
 
 

 

 
 

 
Optimal adaptive sample allocation in stratified sampling under budget constraints 

 

Elisabetta Carfagna* 

University of Bologna, Bologna, Italy – elisabetta.carfagna@unibo.it 

 

Silvia Missiroli 

Bocconi University, Milano, Italy – silvia.missiroli@phd.unibocconi.it 

 

Several authors have faced the problem of sample allocation and selection without previous information on 

the variability inside the strata, suggesting various kinds of two-step sampling or sequential sampling 

strategies. However, proposed methods either do not allow design unbiased estimates of the population 

parameters or are not optimal or do not take into consideration budget constraints. In this paper, we propose 

a group sequential adaptive procedure with permanent random numbers that generates design unbiased 

minimum variance estimates of the population mean, under budget constraints. Through a Monte Carlo 

simulation study, we investigate the optimum combination of number of steps and sample units per step, 

we prove that the proposed procedure is more efficient than the ones proposed in the literature and assess 

the impact of various values of the cost components on the proposed procedure. We also propose an 

approach for identifying the optimal adaptive sequential allocation when the population distribution is 

unknown. 

 

Keywords: Stratified sampling; Optimal allocation; Group sampling; Permanent random numbers; 

Unbiased Estimates. 

 

1. Introduction 

 

In survey sampling for finite populations, one of the most important challenge is to offer an efficient 

sampling procedure in terms of cost, time and precision, without omitting flexibility. 

Adopting a good stratification with optimal strata allocations (Neyman’s) allows to increase the efficiency 

of the estimator. However, when the strata variances are unknown, Neyman’s allocation cannot be 

computed. In this case, adaptive sampling can be useful to gain the missing information through the results 

obtained along the way. Stein (1949), Chow and Robbins (1965), Ray (1957) are some of the authors who 

first proposed two steps or adaptive sequential procedures for infinite population. In the context of stratified 

finite populations, Thompson and Seber (1996) suggested an adaptive approach in K phases (phases are 

sampling steps) and an estimator of the population mean given by the weighted mean of the estimates at 

the various phases. This estimator is unbiased if the weights are fixed in advance (do not depend on 

observations made during the survey) and each of the strata is sampled at each phase. These two conditions 

have a negative impact on the efficiency of the estimator. Carfagna (2007) proposed a two steps adaptive 

procedure (TSPRN) with the use of permanent random numbers (Ohlsson, 1995), which pursues Neyman’s 

allocation and allows to get unbiased and more efficient estimators than those obtained through Thompson 

and Seber’s method when K = 2. In fact, the TSPRN procedure, at the second step, allows selecting 

supplementary units only in those strata where supplementary selection is necessary, not in all the strata as 

Thompson and Seber suggested. Then, Carfagna and Marzialetti (2009) extended the TSPRN procedure to 

a sequential setting, introducing an adaptive sequential procedure with permanent random numbers 

(ASPRN) which allocates one sampling unit at each step. It generates more efficient estimates than the 
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Thompson and Seber’s method and generally than the TSPRN procedure. However, when a cost function 

with a relevant step cost and budget constraints are considered, the ASPRN may be less efficient than the 

TSPRN (Carfagna et al. (2012)). This result stresses the need of finding the most efficient optimal adaptive 

sequential procedure, given a cost function. For instance, if the cost per step is high it is more efficient to 

increase the number of units per step and decrease the number of steps. The optimal sampling procedure 

depends also on the form of the cost function. Hence, the aim of this paper is to propose an optimal adaptive 

group sequential procedure with permanent random numbers (optimal AGSPRN) in the presence of a cost 

function, which is a compromise solution between the ASPRN and the TSPRN procedures. It should 

preserve the ability of the ASPRN procedure to generate sample allocations very close to Neyman’s ones, 

reducing the impact of the step cost affecting the ASPRN. In Section 2, we describe the AGSPRN procedure 

and the linear cost function we adopt. In Section 3, we investigate, through a Monte Carlo study, the optimal 
number of steps 𝐾𝑜𝑝𝑡  and the optimal number of units 𝑞𝑜𝑝𝑡 added at each step characterizing the AGSPRN 

procedure that generates the estimator with the smallest variance in presence of a linear cost function and 

budget constraints. The Monte Carlo study requires, as input, information about the distribution function of 

the analysed population. In some cases, this can be a strong requirement; however it is useful for showing 

some properties of the optimal AGSPRN procedure and assessing the impact of the components of the cost 

function. In Section 4, we overcome the limit of the Monte Carlo study proposed in Section 3, setting up a 

methodology to obtain the optimal AGSPRN procedure when the population is unknown and only a pilot 

sample is available, that is the usual case. Finally, we discuss the main findings and further developments. 

 

2. The AGSPRN procedure  

 

We propose an adaptive group sequential procedure with permanent random numbers (AGSPRN) that is a 

group sequential procedure for finite populations which generates a stratified random sample, with adaptive 

strata allocations at each step. Given a population of size N divided into H strata of size 𝑁1 , …, , 𝑁𝐻 , for any 

integer 𝑞 ∈ [1, 𝑁 −  𝑛0], where 𝑛0  is the preliminary or first step sample size, the AGSPRN procedure is 

developed as following:  

(i) assign a random number to each unit in each stratum, then order the units according to the   associated 

number;  

(ii) at the first step [k = 1] select a first stratified random sample of size 𝑛0  with probability proportional 

to stratum size, selecting at least two sample units per stratum and estimate the variance inside each 

stratum;  

(iii) compute Neyman’s allocation with sample size 𝑛 = 𝑛0 + 𝑞 and select 𝑞 sample units only in the 

strata with positive difference between Neyman’s allocation and the actual one (the allocation is 

proportional to this difference). Then estimate the parameter of interest and its precision;  

(iv) if the stopping rule is satisfied, or the units of the population are all drawn, stop the process; 

otherwise estimate the strata variances and start again from step (iii) using a sample size equal to 𝑛 + 𝑞. 

Thanks to the permanent random numbers the selection order of the sample units is assigned at the 
beginning of the procedure, thus the information gained at step (𝐾 − 1) affects only the allocations at step 

𝐾, not the selection of the units.  The allocations are adaptive, not the sample selection.  

Let us suppose that we are interested in estimating the population mean 𝑌̅ of the some variable 𝑌. A value 

𝑦𝑖ℎ  of 𝑌 is associated to each population unit 𝑖 in stratum ℎ, with ℎ = 1, … , 𝐻. Let 𝐾 denote the step where 

the stopping rule is satisfied. The stratified mean estimator in 𝐾 generated by the AGSPRN procedure that 
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adds 𝑞 units at each step is given by: 

 

𝑦̅𝑠𝑡𝐾 (𝐾, 𝑞) = ∑
𝑁ℎ

𝑁
𝑦̅ℎ𝐾 = ∑
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where ℎ refers to the stratum, 𝑦̅ℎ𝐾  is the sample mean of stratum ℎ after 𝐾 steps, 𝑛ℎ𝐾  is the sample size in 

stratum ℎ after 𝐾 steps, 𝑦𝑖ℎ𝐾  is the value of  𝑌 for unit 𝑖 selected in stratum ℎ after 𝐾 steps. We are interested 

in estimating 𝑦̅𝑠𝑡𝐾 (𝐾, 𝑞) and its variance: 

 𝑉(𝑦̅𝑠𝑡𝐾 ; 𝐾, 𝑞) =  𝐸 [∑
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2

𝑁2
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], (1) 

where 𝜎ℎ
2 is the variance of 𝑌 in stratum ℎ and the expected value is taken with respect to all the possible 

realizations of the allocations 𝑛ℎ𝐾  at the 𝐾th step. Because of this complexity, it is prohibitive to compute 

analytically the value in (1), for each 𝐾 and each 𝑞. Hence, we proceed through a Monte Carlo algorithm 

that we are going to describe in the next section. Since we don’t know the strata variances 𝜎ℎ
2𝑠, for ℎ =

1, … , 𝐻 , we are going to estimate them at each step through 𝑆ℎ
2 = ∑

(𝑦𝑖ℎ𝐾 −  𝑦̅ℎ𝑘)2

𝑛ℎ𝐾−1

𝑛ℎ𝐾
𝑖=1 , for ℎ = 1, … , 𝐻. Thus, 

an estimator of 𝑉(𝑦̅𝑠𝑡𝐾 ; 𝐾, 𝑞) is: 

 𝑉(𝑦̅𝑠𝑡𝐾 ; 𝐾, 𝑞) = ∑
𝑁ℎ

2

𝑁2
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. (2) 

An important element of our complex framework is the cost. Here we consider a linear cost function: 

 𝐶 = 𝐶(𝐾, 𝑞) = 𝐶0 + 𝑐𝑛[𝑛0 + 𝑞(𝐾 − 1)] + 𝑐𝑘 𝐾, (3) 

where 𝐶0 is the fixed cost, 𝑐𝑛  is the cost per unit, 𝑐𝑘 is the cost per step and 𝐾 is the total number of steps 

performed by the AGSPRN procedure before stopping.  

In this paper we are going to consider the stopping rule regarding the depletion of a budget denoted with 𝐶. 

Our aim is to find the optimal AGSPRN procedure that minimizes the variance of the stratified mean 

estimator reported in (1), satisfying the cost constraints given by the linear function in (3) for a fixed 𝐶.  

 

3. Monte Carlo study  

 

If the pilot sample size 𝑛0 , the total budget 𝐶, the cost per unit 𝑐𝑛  and the cost per step 𝑐𝑘 are given, for 

each 𝑞 ∈ [1, ⌊
(𝐶−𝐶0 −𝑐𝑛𝑛0 −2𝑐𝑘)

𝑐𝑛

⌋], where ⌊∙⌋ indicates the integer part rounding to the floor, there is a unique 

integer 𝐾, obtained reversing Equation (3). All these constrained pairs (𝐾, 𝑞)𝑐 =

(⌊
(𝐶−𝐶0 −𝑐𝑛𝑛0 +𝑐𝑛𝑞)

𝑐𝑛𝑞+𝑐𝑘

⌋ , 𝑞) belong to the set ℋ(𝐾,𝑞)𝑐
. If two constrained pairs have the same 𝐾, we choose the 

one with the highest 𝑞, since the estimator variance is a non increasing function respect to the sample size.   

As we mentioned, for a fixed 𝑞, the distribution of the estimator variance as 𝐾 increases is analytically 

intractable. Hence, we proceed through a Monte Carlo study. For each constrained pair (𝐾, 𝑞)𝑐  ∈  ℋ(𝐾,𝑞)𝑐
, 
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we perform the AGSPRN procedure R times and for each time we estimate the variance of the stratified 

mean estimator 𝑉(𝑦̅𝑠𝑡𝐾 ; 𝐾, 𝑞) as reported in (2). Then we compute the average among the R values of 

𝑉(𝑦̅𝑠𝑡𝐾 ; 𝐾, 𝑞), obtaining the Monte Carlo estimator variance 〈𝑉𝑅 (𝑦̅𝑠𝑡𝐾 ; 𝐾, 𝑞) 〉 for each constrained pair 

(𝐾, 𝑞)𝑐 . The pair that generates the estimator with the lowest Monte Carlo variance characterizes the 

optimal AGSPRN procedure in presence of budget constraints.  

The Monte Carlo algorithm requires some precise knowledge of the entire population in order to perform 

the AGSPRN procedure for each pair. In the following example we use as input directly the target 

population, that is chosen to be Normal with different parameters in each stratum. This seems quite useless 

in a sampling context. However, the aim of this section is to show some properties of the optimal AGSPRN 

procedure in an ideal situation. In the next section, we are going to estimate the form of the distribution of 

𝑌 from the pilot sample, updating it at each step in order to provide a precise and useful method for the 

search of the optimal AGSPRN procedure.  

Let us consider the example of a normal distributed population. In each stratum ℎ, for ℎ = 1, … , 𝐻, the 

variable of interest 𝑌 is distributed according to a Normal 𝒩[ℎ × 25 + 250, 𝑎ℎ × 0.9], with 𝑎ℎ  the ℎ-th 

element of the vector 𝑎 = [600 130 320 250 40 150 100 180 74 400]′. Let us fix 𝐶 = 500, 𝐶0 =
80, 𝑐𝑛 = 2, 𝑐𝑘 = 4, 𝐻 = 10, 𝑛0 = 40, 𝑊ℎ =  𝑁ℎ 𝑁⁄ ∼ 𝒰[450,500]. The entire population is generated 

according to this framework, becoming an input of the Monte Carlo algorithm for the search of the optimal 

AGSPRN procedure. The results are shown in Table 1, where a comparison with TSPRN and ASPRN is 

also reported, since they are two extreme cases of the AGSPRN procedure with (𝐾, 𝑞) = (2, 166) and 
(𝐾, 𝑞) = (61, 11) respectively. As Table 1 shows, the optimal AGSPRN procedure tends not to coincide 

with TSPRN and ASPRN which generate estimators with higher variance. Hence, our intuition about the 

existence of a compromise solution between ASPRN and TSPRN that is more efficient in presence of 

budget constraints and a cost function has been validated. Moreover, a high value of the M. C. estimator 

variance is also reached using a stratified random sampling (STRS), i.e., drawing all the units obtained with 

the available budget in just one step with proportional allocation. Using the optimal AGSPRN procedure 

we gain a variance reduction for the mean estimator of 40% with respect to STRS, with the same budget. 

 
Table 1: Comparison of different adaptive estimators assuming Normal population with C = 500, 𝑪𝟎  = 80, 𝒄𝒏 = 2, 𝒄𝒌 = 4. The 
first row presents the optimal solution with the value of 𝒚̅𝒔𝒕𝑲, its variance, the MCE, the sample size 𝒏 and the pilot size 𝒏𝟎. 

The consecutive rows show the comparisons with other sampling procedures: TSPRN, ASPRN and STRS. Here, 𝒀̅ = 391.35. 

 𝐾 𝑞 𝑦̅𝑠𝑡𝐾  〈𝑉̂𝑅(𝑦̅𝑠𝑡𝐾 ; 𝐾, 𝑞) 〉 MCE 𝑛 𝑛0  

Optimal AGSPRN 4 54 391.53 175.80 0.221 202 40 

TSPRN 2 166 391.71 195.43 0.233 206 40 

ASPRN 57 1 391.84 365.76 0.500 96 40 

STRS 1 0 391.72 297.04 0.300 207 207 

 

Table 2 shows the impact of different values of the cost components on the optimal AGSPRN procedure. 
For instance, it is possible to notice that an increase of 𝑐𝑛  under a fixed budget causes an increase of 𝐾𝑜𝑝𝑡 

and a decrease of 𝑞𝑜𝑝𝑡, with a consequent decrement of the total sample size and a negative impact on the 

estimator variance that becomes higher. The number of steps 𝐾𝑜𝑝𝑡 tends to be maintained high, since a 

decrease of 𝐾𝑜𝑝𝑡  inflates the estimator variance relatively more than a decrease of 𝑞𝑜𝑝𝑡. On the other hand, 

an increase of 𝑐𝑘 generates a decrease of 𝐾𝑜𝑝𝑡 , but not of the total sample size, with a lower effect on the 

variance of the estimator. 
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Table 2: Effect of the cost components for normally distributed data in presence of budget constraints. 

𝑐𝑛 𝑐𝑘 𝐾𝑜𝑝𝑡 𝑞𝑜𝑝𝑡 𝑦̅𝑠𝑡𝐾  〈𝑉𝑅 (𝑦̅𝑠𝑡𝐾 ; 𝐾, 𝑞) 〉 MCE 𝑛 
2 4 4 54 391.53 175.80 0.221 202 

2.5 4 5 30 391.42 221.07 0.277 160 

3 4 5 23 391.54 268.12 0.336 132 

4 4 5 15 391.87 357.63 0.473 100 

𝑐𝑛 𝑐𝑘 𝐾𝑜𝑝𝑡 𝑞𝑜𝑝𝑡 𝑦̅𝑠𝑡𝐾  〈𝑉𝑅 (𝑦̅𝑠𝑡𝐾 ; 𝐾, 𝑞) 〉 MCE 𝑛 
2 2 5 41 391.59 173.05 0.216 204 

2 4 4 54 391.53 175.80 0.221 202 

2 6 3 80 391.52 180.23 0.219 200 

2 8 3 79 391.57 181.87 0.222 198 

 

4. The search of the optimal AGSPRN procedure when the target population is unknown 

 

In this section we propose a method for the search of the optimal AGSPRN procedure when the distribution 

of 𝑌 is unknown and it is estimated at each step 𝑘 through kernel techniques or model assumptions with 

estimated parameters in each stratum. This is an extension of the bootstrap method of Rosenberger and Hu 

(1999) who applied it to infinite populations with Bernoulli distribution in the clinical trials context. Our 

proposal for the search of the optimal AGSPRN procedure is developed in the following steps:  

(i) at the first step [𝑘 = 1] select a first stratified random sample of size 𝑛0  with proportional allocation, 

selecting at least two sample units per stratum and estimate the variance inside each stratum;  

(ii) make some assumptions on the distribution form of 𝑌 inside each stratum using the selected units, 

estimate the parameters and generate from that distribution 𝑁ℎ − ⌊𝑛0
ℎ ⌋ values, ℎ = 1, … , 𝐻, such that 

all the finite population of size 𝑁 is obtained; here ⌊𝑛0
ℎ ⌋ is the integer part rounding to the floor of the 

𝑛0  units allocated to stratum ℎ;  

(iii) using the estimated population, simulate R times the AGSPRN procedure with different values of 

𝑞 and choose the optimal pair (𝐾𝑜𝑝𝑡 , 𝑞𝑜𝑝𝑡) that minimizes the estimator variance given budget 

constraints; 

(iv) compute Neyman’s allocation with sample size 𝑛 = 𝑛0 + 𝑞𝑜𝑝𝑡  and select 𝑞𝑜𝑝𝑡 sample units only in 

the strata with positive difference between Neyman’s allocation and the actual one (the allocation is 

proportional to this difference). Then estimate the parameter of interest and its precision;  

(v) if the stopping rule is satisfied and 𝐾𝑜𝑝𝑡 = 2 stop the process, otherwise start again from step (ii) 

fixing 𝑛0 = 𝑛0 + 𝑞𝑜𝑝𝑡  and 𝐶0 = 𝐶0 + 𝑐𝑘.  

The optimal AGSPRN procedure obtained through this method is characterized by a number of units added 

at each step that can vary from step to step, depending on the updated population. This procedure allows to 

obtain sample allocations as close as possible to Neyman’s ones, by computing, at each step, the allocations 

and the combination of number of steps and of units per step, given the cost function in (3).  

We apply the described method using the same framework of the previous section. We select a pilot sample 

from the population generated by the Normal distributions and we get the same result of Table 1: the optimal 

AGSPRN consists of 4 steps and 54 units per step. The results obtained by estimating the population step 
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by step and those generated in the ideal situation of a known population coincide: this confirms the validity 

of the method proposed in this section. 

 

5. Discussion 

 

The need of filling the gap regarding an adaptive sequential sampling procedure for finite populations that 

is optimal in terms of minimum variance of the estimator given budget constraints and a cost function has 

lead us to propose an adaptive group sequential procedure with permanent random number (AGSPRN) for 

stratified finite populations. It has been shown to be more efficient than other existing sampling procedures 

when the step cost is relevant. Moreover, it tends not to coincide with the two steps adaptive procedure with 

permanent random numbers (TSPRN) and the adaptive sequential procedure with permanent random 

numbers (ASPRN) that can be derived as two particular cases. 

In Section 3 we have assessed the impact of the cost components on the optimal AGSPRN procedure, 

finding out that an increase of the step cost and consequently a decrease of the optimal number of steps 

inflate the estimator variance relatively more than an increase of the cost per unit. Only a linear cost function 

has been considered, but the impact of other kinds of cost function on the optimal procedure could be 

assessed in a future research. In Section 4 we have proposed a method to obtain the optimal AGSPRN 

procedure when the distribution of the variable of interest is unknown. It performs quite well, leading to 

the same results obtained in the ideal situation of a known population. Moreover, it adds flexibility to the 

optimal procedure since it allows the number of units added at each step to vary from step to step.  

Other criteria of stopping should be investigated and the study can be conducted for more than one variable 

of interest, considering multiple adaptive allocation methods. 
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