 

 𝜌𝑡,𝑖(𝑠1,𝑡) = 𝜅𝑡,𝑖(𝑠1,𝑡) ⋅ 𝜆𝑡,𝑖(𝑠1,𝑡). 

When in subsequent phases all nonresponse receives a follow-up, then 

          𝜌𝑖(𝑠1,𝑇) =  𝜅1,𝑖(𝑠1) 𝜆1,𝑖(𝑠1) + ∑ ((∏ (1 − 𝜅𝑙,𝑖(𝑠1,𝑙) 𝜆𝑙,𝑖(𝑠1,𝑙))𝑡−1
𝑙=1 )𝜅𝑡,𝑖(𝑠1,𝑡) 𝜆𝑡,𝑖(𝑠1,𝑡))𝑇

𝑡=2 .   

We model the propensities using a probit model, i.e. using a binomial link function. Each sample unit 

has a certain contactability represented as a latent variable 𝑍𝑡,𝑖
𝐶 (𝑠1,𝑡) and contact is obtained when this 

latent variable is larger than zero and 𝑍𝑡,𝑖
𝐶 (𝑠1,𝑡)~𝑁(𝜇(𝑠1,𝑡), 𝜎(𝑠1,𝑡)), for some 𝜇𝑡,𝑖(𝑠1,𝑡), 𝜎𝑡,𝑖(𝑠1,𝑡) so 

that 

𝜅𝑡,𝑖(𝑠1,𝑡) = 𝑃(𝑍𝑡,𝑖
𝐶 (𝑠1,𝑡) > 0). 

For 𝑚 ≤ 𝑚𝑘, let 𝛼𝑡,𝑘,𝑚(𝑠1,𝑡) be the regression coefficient in phase 𝑡 corresponding to the 𝑚-th entry 

in the auxiliary vector 𝑥𝑘,𝑖 given that 𝑠1,𝑡 is applied to a unit. Obviously, 𝛼𝑡,𝑘,𝑚(𝑠1,𝑡) = 0, when 𝑘 > 𝑡. 

The model could be written as 

𝑍𝑡,𝑖
𝐶 (𝑠1,𝑡) = ∑ 𝛼𝑡,𝑘(𝑠1,𝑡)𝑥𝑘,𝑖

𝑡

𝑘=0

+ 휀𝑡,𝑖
𝐶 , 

where 휀𝑡,𝑖
𝐶 ~𝑁(0,1) is an error term for the uncertainty of contact of the subject. 

To be able to include dynamic adaptive survey designs, we need to include paradata.  However to keep 

the model simple, we assume that there is just one phase, say 𝑡1, in which paradata is collected. Up to 

phase 𝑡1 only the auxiliary variables in 𝑥0,𝑖 can be used to model the propensities. After phase 𝑡1, the 

auxiliary variables obtained in phase 𝑡1 can also be included in the model. Second, we consider the 

dependence on past actions. It is unrealistic to assume there is no such dependence in most settings. 

Past actions could be included by introducing a fixed or random effect per possible history. We add 

the history as a random effect here. Third, since we suggest to add a dependence on the history of 

actions as a random effect, the regression coefficients become necessarily dependent on the phase and 

not on the past. The model becomes 

𝑍𝑡,𝑖
𝐶 (𝑠1,𝑡) = {

                           𝛼𝑡,0(𝑠𝑡)𝑥0,𝑖 + 휀𝑡,𝑖
𝐶 +  𝛿𝑡

𝐶(𝑠1,𝑡−1), 𝑡 ≤ 𝑡1,

𝛼𝑡,0(𝑠𝑡)𝑥0,𝑖 + 𝛼𝑡,1(𝑠𝑡)𝑥𝑡1,𝑖 + 휀𝑡,𝑖
𝐶 +  𝛿𝑡

𝐶(𝑠1,𝑡−1), 𝑡 > 𝑡1,
     (1)  

where 𝛿𝑡
𝐶(𝑠1,𝑡−1) is a random effect. 

The analysis become Bayesian by assigning prior distributions to the regression coefficients and 

random effects in (1). Our aim is the derivation of the posterior distributions of the individual response 

propensities 𝜌𝑖(𝑠1,𝑇) and the individual cost parameters 𝐶𝑖(𝑠1,𝑇) per strategy given observed data. 

These overall parameters are, in general, complex functions of the underlying survey design 

parameters per phase. We derived expressions for the posterior distributions of the regression 

coefficients and random effects when it was possible, otherwise derived these numerical 

approximations and applied Markov Chain Monte Carlo methods to generate draws from the posterior 

distributions.  

Data collection may apply randomization in order to learn about multiple strategies simultaneously. 

Here, we assume that the observed data may contain randomization over strategies but that 

randomization is only at the outset. Hence, strategy allocation probabilities may depend on auxiliary 

information known at the start of data collection, but not on paradata coming in during data collection. 

So in addition to the outcomes, costs and auxiliary vectors, we observe the series of actions, or simply 

strategy, that were applied per sample unit 𝑠1,𝑇
𝑖 ; 
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In the following, we use 𝜌(𝑠1,𝑇)  and 𝐶(𝑠1,𝑇)  for the vector of response propensities and cost 

parameters over all sample units for a particular strategy. In the same fashion, we use 𝑢𝑡, 𝑐0, 𝑐𝑅, 𝑐𝑁𝑅 

and 𝑥  to denote the vectors of outcomes, realized costs components and auxiliary variables over 

sample units. Note that 𝑥  may in fact be a matrix, when the auxiliary variables are a vector by 

themselves. With {𝑠1,𝑇,𝑖} we denote the vector of used strategies for all sample units. To shorten 

expressions, we use 𝛼, 𝛽, 𝛿, 𝛾, 𝜎2 for the vectors of regression slope parameters, random effects and 

regression dispersion parameters over phases and actions, but elaborate when needed. For the sake of 

convenience, we use 𝑝 to express joint and marginal density functions; we omit the reference to the 

random variables to which they apply and ignore differences between discrete and continuous 

probability distributions. Finally, in the density functions, we omit the dependence on the 

hyperparameters. A straightforward solution is to perform a Gibbs sampler to the joint density of the 

regression parameters 𝛼, 𝛽, 𝛿, 𝛾, 𝜎2 

                                                𝑝(𝛼, 𝛽, 𝛿, 𝛾, 𝜎2|𝑢𝑡, 𝑐0, 𝑐𝑅 , 𝑐𝑁𝑅 , 𝑥, {𝑠1,𝑇
𝑖 }).                                              (2) 

A Gibbs sampler for (2) requires repeated draws from the conditional densities of each regression 

parameter given the observed data and the other regression parameters, the so-called full conditionals. 

Literature provides a range of options to sample from these conditional distributions, see Albert and 

Chib (1993) and Gelman et al (2003). 

In the monitoring and optimization of data collection, the focus is on functions of the design 

parameters that correspond to overall quality or cost objectives. We consider three such functions here 

for the sake of brevity, the response rate, the total costs and the coefficient of variation of the response 

propensities; the analysis of other functions can often be done in an analogous way. 

Let 𝑑𝑖 represent the design or inclusion weight for sample unit 𝑖, 𝑖 = 1,2, … , 𝑛. The response rate, RR, 

for strategy 𝑠1,𝑇 can be written as 

                                                             𝑅𝑅(𝑠1,𝑇) =
1

𝑁
∑ 𝑑𝑖𝜌𝑖

𝑛
𝑖=1 (𝑠1,𝑇),                                                (3) 

the total costs, or required budget, B, associated with 𝑠1
𝑇 are 

                                                                  𝐵(𝑠1,𝑇) = ∑ 𝑐𝑖
𝑛
𝑖=1 (𝑠1,𝑇),                                                    (4) 

and the coefficient of variation, CV, is 

                                                     𝐶𝑉(𝑋, 𝑠1,𝑇) =
√

1

𝑁
∑ 𝑑𝑖(𝜌𝑖

𝑛
𝑖=1 (𝑠1,𝑇)−𝑅𝑅(𝑠1,𝑇))2

𝑅𝑅(𝑠1,𝑇)
.                                      (5) 

For the CV, we explicitly denote the dependence on the covariate vector 𝑋; for any other choice of 

auxiliary variables it will, generally, attain a different value. The response rate and total costs do not 

depend on the choice of 𝑋. Obviously, the prior and posterior distributions for these three functions are 

determined by the prior and posterior distributions of the components of the response propensities and 

cost functions. They have even more complex forms than the individual response propensities and cost 

parameters. However, they can again be approximated as a by-product of the Gibbs sampler. For every 

draw of the individual response propensities and cost parameters, we compute (3) to (5). 

 

4. A simulation study 

In the simulation study, we investigate the impact of prior distribution specification and of survey 

sample size on the shape of posterior distributions. Furthermore, we explore the convergence 

properties of the Gibbs sampler.  

 

4.1 Design of the simulation study 

To evaluate the utility of a Bayesian analysis is, we compare posterior distributions of response rates, 

coefficients of variation of response propensities and total costs starting from different prior 

distributions for the survey design parameters, more specifically for the regression slope and 
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dispersion parameters in contact, participation and cost models per data collection phase. The prior 

distributions that we compare to are fully non-informative priors, which have (arbitrary) large 

variances and expectations that are the same for all population subgroups. These priors conform to 

lack of knowledge at the start of data collection and we view this choice as a “non-Bayesian” analysis, 

despite the use or prior and posterior distributions. Thus, we still make use of the benefit of a Bayesian 

analysis in that it allows for an easy display of uncertainty during and after data collection. We make 

two comparisons that both start from “true” priors. The true priors have expectations that exactly 

match the simulation model and have variances that correspond to the standard errors for a historic 

dataset of sample size 10000, i.e. as if we have already observed a fairly large and unbiased realization 

of the survey. In the first comparison, we gradually misspecify expectations of the true priors in order 

to mimic bias due to time change and/or a change of survey design. However, the variances of the 

priors remain the same. In the second comparison, we gradually increase variances, but keep 

expectations constant, in order to mimic imprecision. The two comparisons allow us to see how much 

gain comes from the prior knowledge. 

We quantify this gain by the root mean square error (RMSE) of the posterior distribution relative to 

the simulation model values. Let 𝑝𝜋(Θ|𝑢𝑡, 𝑐0, 𝑐𝑅 , 𝑐𝑁𝑅 , 𝑥, {𝑠1,𝑇
𝑖 }) be a posterior for a data collection 

quality or cost indicator Θ of interest, e.g. the response rate, CV or total costs, using prior 𝜋. The 

RMSE for this indicator and prior is then defined as 

                                               RMSE(Θ; π) = √(𝐸𝑝𝜋
(Θ) − Θ0)2 + var𝑝𝜋

(Θ),                        (6) 

where Θ0 is the simulation model value. 

We base our simulation study on the 2015 Dutch Health Survey (HS). The HS has a sequential mixed-

mode survey design with Web followed by face-to-face interviewing, i.e. non-respondents to a Web 

survey invitation are re-allocated to interviewers. We consider three data collection phases: Web, short 

face-to-face, and extended face-to-face. The extended face-to-face corresponds to an additional round 

of face-to-face visits for those sample units that have not been contacted or that are soft refusals after 

three face-to-face visits. Two auxiliary variables, gender and age, are linked from administrative data, 

and one variable, web break-off, is added from phase 1 paradata. Gender and age are crossed to form 

six strata, {0-29 years, 30-59 years, 60 years and older}×{female, male}. Web break-off is a binary 

indicator for a broken-off Web response; it is not crossed with the gender-age variable but added as a 

main effect. We refer to the variables as GenderAge and BreakOff. From 2015 HS data, contact 

propensities, participation propensities and costs per sample unit are derived for the three phases and 

used to simulate analysis data sets of sample size 1250, 2500, 5000 and 10000. The simulation 

probabilities and costs are given in appendix C. To model contact and participation, we use a probit 

regression with GenderAge in phase 1 and GenderAge + BreakOff in phases 2 and 3. For phase 1, 

online data collection, we set participation propensities equal to response and participation costs are 

set to zero. We do this, because for online surveys costs are only associated with contact and not with 

interview. For phases 2 and 3, we do distinguish contact and participation propensities. To model 

costs, we use a linear regression with GenderAge in all phases. Table 1 gives simulation response 

rates, coefficients of variation and total costs cumulatively for all phases based on the true simulation 

model values in the top row of each section.  

Table 1: Expected response rates (RR), coefficients of variation (CV) and total costs (B) cumulatively 

based on the 2015 HS simulation model, and based on the three misspecified priors. 
 Data Web F2F short F2F extended 

RR True 30.2% 57.6% 60.5% 

Misspecified light 32.2% 57.2% 59.7% 

Misspecified medium 35.2% 56.8% 58.8% 

Misspecified strong 40.2% 56.8% 58.2% 
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CV True 0.277 0.069 0.102 

Misspecified light 0.260 0.061 0.094 

Misspecified medium 0.238 0.049 0.082 

Misspecified strong 0.208 0.036 0.063 

B True 3.0 15.2 19.4 

Misspecified light 3.0 14.5 19.5 

Misspecified medium 3.0 13.6 19.8 

Misspecified strong 3.0 12.1 20.3 

 

Misspecification was introduced by shifting contact and participation propensities for each subgroup 

in the same direction. For the online phase 1 they were increased by 2%, 5% and 10%. For the F2F 

phases, they were decreased by 2%, 5% and 10%. Hence, we mimic an overestimation of online 

response and an underestimation of subsequent F2F response, which essentially leads to an 

underestimation of required budget. Table 1 contains the expected response rates, coefficients of 

variation and costs based on the sets of misspecified priors. 

 

4.3 Simulation results 

We discuss wo comparisons to evaluate the utility of the Bayesian analysis: increasing the variances of 

prior distributions and shifting their expectations.  

4.2.1 Variance of the prior distributions 

In the first evaluation, we focus on the variance term of the RMSE of the posterior distributions and 

vary the sample size of the observed data. The true prior is compared with the fully non-informative 

prior. We view the non-informative prior as a non-Bayesian analysis benchmark. 

Table 2 shows the RMSE values for the two priors for four sample sizes: 1250, 2500, 5000 and 10000 

units. Three variance levels for the misspecified priors are chosen, corresponding to a historic data set 

of a modest size of 1250 units (V1), a moderate size of 2500 units (V2) and a large size of 10000 units 

(V3). We note that the RMSE depends on the scale of the population parameters of interest; RMSE 

values for costs are, therefore, larger. 

The RMSE values under the true priors are always lower than for the non-informative prior, as 

expected. The gap gets larger when the sample size decreases and/or the true prior variance decreases. 

However, for a sample size of 10000, the added value of prior information is already quite small. For 

even larger sample sizes, it will not make much difference whether the prior knowledge is added or 

not. The most advantageous setting is where the both prior variance and the observed data sample size 

are smallest. The biggest gap in RMSE is indeed found for a prior with variance V3 and sample size 

1250. The RMSE values of this combination are comparable to that of the non-informative prior with 

sample size 10000. In the analysis, we consider the population as a whole. However, once 

subpopulations are of interest and statistics are detailed to such subpopulations, then, obviously, 

sample sizes get smaller and the prior distributions will still have added value. Table 2 should then be 

evaluated as the sample sizes of such subpopulations. 

The results of the first evaluation suggest that a Bayesian analysis is advantageous for small to modest 

size samples of (sub)populations as the historic survey data and expert knowledge lower the variances 

of the posterior distributions. 

 

Table 2: RMSE for fully non-informative and true priors for response rates (RR), coefficients of 

variation (CV) and costs (B) cumulatively after each phase and for a dataset of sample sizes 1250, 

2500, 5000 and 10000. The true priors have a variance corresponding to 1250 (V1), 2500 (V2) and 

10000 (V3) historic sample units.  

Size Prior RR CV B 
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Web F2F F2FE Web F2F F2FE Web F2F F2FE 
1250 Non-informative 0.014 0.019 0.015 0.046 0.045 0.037 0.010 0.316 0.374 

True V1 0.010 0.012 0.010 0.021 0.023 0.018 0.010 0.218 0.273 
 True V2 0.008 0.009 0.008 0.014 0.015 0.012 0.010 0.178 0.223 
 True V3 0.004 0.005 0.005 0.007 0.008 0.008 0.010 0.116 0.142 
2500 Non-informative 0.010 0.010 0.010 0.012 0.055 0.041 0.009 0.239 0.298 

True V1 0.008 0.008 0.008 0.010 0.035 0.025 0.009 0.204 0.247 
 True V2 0.007 0.007 0.007 0.008 0.025 0.017 0.009 0.181 0.217 
 True V3 0.004 0.004 0.004 0.006 0.009 0.007 0.009 0.128 0.148 
5000 Non-informative 0.006 0.007 0.007 0.009 0.023 0.016 0.009 0.156 0.183 

True V1 0.006 0.006 0.006 0.008 0.018 0.013 0.008 0.143 0.166 
 True V2 0.005 0.006 0.006 0.007 0.015 0.010 0.008 0.134 0.157 
 True V3 0.004 0.004 0.004 0.005 0.007 0.006 0.009 0.105 0.121 
10000 Non-informative 0.005 0.005 0.005 0.007 0.008 0.009 0.010 0.120 0.135 
 True V1 0.004 0.005 0.005 0.006 0.008 0.009 0.009 0.114 0.130 
 True V2 0.004 0.005 0.005 0.006 0.008 0.010 0.009 0.111 0.125 
 True V3 0.003 0.004 0.004 0.005 0.008 0.009 0.010 0.010 0.108 

 

4.2.2 Misspecification of the prior distributions 

In the second evaluation, we gradually misspecify the prior distributions for the contact and 

participation regression slope parameters, and compare the RMSE to a fully non-informative prior. We 

view the non-informative prior again as a non-Bayesian analysis benchmark. 

Table 3 contains the RMSE values for non-informative and misspecified priors estimated using the 

Gibb sampler. Again, we have chosen three variance levels, corresponding to a historic dataset of 1250 

(V1), 2500 units (V2) and 10000 units (V3). Furthermore, we evaluate four sample sizes: 1250, 2500, 

5000 and 10000. Recall from table 1 that, for phase 1, the misspecification leads to a growing 

overestimation of the response rate and a growing underestimation of the coefficient of variation, 

whereas costs are fixed. The cumulative response rates after phases 2 and 3 are affected only little, but 

the coefficient of variation is underestimated. The cumulative costs after phase two are 

underestimated, but after phase 3 they are slightly overestimated. 

The main observation from the RMSE values is that a misspecified prior can outperform a non-

informative prior, but misspecification should be modest and/or the variance of the prior should be 

relatively large. Furthermore, in close analogy to the results in the previous subsection, it holds that 

the larger the sample of the observed data, the smaller the misspecification must be to outperform the 

non-informative prior. 

The 2% shift in propensities under misspecified light is small enough for the CV to get RMSE values 

that are similar or smaller than those for the non-informative prior. This holds also to some extent for 

the 5% and 10% shifts under misspecified medium and large, when the variance of the prior is large. 

For the response rate and costs, RMSE values are almost always larger for the misspecified priors, 

unless the variance of the prior is relatively large.  

Decreasing the sample size of the observed data leads to higher RMSE values for all priors. When 

sample sizes are lowered, in general, the misspecified priors will ultimately perform better than the 

non-informative prior; misspecified knowledge beats no knowledge. The (pathological) exception is 

where the expectation of the non-informative prior happens to be close to the true value, e.g. true 

contact or participation propensities do not vary between subpopulations and are also close to 50%. 

 

Table 3: RMSE for fully non-informative and misspecified priors for response rates (RR), coefficients 

of variation (CV) and costs (B) cumulatively after each phase and for a dataset of sample sizes 1250, 

2500, 5000 and 10000. The misspecified priors have a variance corresponding to 1250 (V1), 2500 

(V2) and 10000 (V3) historic sample units.  

Size Prior RR CV B 

Proceedings 61th ISI World Statistics Congress, 16-21 JULY 2017, Marrakech (Session IPS108) P. 832



 

 

 

Web F2F F2FE Web F2F F2FE Web F2F F2FE 
1250 Non-informative 0.014 0.019 0.015 0.046 0.045 0.037 0.010 0.316 0.374 

Missp light V1 0.012 0.014 0.012 0.019 0.020 0.016 0.010 0.398 0.265 
 Missp light V2 0.014 0.011 0.011 0.012 0.013 0.012 0.010 0.459 0.284 
 Missp light V3 0.018 0.007 0.009 0.006 0.013 0.015 0.010 0.549 0.356 
 Missp medium V1 0.023 0.026 0.026 0.016 0.020 0.016 0.010 1.061 0.719 
 Missp medium V2 0.032 0.027 0.030 0.010 0.014 0.015 0.010 1.360 0.964 
 Missp medium V3 0.044 0.029 0.036 0.006 0.023 0.028 0.010 1.767 1.295 
 Missp strong V1 0.046 0.010 0.010 0.013 0.015 0.016 0.010 1.346 0.689 
 Missp strong V2 0.063 0.008 0.008 0.008 0.019 0.026 0.010 1.768 0.942 
 Missp strong V3 0.087 0.005 0.005 0.008 0.033 0.047 0.010 2.324 1.281 
2500 Non-informative 0.010 0.010 0.010 0.012 0.055 0.041 0.009 0.239 0.298 

Missp light V1 0.008 0.009 0.008 0.009 0.032 0.024 0.009 0.213 0.196 
 Missp light V2 0.010 0.008 0.008 0.008 0.021 0.015 0.009 0.286 0.203 
 Missp light V3 0.030 0.008 0.005 0.006 0.010 0.014 0.009 0.706 0.543 
 Missp medium V1 0.014 0.015 0.017 0.009 0.032 0.022 0.009 0.619 0.441 
 Missp medium V2 0.022 0.019 0.022 0.008 0.019 0.012 0.009 0.959 0.702 
 Missp medium V3 0.053 0.015 0.022 0.005 0.015 0.022 0.009 1.787 1.379 
 Missp strong V1 0.029 0.008 0.008 0.009 0.023 0.015 0.009 0.819 0.440 
 Missp strong V2 0.045 0.007 0.007 0.009 0.012 0.012 0.009 1.251 0.682 
 Missp strong V3 0.077 0.008 0.004 0.009 0.028 0.037 0.009 2.065 1.151 
5000 Non-informative 0.006 0.007 0.007 0.009 0.023 0.016 0.009 0.156 0.183 

Missp light V1 0.007 0.006 0.006 0.008 0.017 0.012 0.009 0.164 0.155 
 Missp light V2 0.009 0.006 0.006 0.008 0.013 0.009 0.009 0.217 0.168 
 Missp light V3 0.014 0.005 0.006 0.006 0.008 0.009 0.009 0.399 0.267 
 Missp medium V1 0.011 0.009 0.010 0.009 0.016 0.011 0.009 0.407 0.308 
 Missp medium V2 0.017 0.012 0.014 0.009 0.012 0.009 0.009 0.669 0.504 
 Missp medium V3 0.033 0.021 0.027 0.008 0.013 0.016 0.009 1.323 0.994 
 Missp strong V1 0.020 0.006 0.006 0.009 0.012 0.009 0.009 0.520 0.300 
 Missp strong V2 0.032 0.006 0.006 0.010 0.010 0.011 0.009 0.864 0.488 
 Missp strong V3 0.065 0.007 0.004 0.010 0.027 0.031 0.009 1.736 0.984 
10000 Non-informative 0.005 0.005 0.005 0.007 0.008 0.009 0.010 0.120 0.135 
 Missp light V1 0.005 0.005 0.005 0.007 0.009 0.010 0.009 0.106 0.116 
 Missp light V2 0.005 0.005 0.005 0.006 0.009 0.011 0.009 0.128 0.116 
 Missp light V3 0.010 0.005 0.006 0.006 0.012 0.013 0.009 0.287 0.196 
 Missp medium V1 0.006 0.008 0.008 0.007 0.009 0.010 0.009 0.216 0.176 
 Missp medium V2 0.010 0.010 0.011 0.007 0.010 0.011 0.010 0.386 0.297 
 Missp medium V3 0.024 0.019 0.023 0.007 0.016 0.018 0.009 0.988 0.752 
 Missp strong V1 0.011 0.005 0.005 0.007 0.010 0.013 0.009 0.275 0.169 
 Missp strong V2 0.019 0.005 0.005 0.007 0.013 0.016 0.009 0.500 0.287 
 Missp strong V3 0.048 0.004 0.004 0.009 0.026 0.029 0.009 1.288 0.739 

 
The results of this second evaluation suggest turning points for the utility of a Bayesian analysis that 

depend on the size of the misspecification, the size of the sample and the variance of the prior 

distributions. This is a complex function that requires further study. However, the results under the 

current simulation model show that misspecification may be very influential and may quickly reduce 

the added value of a Bayesian analysis. 

  

5. Discussion 

We introduced a Bayesian model for survey design parameters related to response and costs. The 

model is general in that it describes multiple data collection phases, includes both auxiliary variables 

that are given when data collection starts and auxiliary variables that become available during data 

collection, acknowledges multiple nonresponse outcomes, accounts for dependence on previous 

actions and enables the inclusion of randomization over different data collection strategies. Many 
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surveys conducted by statistical institutes can fit into this framework. Furthermore, we constructed an 

analysis strategy based on a Gibbs sampler in which all model parameters are repeatedly drawn. The 

Gibbs sampler provides estimates for the posterior distributions of the contact and participation 

propensities and the costs per sample unit. From the Gibbs sampler, the posterior distributions for 

overarching quality indicators, such as the response rate or coefficient of variation of the response 

propensities, and cost indicators can easily be derived as an important by-product. The computation 

times of the Gibbs sampler are manageable and sufficiently short to run overnight for a range of 

scenarios.  

The most important objective is to show the added value of a Bayesian analysis. In the evaluation, we 

viewed a fully non-informative prior as representing, essentially, a non-Bayesian analysis. In order, to 

be able to compare, we remain in the Bayesian framework of prior and posterior distributions. The 

evaluation is based on a simulation study using realistic contact propensities and costs, and 

participation propensities and costs from a multi-mode survey. The evaluation shows that the Bayesian 

analysis is sensitive to misspecification in the propensities and costs; shifts in propensities and costs 

should be relatively modest to outperform an analysis with a non-informative prior. The corresponding 

turning point does depend on the variance of the informative prior, and, consequently, hints at some 

form of moderation of historic/expert knowledge. The evaluation also shows that without 

misspecification the Bayesian analysis is to be favored to a non-Bayesian analysis, especially, for 

smaller sample sizes of observed data. 

Some limitations to our study: First, although our model for monitoring of response and costs has 

general features, it does not fit all possible data collection designs and analyses, and particular designs 

and analyses may require adaptations of the model. However, we believe that such changes are 

relatively straightforward given the exposition in this paper. Second, we have not yet considered the 

(key) survey variables. Such variables may be modeled and monitored simultaneously, and design 

decisions may be based on a mix of overall quality and cost indicators and key survey estimates. Such 

an extension is fairly easy to include, see Schouten, Bruin and Mushkudiani (2016), but does introduce 

new modeling choices because values of survey variables are unknown for nonrespondents. Third, and 

strongly related to the previous point, we focused on nonresponse and have not yet considered 

strategy-dependent measurement biases. In multi-mode surveys, such an extension and broader look is 

inevitable. 

The findings of this paper point at a sensitivity of Bayesian analyses to misspecification in prior 

distributions. Such a sensitivity may be partially overcome by moderating the strength of historic 

survey data and expert knowledge over time, i.e. the more timely the data and knowledge the more 

power is attached. Such moderation can be done using so-called power priors (Ibrahim and Chen 2000 

and Ibrahim et al 2015). However, moderation may also be achieved by adding a hierarchical level to 

the Bayesian models representing change in time, which comes at the cost of extra model parameters. 

In retrospective Bayesian analyses, we are currently investigating the use of moderation in time. 

We briefly touched on the elicitation of prior distributions from historic survey data and expert 

knowledge. In models with many auxiliary variables, such elicitation may be difficult to conduct. 

Furthermore, data collection experts will, generally, not be able to provide values for slope and 

dispersion parameters in regression models, but only for propensities and costs at the subgroup level. 

An effective elicitation of expert knowledge, therefore, likely requires some interpolation or 

proportional fitting of detailed models to marginal distributions that are given by experts. This trade-

off holds, especially, for settings where priors are elicited from different, but similar, surveys. When 

prior distributions are based on historic data from the same survey, then models may be fitted directly.  

Ultimately, the Bayesian analysis framework should support adaptive survey design decisions. Such 

an application means that historic survey data and expert knowledge should comprise of multiple, 

possibly randomized, strategies, and that observed data may be used to learn and update strategies for 

which information is weak or missing. 
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