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1. Introduction

In multivariate time series analysis, we study the
covariance and correlation structures in a time series
by means of its autocovariance matrices in the time
domain, or by means of its spectral density matrix in
the frequency domain. Non-degenerate covariance
matrices or spectral density matrices are elements of
the space of Hermitian positive-definite (PD) matri-
ces. The space of Hermitian PD matrices, although
very well-structured, is a non-Euclidean space, and
to perform data analysis we need to generalize statis-
tical procedures (e.g. regression, clustering, outlier
detection, etc.) taking into account the inherent
non-Euclidean geometry of this space. Recent works
developing statistical tools for Hermitian PD matrix-
valued data include [4], [5], [13], [2], [15], and [14]
among others. In this work, we generalize the notion
of a statistical data depth for data observations in
the space of Hermitian PD matrices, with in mind
the application to covariance or spectral density ma-
trices. Data depth is an important tool in statistical
data analysis providing a center to outward ordering
of multivariate data observations. This allows one
to characterize central points and central regions
of the data, detect outlying observations, but also
provides a framework for nonparametric rank-based
hypothesis testing.

2. Preliminaries

2.1. Geometric tools

In order to construct a notion of data depth for
observations in the space of Hermitian PD matrices,
we exploit the geometric properties of this space as
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a Riemannian manifold, for a more detailed descrip-
tion we refer to [13] or [1, Chapter 6]. Let us write
M := Pd×d for the space of (d×d)-dimensional Her-
mitian PD matrices, which is a well-studied differ-
entiable Riemannian manifold. The tangent space
Tp(M) at a point, i.e. a matrix, p ∈ M can be
identified by the real vector space H := Hd×d of
(d × d)-dimensional Hermitian matrices, and the
inner product on H leads to the natural (also invari-
ant, Fisher information, or Fisher-Rao) Riemannian
metric on the manifold M given by the family of
inner products:

〈h1, h2〉p = Tr((p−1/2 ∗ h1)(p−1/2 ∗ h2))

with h1, h2 ∈ H, using the notation y ∗ x := y∗hy

for matrix congruence transformation, where ∗ de-
notes the conjugate transpose of a matrix. Here
and throughout the document, p1/2 denotes the Her-
mitian square root matrix of p ∈ M. The natural
Riemannian distance on M derived from the Rie-
mannian metric is given by:

δ(p1, p2) = ‖Log(p−1/2
1 ∗ p2)‖F (2.1)

where Log(·) denotes the matrix logarithm. By [1,
Prop. 6.2.2], (M, δ) is a complete metric space,
which by the Hopf-Rinow Theorem implies that
every geodesic curve can be extended indefinitely.
The mapping x 7→ a ∗ x for any a ∈ GL(d,C) is an
isometry, i.e. it is distance-preserving with respect
to the Riemannian distance function:

δ(p1, p2) = δ(a ∗ p1, a ∗ p2), a ∈ GL(d,C)

The exponential maps Expp : Tp(M) ' H →M are
diffeomorphic maps from the tangent space attached
at a point p ∈M given by,

Expp(h) = p1/2 ∗ Exp
(
p−1/2 ∗ h

)
where Exp(·) is the matrix exponential. In particu-
lar, γ(t) = Expp(th) is the geodesic emanating from
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p, such that γ(0) = p, with unit tangent vector h.
SinceM is a geodesically complete manifold and the
minimizing geodesics are always unique, it follows
by [3, Chapter 13] that for each p ∈ M the image
of the exponential map Expp is the entire manifold
M, (i.e. there is no cut-locus). This implies that
the exponential maps are global diffeomorphisms.
In the other direction, the logarithmic maps are
global diffeomorphic maps from the manifold to
the tangent space attached at a point p ∈M, and
are defined as the unique inverse exponential maps
Logp(p̃) :M→ Tp(M) given by:

Logp(p̃) = p1/2 ∗ Log
(
p−1/2 ∗ p̃

)
The Riemannian distance function can now also be
expressed in terms of the logarithmic map as:

δ(p1, p2) = ‖Logp1(p2)‖p1 = ‖Logp2(p1)‖p2

where ‖h‖p := 〈h, h〉p is the norm of h ∈ Tp(M)
induced by the Riemannian metric.

Furthermore, since the Riemannian manifold M
is geodesically complete and there exist unique
geodesic curves connecting any two points p1, p2 ∈
M, geodesically convex sets are well-defined, and
we say that a subset K ⊆ M is convex or geodesi-
cally convex if for each pair of points p1, p2 ∈ K, the
geodesic segment [p1, p2] lies entirely in K. If S is
any subset ofM, then the convex hull of S, denoted
by conv(S), is the smallest convex set containing
S. For more details on the construction of (approxi-
mate) convex hulls on the manifoldM, we refer to
[4].

2.2. Geometric mean and median
Let a random variable on the manifold X : Ω→M
be a measurable function from some probability
space (Ω,A, ν) to the measurable space (M,B(M)),
where B(M) is the Borel algebra, i.e. the smallest σ-
algebra containing all open sets in the metric space
(M, δ). Below, we work directly with the induced
probability onM, i.e. ν(B) = ν({ω ∈ Ω : X(ω) ∈
B}). To characterize the center of a random variable
X with probability distribution ν, we first consider
the geometric (also Karcher or Fréchet) mean. The
geometric mean plays a key role in the manifold
zonoid depth defined below, and is given by the
point that minimizes the variance with respect to
the Riemannian distance,

Eν [X] := arg min
y∈supp(ν)

Eν [δ(y,X)2]

= arg min
y∈supp(ν)

∫
M
δ(y, x)2 dν(x)

where we assume that the distribution has finite
second moments with respect to the Riemannian
distance, i.e. Eν [δ(y,X)2] < ∞ for every y ∈ M.
In Euclidean space, the geometric expectation re-
duces to the ordinary Euclidean expectation, which
is the point that minimizes the variance with re-
spect to the Euclidean distance. By [12, Corollary
2], since the manifoldM is a space of nonpositive
curvature with no cut-locus, the geometric mean
µ := Eν [X] exists and is unique for any distribution
with compact support. Recall that the cut-locus at
a point p ∈ M is the complement of the image of
the exponential map Expp, which is the empty set
for each p ∈ M as the image of Expp is the entire
manifoldM. Furthermore, for a distribution with
compact support, the geometric mean is uniquely
characterized by the point µ ∈M that satisfies,

Eν [Logµ(X)] = 0d×d (2.2)

where 0d×d is the zero matrix and Eν [·] denotes the
Euclidean expectation of a Hermitian matrix. The
sample geometric mean of a set of manifold-valued
observations minimizes a sum of squared Rieman-
nian distances, and is computed efficiently by e.g.
the gradient descent algorithm in [12].

As a second measure of centrality, we consider the
geometric median of a random variable X with prob-
ability distribution ν, which plays an important role
in the geodesic distance depth defined below. In con-
trast to the geometric mean, the geometric median is
based on minimizing an expectation of non-squared
distances, and is given by:

GMν(X) := arg min
y∈supp(ν)

Eν [δ(y,X)]

= arg min
y∈supp(ν)

∫
M
δ(y, x) dν(x) (2.3)

where we assume that the distribution has finite first
moments with respect to the Riemannian distance,
i.e. Eν [δ(y,X)] < ∞ for every y ∈ M. It can be
shown that onM, a space with nonpositive curva-
ture and no cut-locus, the geometric median exists
and is unique for any distribution with compact sup-
port. The proof runs along the same lines as that
of [5, Theorem 1], combined with an application of
Leibniz’s integral rule. Furthermore, similar to the
characterization of the geometric mean in eq.(2.2),
for a distribution with compact support, the geomet-
ric median is uniquely characterized by the point
m ∈M that satisfies,

Eν

[
Logm(X)
δ(m,X)

]
= 0d×d (2.4)
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If the distribution ν of a random variable X has
compact support and is centrally symmetric around
µ ∈ M in the sense that Logµ(X) d= −Logµ(X),
then the unique geometric mean and median coin-
cide and are equal to µ. For the geometric mean,
this follows by observing that Eν [Logµ(X)] = 0d×d,
which implies that µ is the unique geometric mean of
the random variable X. For the geometric median,
if X is centrally symmetric around µ, then X is
also angularly symmetric around µ in the sense that
Logµ(X)/‖Logµ(X)‖µ

d= −Logµ(X)/‖Logµ(X)‖µ.
Since ‖Logµ(X)‖µ = δ(µ,X) by definition of the
Riemannian metric and distance function, it follows
that Eν [Logµ(X)/δ(µ,X)] = 0d×d, implying that µ
is also the unique geometric median of the random
variable X with probability measure ν.

3. Data depth on the manifold

In order to construct a proper data depth function
for data observations taking values in the space
of (d × d)-dimensional Hermitian positive definite
matrices, we first present the properties the depth
function should ideally satisfy. This is in the same
spirit as [17], with regard to depth functions act-
ing on multivariate observations in Euclidean space.
In the following, we focus our attention on depth
functions that are nonnegative and bounded, and
distributions with compact support on the manifold.

P1. (Congruence invariance) For a data depth func-
tion in Euclidean space, it is desirable that it is affine
invariant in the following sense: consider a random
vector X ∈ Rd with distribution ν, such that aX+b

has distribution νa,b, with a ∈ GL(d,R) and b ∈ Rd,
then we require that,

D(ν, y) = D(νa,b, ay + b), ∀y ∈ Rd

where D(ν, y) is the Euclidean depth of a vector
y ∈ Rd with respect to the distribution ν. In the
context of covariance or spectral density matrices,
we are concerned with second-order behavior of ran-
dom variables. For a random vector X with lo-
cation µ and covariance matrix Σ, the covariance
matrix of the affine transformation aX + b is given
by a ∗ Σ = aΣaT . This means that for a depth
function acting on a collection of spectral matrices
or covariance matrices, the natural equivalent of the
affine invariance property above is invariance of the
depth function with regard to congruence transfor-
mations of the form x 7→ a ∗ x, where a ∈ GL(d,C).
That is, for a proper depth function D(·, ·) on the

manifoldM we require that,

D(ν, y) = D(νa, a ∗ y), ∀y ∈M

where νa is the distribution of the transformed ran-
dom variable a ∗X, where X has probability distri-
bution ν on the manifold. Note that by Sylvester’s
law of inertia for Hermitian matrices, it holds that
a ∗ x ∈M for each x ∈M and a ∈ GL(d,C).

P2. (Maximality at center) The depth function
should attain its maximum value, i.e. deepest point
or point with maximum depth, at a well-defined
unique center of the distribution, such as the ge-
ometric mean or median, which are characterized
as points of central and angular symmetry respec-
tively. Let µ ∈M be a unique central point of the
distribution ν, then

D(ν, µ) = sup
y∈M

D(ν, y)

P3. (Monoticity relative to center) As the point
y ∈M moves away from the deepest point µ along
a geodesic curve emanating from µ, the depth of the
point y with respect to the distribution ν should be
monotone decreasing. Let Expµ(th) be the geodesic
emanating from µ such that Expµ(0) = µ with unit
tangent vector h, then we require that for each
0,≤ t1 ≤ t2,

D(ν,Expµ(t1h)) ≥ D(ν,Expµ(t2h))

P4. (Vanishing at infinity) The depth of a point
y ∈M should approach zero as the point y converges
to a singular matrix, i.e. a matrix with zero or
infinite eigenvalues,

lim
M→∞

sup
‖Log(y)‖F≥M

D(ν, y) = 0

If a function D : F ×M → R satisfies the above
four properties, we say that it is a proper data depth
function on the manifoldM. Here, F denotes the
class of all distributions ν with compact support on
the manifold.

4. Manifold zonoid depth

As convex hulls are well-defined on the manifoldM,
there exist natural manifold generalizations of the
notions of simplicial or convex hull peeling depth
for multivariate observations in Euclidean space as
detailed in e.g. [7]. However, the simplicial depth
requires the computation of possibly many (approx-
imate) convex hulls, which quickly becomes compu-
tationally expensive, especially in higher dimensions.
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In this section, instead we focus on a different no-
tion of data depth: the zonoid depth as described
in e.g. [10], for which we propose a straightforward
generalization to the manifold M. The manifold
zonoid depth can be computed by the same tools
used to calculate the classical zonoid depth in Eu-
clidean space and its computation remains efficient,
also for higher-dimensional covariance or spectral
density matrices.

First, we recall the definition of a zonoid α-trimmed
region in Euclidean space according to [10]. Let
ν be a probability measure on (Rd,Bd) with finite
first moment, then the zonoid α-trimmed region for
0 < α ≤ 1 is defined as,

Dα(ν) :=
{∫

Rd

xg(x) dν(x) : g : Rd →
[
0, 1
α

]

measurable, s.t.
∫
Rd

g(x) dν(x) = 1
}

If α = 0, we set D0(ν) = Rd. By [10, Chapter
3], Dα(ν) is a convex set and monotone decreasing
in α, thereby creating a nested sequence of convex
sets for a decreasing sequence α1 ≥ . . . ≥ αn. If
α = 1, Dα(ν) consists of a single point Eν [X], the
Euclidean mean of the distribution ν. For a dis-
crete set of observations x1, . . . , xn ∈ Rd with the
empirical probability measure νn, the sample zonoid
α-trimmed region becomes,

Dα(νn) =
{

n∑
i=1

λixi :
n∑
i=1

λi = 1, λi ∈
[
0, 1
nα

]}

This follows by writing g(xi)ν({xi}) = λi in the
population zonoid α-trimmed region above. If 0 <
α ≤ 1

n , Dα(νn) is the convex hull of the data points,
and if α = 1, Dα(νn) consists of a single point
x̄n = 1

n

∑n
i=1 xi, the empirical Euclidean mean of

the observations. The zonoid depth in Euclidean
space of a point y ∈ Rd with respect to a distribution
ν is characterized by the most central α-trimmed
region still containing y as:

ZDRd(ν, y) := sup {α : y ∈ Dα(ν)}

The zonoid data depth is extended to the manifold
as follows.

Definition 4.1. (Manifold zonoid depth) Let ν be
a probability measure on the manifold (M,B(M))
with Eν [δ(y,X)2] < ∞ for each y ∈ M. Let ζy
be the probability measure on (Rd2

,B(Rd2)) of the
random variable Logy(X) ∈ H ∼= Rd2 , where X has
probability measure ν. The manifold zonoid depth

of a point y ∈M with respect to the distribution ν
is defined as:

ZDM(ν, y) := sup
{
α : ~d ∈ Dα(ζy)

}
where ~0 is a d2-dimensional vector of zeros, and
Dα(ζy) the zonoid α-trimmed region of the distri-
bution ζy defined on (Rd2

,B(Rd2)).

Theorem 4.1. The manifold zonoid depth is a
proper data depth function in the sense of Section 3,
satisfying properties P1–P4 for distributions with
compact support on the manifold and finite second
moments (with respect to the Riemannian distance),
in which case the unique point of maximum depth is
characterized by the geometric mean of the distribu-
tion.

Proof. P1. This follows from the fact that for each
0 ≤ α ≤ 1, {0d×d ∈ Dα(ζy)} ⇔ {0d×d ∈Dα(ζa,y)},
where ζa,y is the distribution of Loga∗y(a∗X). This
is shown by using that Loga∗y(a ∗X) d= a ∗Logy(X)
for every a ∈ GL(d,C).
P2. The zonoid trimmed region D1(ζy) contains
the single point Eν [Logy(X)]. The deepest point
y ∈M is therefore characterized by the point that
satisfies Eν [Logy(X)] = 0d×d. By eq.(2.2), for a
distribution with compact support, this point is
the uniquely existing geometric expectation of the
distribution ν.
P3. For α ∈ [0, 1], we can rewrite ZDM(ν, y) =
sup{α : y ∈ DMα (ν)}, where,

DMα (ν) =
{
y : y = Expy

(∫
M

Logy(x)g(x) dν(x)
)
,

g :M→ [0, 1/α],
∫
M
g(x) dν(x) = 1

}
with g measurable. DMα (ν) is geodesically convex
and contains the geometric mean µ := Eν [X] for
each α ∈ [0, 1], therefore DMα (ν) is geodesically
starshaped about µ. Also, DMα1

(ν) ⊆ DMα2
(ν) for

each 1 ≥ α1 ≥ α2 ≥ 0. Combining the above
arguments, it follows that a geodesic curve Expµ(th),
with t ≥ 0 increasing, has monotone decreasing
depth as it moves further away from the center µ.
P4. With the same notation as above, for α ∈
(0, 1] the sets DMα (ν) are closed and bounded, and
therefore also compact by the Hopf-Rinow theorem.
Boundedness follows from the observation that,∥∥∥Eν [Logy(X)gα(X)]

∥∥∥
y
≤ 1

α
Eν

[
‖Logy(x)‖y

]
= 1

α
Eν [δ(y,X)] < ∞
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using that ν has finite first moments with respect to
the Riemannian distance function. In particular, if
(yn)n∈N ∈M is an unbounded sequence, such that
‖Log(yn)‖F → ∞ as n → ∞, then ZDM(ν, yn) →
0, otherwise the boundedness (or compactness) of
DMα (ν) for α > 0 would be violated.

In the context of spectral density matrices, which
are curves in the space of Hermitian PD matrices
along frequency, we wish to generalize the concept of
manifold zonoid depth of a point on the manifold to
the depth of an entire curve y(t) ∈M with respect
to a collection of marginal measures ν(t) for t ∈ I,
where I ⊂ R. To this purpose, we consider the
functional manifold zonoid depth given by,

fZDM(ν, y) =
∫
I

sup {α : 0d×d ∈ Dα(ζy(t))} dt

where ζy(t) is the probability measure of the ran-
dom variable Logy(t)(X(t)) ∈ H ∼= Rd2 , where X(t)
has probability measure ν(t). Note that this is es-
sentially analogous to the construction of modified
band depth (MBD) for a curve in Euclidean space
as an integrated version of the pointwise simplicial
depths y(t) integrated over the measurement domain
t ∈ I. For more details on functional data depth in
Euclidean space we refer to e.g. [9] or [16].

5. Geodesic distance depth

As a second notion of data depth on the manifold,
we consider the geodesic distance depth, which is the
natural analog on the manifold of the arc distance
depth detailed in [8] with regard to data observations
on circles and spheres. The geodesic distance depth
is straightforward to calculate as it requires only the
computation of the Riemannian distance between
points on the manifold, which remains computation-
ally efficient also for high-dimensional covariance or
spectral matrices.

Definition 5.1. (Geodesic distance depth) Let
ν be a probability measure on (M,B(M)) with
Eν [δ(y,X)] < ∞ for all y ∈ M. The geodesic dis-
tance depth of a point y ∈ M with respect to the
distribution ν ∈M is defined as:

GDD(ν, y) = exp
(
−
∫
M
δ(y, x) dν(x)

)
Theorem 5.1. The geodesic distance depth is a
proper data depth function in the sense of Section 3,
satisfying P1–P4 for distributions with compact sup-
port on the manifold and finite first moments (with
respect to the Riemannian distance), in which case

the unique point of maximum depth is characterized
by the geometric median of the distribution.

Proof. P1. This follows directly by the fact that the
map x 7→ a∗x with a ∈ GL(d,C) is distance preserv-
ing, i.e. δ(a ∗ x, a ∗ y) = δ(x, y) for each x, y ∈M.
P2. Since

∫
M δ(y, x) dν(x) ≥ 0 and

exp(−z) is strictly decreasing in z ≥ 0, the
point of maximum depth is attained at y =
arg minz∈M

∫
M δ(z, x) dν(x). By eq.(2.3), for a dis-

tribution with compact support, this point is the
uniquely existing geometric median of the distribu-
tion ν.
P3. By the proof of [5, Theorem 1] and an appli-
cation of Leibniz’s integral rule, y 7→ Eν [δ(y,X)] is
a (strictly) convex function, and by P2 it attains
its unique minimum at m := GMν(X). This im-
plies that Eν [δ(Expm(th), X)] is a nondecreasing
function for t ≥ 0, where Expm(th) is a geodesic
curve emanating from m with unit tangent vec-
tor h. As a consequence GDD(ν,Expm(th)) =
exp (−Eν [δ(Expm(th), X)]) is nonincreasing for t ≥
0.
P4. Let (yn)n∈N be an unbounded sequence such
that ‖Log(yn)‖F → ∞ as n → ∞, then also
δ(x, yn) = ‖Log(x−1/2 ∗ yn)‖F → ∞ for each
x ∈ M, and as a consequence GDD(ν, yn) =
exp(−Eν [δ(yn, X)])→ 0.

In order to generalize the geodesic distance depth of
a point y, with respect to a single measure ν, to the
depth of an entire curve y(t) ∈M, with respect to
a collection of marginal measures ν(t) = νt, t ∈ I ⊂
R, we consider the integrated Riemannian distance
between curves instead of the Riemannian distance
between points. In this way, the functional geodesic
distance depth is given by:

fGDD(ν, y) = exp
(
−
∫
I

∫
M
δ(y(t), x) dνt(x) dt

)
Remark We point out that integrated distance
measures between spectral density curves of Her-
mitian PD matrices can also found in e.g. [6] in the
context of clustering of spectral density matrices.
Here, the considered integrated disparity measures
between spectral density matrices are of the form:

DH(f, g) =
∫ π

0
H(f(ω)g(ω)−1) dω

The integrated Riemannian distance function is seen
to be a specific case of such integrated disparity
measures, since we can write,

H(f(ω)g(ω)−1) = ‖Log(f(ω)g(ω)−1)‖F
= δ(f(ω), g(ω))
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by definition of the Riemannian distance function.
In [6], the considered disparity measures include
symmetric J-divergence and symmetric Chernoff-
information divergence. It is possible to replace
the Riemannian distance in the data depth func-
tion by the disparity measures considered in [6],
but properties P1–P4 will no longer be valid, as
they are specifically tailored to the metric space
(M, δ). Moreover, the symmetric J-divergence and
symmetric Chernoff-information divergence are only
quasi-distance functions in the cone of Hermitian
PD matrices embedded in Euclidean space, as the
triangle inequality does not hold, whereas the Rie-
mannian distance is a proper distance function on
the manifold.

6. Conclusion

In this work we develop the concept of data depth
for observations in the space of symmetric or Her-
mitian PD matrices. Hermitian PD matrices are
encountered as covariance matrices or spectral den-
sity matrices in multivariate time series analysis, but
also play an important role in the fields of medical
imaging, computer vision, or radar signal processing
as discussed in e.g. [13], [14], [4], or [5]. The sample
data depth values are straightforward to compute
and remain computationally efficient also for rela-
tively high-dimensional matrices. As such, the data
depth functions serve as an exploratory data analy-
sis tool in order to characterize central regions of the
data or to detect outlying observations. A strong
visualization tool that can be used in this context
is the functional boxplot, as described in e.g. [16] or
[11]. The data depth functions also provide a practi-
cal framework to perform nonparametric rank-based
hypothesis testing for observations taking values in
the space of Hermitian PD matrices, replacing the
usual ranks by the ranks based on the computed
data depths.
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