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We present new statistical methodology for analysing rank data, where the rankings are allowed to vary in

time. Such data arise, for example, when the assessments are based on a performance measure of the items

which varies in time, or if the criteria, according to which the items are ranked, change in time. Items can also

be absent when the assessments are made, because of delayed entry or early departure, or purely randomly. In

such situations also the dimension of the rank vectors varies in time. Rank data in a time dependent settings

thus lead to challenging statistical problems. These problems are further complicated, from the perspective of

computation, by the large dimension of the sample space consisting of all permutations of the items. Here we

focus on introducing and developing a Bayesian version of the Mallows rank model, suitable for situations in

which the ranks vary in time and the assessments can be incomplete. The consequent missing data problems

are handled by applying Bayesian data augmentation within MCMC. Our method is also adapted to the task

of future rank prediction. The method is illustrated by analysing some aspects of a data set describing the

academic performance, measured by a series of tests, of a class of high school students over a period of four

years. Copyright c
 2012 John Wiley & Sons, Ltd.
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1. Introduction

Rank data arise in situations where it is desired to order a set of individuals or items in accordance to some criterion.
A set of assessors or tests is used to rank the items. Ranking can be complete, when every assessor orders all items,
or incomplete, when the assessors give only partial information about their preferences. This can occur when items are
rated individually or compared in pairs, or simply if some items are missed in the ranking. Rank data may also arise when
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transforming continuous or discrete scores given to the items into ranks, leading to a nonparametric analysis. This
is particularly interesting when score scales are di�cult to compare across tests or assessors, while ordering is more
robust. Examples of ranking problems include aggregating internet search rankings into meta-search results (Dwork
et al., 2001), determining winners of competitions and tournaments (Hunter, 2004; Tutz & Schauberger, 2015),
voting and elections (Gormley & Murphy, 2006), market research (Dittrich et al., 2000), food preferences (Kamishima
& Akaho, 2009), psychology (Regenwetter et al., 2007; Maydeu-Olivares & Bockenholt, 2005), health economics
(Krabbe et al., 2007; Ratcli�e et al., 2006), medical treatments (Plumb et al., 2009) and choice of occupation (Yu &
Chan, 2001). Rank data lead to interesting and computationally challenging statistical problems, especially due to the
dimension of the space of all permutations of the items: it can easily become intractable to enumerate all permutations
as would in principle be needed to maximize a posterior probability or a likelihood.

We are interested in preferences and rankings that change in time. For example, the ranking of the preferred social
networking sites, or of the preferred political parties, varies in time as they depend on time varying information
(Regenwetter et al., 1999). Many games and sports, including races, involve outcomes in which competitors are rank
ordered. In some sports, competitors play in multiple events over long periods of time, and it is natural to assume that
their abilities change over time (Glickman & Hennessy, 2015). Best selling books as published each week by the New
York Times (Caron & Teh, 2012) show time varying preferences, as do the number of annual citations di�erent papers
receive (Radicchi et al., 2009).

In this paper we extend the Bayesian framework for inference with the Mallows model (Vitelli et al., 2015), to model
the e�ect of time in rank data. This is particularly challenging when the preferences are incomplete. We propose a
new method of data augmentation (Tanner & Wong, 1987) for the Mallows model for rank data.

This paper is organized as follows. Section 2 describes our illustrative example, a student data set collected between
2002 and 2006 in a high school in Italy. Section 3 presents the model for time dependent rank data and our methods
of data augmentation, and outlines the MCMC algorithm needed in the computation. Sections 4 and 5 illustrate the
use of the method on the school data. Section 6 concludes the paper with a short discussion.

2. Time Dependent Rank Data (TDRD)

Time dependence in rank data can arise when a panel of assessors is asked to rank the same set of items repeatedly
over time. Then the preferences can change in time. Sometimes, while preference criteria are stable in table, the
characteristics of the items change in time. Here we use a data set of this latter type, in order to illustrate several
challenges. We study the case when each assessor is o�ered only a subset of the items to rank, a subset which changes
over time. Furthermore, new items appear and others disappear from the item basket, generating a longer string of
consecutive missingness. In this paper we consider a class of students enrolled in a high school program during four
years. Each year the students were tested in mathematics, based on several written tests. We are interested in ranking
the students, also because the class could be divided into more homogeneous subgroups. For example, the top 5
students can be challenged with more advanced material, while the bottom 5 students should receive special attention.
The reason to pass from marks given from each test to ranks is that tests have varying di�culties and ranks are more
robust to variation in grading errors.

The class had 18 students, who are here viewed as items to be ranked, and the tests represent the assessors which
perform the ranking. The number of tests in the four years was 5, 4, 8, and 8, respectively. The marks were numbers
between 0 (worst) and 10 (best). If all 18 students had attended all tests, this would have led to 450 results in total;
in the data, however, 69 test results were missing because a varying number of students were absent. The marks from
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each test were converted to ranks, also accounting for the fact that the number of students (items) taking di�erent
tests was varying. There were many ties in the data, which made this conversion not unique. Here we handle ties by
randomizing the ranks involved, repeatedly inside our algorithms, as explained in section 3.

In our data set one student left the class for good by moving to another school at the end of the �rst year, and
another student left at the end of the second year. A third student joined the class at the beginning of the second
year. Particularly on these three students there is a lot of potentially useful information missing. Still, it would be of
interest to ask questions such as: Is there some systematic way of predicting how these three students would have
performed in the (counterfactual) situation in which they had not left the school early, or not arrived late? Or: How
would such hypothetical presence of these three students have in�uenced the ranks of those 15, who in fact worked
their way through all four years? More generally, we ask here the question: "What rank would an item have if we would
not have excluded it from the basket of all items?" All these questions can be answered in terms of probabilities, based
on an assumed model and on the data actually observed.

3. Mallows Model for TDRD

We start by considering the complete data situation. Assume we have n items, present at all time points t 2 1; 2; :::; T ,
and labeled by A1; A2; :::; An. Time is discrete, so that t represents a certain period of time, for example, a year. A
ranking is a permutation of the integers (1; 2; :::; n). We denote the set of all permutations by Pn. We assume that

a number of assessors, say Nt , ranked the n items at time t. We denote by R
(t)
j =

(
R
(t)
i j ; i = 1; 2; :::; n

)
2 Pn the

vector of rankings provided by assessor j , where R(t)
i j is the rank given to item i . The data collected at time t are then

denoted by R(t) =
{
R
(t)
j ; j = 1; 2; :::; Nt

}
.

We assume that, for each t, there is a latent ranking �(t) 2 Pn of the n items, which re�ects a consensus of the Nt

assessors at time t. The individual assessments are then viewed as perturbations, or imperfect measurements, from
that consensus. In the school example, t is a school year, and �(t) is the unknown "true" ranking of the students'
performance in mathematics in year t.

3.1. The Complete Data Case

For a �xed time point t, we assume that the observed ranks R(t)
j , j = 1; 2; :::; Nt , at time t are conditionally independent,

given the corresponding parameters �(t) and �(t). Here �(t) is the consensus ranking and �(t) a scale parameter.
Considering a sequence of rankings R(1:T ) =

{
R(t); t = 1; 2; :::; T

}
over T time points, we consider the Mallows

likelihood (Mallows, 1957) of the form

P
{
R
(t)
1 ; R

(t)
2 ; ::; R

(t)
Nt
; t = 1; :::; T j�(1:T ); �(1:T )

}
=

T∏
t=1

Nt∏
j=1

(
1

Zn

{
�(t)

}exp [��(t)

n
d
{
R
(t)
j ; �(t)

}])
: (1)

It is natural to measure the spread of the rankings R(t)
i j around the consensus �(t) by means of a distance. Here we

consider the particular case of the Footrule distance, i.e. the l1-distance d
(
R(t); �(t)

)
=
∑

Nt

j=1

∑n
i=1

∣∣∣R(t)
i j � �

(t)
i

∣∣∣. Other
distances used in rank models are the Kendall, Spearman, Hamming, Ulam and Cayley distances (Marden, 1995). They
are all right invariant, which means they do not depend on the labeling of the items. As discussed in (Vitelli et al.,
2015), the normalizing constant Zn(�

(t)) does not depend on �(t) for right invariant distances.
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We assume that the consensus rankings �(1:T ) =
(
�(1); �(2); :::; �(T )

)
do not change too much in consecutive time

points, leading to a smoothing prior. We model the transition kernel between latent ranks �(t�1) and �(t) with a further
Mallows model

P (�(t)j�(t�1); �) =
1

Zn(�)
exp

[
�
�

n
d
{
�(t); �(t�1)

}]
1Pn

(
�(t)
)
; (2)

where the smoothing parameter � > 0 describes how strongly the ranks at time t resemble a priori the ranks at time t �
1. Similarly for the smoothing vector �(1:T ) =

(
�(1); �(2); :::; �(T )

)
we postulate a Markovian dependence by assuming

that conditionally on the value of hyperparameter �� > 0, P (�(t)j�(t�1); ��) � N
(
�(t�1); �2

�

)
� 1<+

{
�(t)

}
; t =

1; :::; T . We assume that �(t) is independent from �(t) a priori.

Next we consider hyperpriors for all parameters in (1) and (2). We assume that �(1) is a priori uniformly distributed in
Pn. To specify the prior distribution for �(1) we argue as in (Vitelli et al., 2015): in the Mallows model we have terms

of the form exp
{(
��(t)=n

)
d
(
R
(t)
i j ; �

(t)
i

)}
contributing multiplicatively to the likelihood. To get some idea of what

numerical values of �(1) should have a priori, we can consider how likely it is that the rank R(1)
i j given by some assessor

j to item i at time 1 deviates from the rank �
(1)
i by at least n/2. With the footrule distance, this would correspond

to n=2. We would then have the likelihood contribution exp
{
��(1)=2

}
. We thus specify our prior mean for �(1) such

that it corresponds to our prior belief that an assessment could be o� the mark by n/2. For example, with the prior
mean of �(1) equal to 10, the likelihood contribution would be a little less than one percent. We represent this using
the exponential distribution �

(
�(1)

)
= �exp

(
���(1)

)
1[0;1)

(
�(1)

)
, with hyperparameter � = 1=10. We assume �2

�

has an inverse gamma distribution, P
(
�2
�

)
= IG (a; b), with shape a = 1 and scale b = 1.

The joint posterior distribution P
(
�(1:T ); �(1:T ); �; ��jR

(1:T )
)
of all model parameters, given the observed data

R(1:T ), can be obtained by applying the chain multiplication rule and the formulas (3)� (6) below. The conditional
independence properties assumed in this process are shown in a graphical form in Figure 1. In the �nal inference, where
the main interest is in the consensus rank vector �(1:T ), the other model parameters are routinely integrated out from
this joint posterior.

P
(
�(1:T )jR

(1:T )
i j ; �(1:T ); �

)
/

[
T∏

t=1

P
{
R
(t)
1 ; :::; R

(t)
Nt
j�(t); �(t)

}][
P
{
�(1)
} T∏

t=2

P
{
�(t)j�(t�1); �

}]

= exp

� T∑
t=1

�(t)

n

Nt∑
j=1

d
{
R
(t)
j ; �(t)

}
�

�

n

T∑
t=2

d
(
�(t); �(t�1)

)[ T∏
t=1

1Pn

{
�(t)
}]

:

(3)

The conditional distribution of the scale parameter �(t) is given by

P
(
�(1:T )jR

(1:T )
i j ; �(1:T ); ��

)
/

[
T∏

t=1

P
{
R
(t)
1 ; :::; R

(t)
Nt
j�(t); �(t)

}][
P
{
�(1)

} T∏
t=2

P
{
�(t)j�(t�1); �2

�

}]

=

[
T∏

t=1

1

Zn

{
�(t)

}Nt

]
exp

� T∑
t=1

�(t)

n

Nt∑
j=1

d
{
R
(t)
j ; �(t)

}
�

T∑
t=2

1

2�2
�

{
�(t) � �(t�1)

}2
� ��(0)

[ T∏
t=1

1Pn

{
�(t)
}]

:

(4)

Finally, the conditional distribution of � is

P
(
�j�(1:T )

)
/

[
T∏

t=1

1

Zn f�g

]
exp

[
��

n

T∑
t=2

d
{
�(t); �(t�1)

}
� ��

]
: (5)
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For �2
� we obtain

P
(
�2
�j�

(1:T )
)
/ P

(
�2
�

) T∏
t=2

P
{
�(t)j�(t�1); �2

�

}
=

1

�2
�
(�+T=2)�1

exp

[
1

�2
�

(
�b + 1=2

T∑
t=2

{
�(t) � �(t�1)

}2)]
: (6)

P
(
�2
�j�

(1:T )
)
is an inverse gamma distribution with scale b + 1=2

∑T
t=2

{
�(t) � �(t�1)

}2
and shape �+ T=2.

3.2. The Case of Missing Data

In our school example, missingness in observed rankings occurs when one or more students miss a test. This can happen
sporadically, because of being sick, or more systematically because of longer absence from school. More generally, if
one or more items are not available for assessment at a certain point in time, the resulting observed data will consist of
the ranks of the items actually present, together with a list of those who were not. In such a situation we consider the
collection of all complete data rank vectors which are compatible with observed mutual rankings of the items present.
For example, suppose there are 3 items, say A1; A2 and A3, and A3 is missing. If A1 is ranked ahead of A2, we have
three possible compatible rankings for fA1; A2; A3g, namely (1; 2; 3); (1; 3; 2) and (2; 3; 1). We have inserted the item
A3 in all possible positions, which are compatible with the observed ordering of the available items. We call this the
set of all allowable �ll-ins of the missing ranks, which are compatible with the observation.

We solve the problem of incomplete information in time-dependent rank data using Bayesian data augmentation. We
formalize the augmentation as follows. Let U = fA1; A2; :::; Ang be the n items. Let U

(t)
j be the subset of items ranked

by assessor j at time t, and let n(t)j =
∣∣∣U(t)

j

∣∣∣. The items belonging to the complement set V (t)
j = U�U

(t)
j remain then

unobserved by this assessor at t. However, here we assume that, in the counterfactual situation in which these items,
too would have been observed, they could have been ranked together with those now belonging to U

(t)
j . Thus we

assume that there exist latent ranks for all items Ai 2 U, denoted here by ~R
(t)
i j , with values between 1 and n. Let

~R
(t)
Nt

=
{
~R
(t)
i j ; 1 � i � n; 1 � j � Nt

}
and ~R(1:T ) =

{
~R
(t)
Nt

; t = 1; 2; :::; T
}
. We then assume that these latent variables

~R(1:T ) are distributed according to the complete data model speci�ed in eq. (1).

Our next task is to connect, in situations in which some items were missing and therefore not available for ranking, these
latent variables to the ranks that were actually provided in the observed data. Supposing that item Ai had been available
to assessor j at time t, i.e., Ai 2 U

(t)
j , we denote by R(t)

i j its corresponding observed rank. The observed mutual ranking

R
(t)
j =

{
R
(t)
i j ;Ai 2 U

(t)
j

}
is then assumed to be compatible with the ranking of the same items in the latent and perhaps

only partially observed ranking
{
~R
(t)
i j ;Ai 2 U

(t)
j

}
. Thus, for Ak ; Ah 2 U

(t)
j ; Ak � Ah holds whenever ~R

(t)
kj < ~R

(t)
hj is true

in the latent ordering of these same items. The observed data are again denoted by R(1:T ) =
{
R(t); t = 1; 2; :::; T

}
.

Note that, as soon as it is known what items are missing and what are available for ranking, the observed ranks are fully
determined by the latent ranks. More formally, for each U

(t)
j there is a deterministic mapping r

U
(t)
j

from f1; 2; :::; ng to{
1; 2; :::; n

(t)
j

}
such that r

U
(t)
j

(
~R
(t)
i j

)
= R

(t)
i j .

Before entering the technical treatment of how the required data augmentation from observed to latent data is
performed, we need to consider the issue of whether the possible presence of missing rank information can be
considered without biasing the statistical inferences. For this purpose, we postulate that the missingness mechanism,
in the sense of specifying the sets V

(t)
j of items unavailable to assessor j at time t, or, equivalently, their

complements U
(t)
j , is completely at random (MCAR). More exactly, we assume that the conditional distributions

p
(
U
(t)
j j��; �

(1:T ); �; �(1:T ); ~R(1:T )
)
are independent from all the conditioning variables, and can therefore be written
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simply as p
(
U
(t)
j

)
. This then implies, by a straightforward application of the chain multiplication rule and the assumed

conditional independence properties, that joint distribution of all model variables can be written as

p
(
��; �

(1:T ); �; �(1:T ); ~R(1:T ); R(1:T )
)
= p (��) p

(
�(1:T )

)
p (�) p

(
�(1:T )j�

)
p
(
~R(1:T )j�(1:T ); �(1:T )

)
p
(
R(1:T )j ~R(1:T )

)
;

(7)
where the last factor takes the form of the product

p
(
R(1:T )j ~R(1:T )

)
=

T∏
t=1

Nt∏
j=1

p
(
U
(t)
j

)
1
(
r
U
(t)
j

(
~R
(t)
j

)
= R

(t)
j

)
: (8)

As a consequence, for given parameter values ��; �(1:T ); �; �(1:T ), augmented values of ~R
(t)
j matching with observed

data R
(t)
j can be sampled independently for di�erent t and j , from the corresponding constrained Mallows models

proportional to p
(
~R
(t)
j j�

(t); �(t)
)
1
(
r
U
(t)
j

(
~R
(t)
j

)
= R

(t)
j

)
.

Figure 1. Predictive time dependent rank model represented by a dynamic Bayesian network.
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3.3. Metropolis-Hastings Algorithm

Numerical estimation of the joint posterior p
(
��; �

(1:T ); �; �(1:T ); ~R(1:T )jR(1:T )
)
, based on formula (7), is performed

by alternating between (Step 1) sampling augmented values ~R(1:T ) from the conditional distribution

p
(
~R(1:T )jR(1:T ); ��; �

(1:T ); �; �(1:T )
)
= p

(
~R(1:T )jR(1:T ); �(1:T ); �(1:T )

)
; (9)

and (Step 2) sampling the parameters
(
��; �

(1:T ); �; �(1:T )
)
from the conditional distribution

p
(
��; �

(1:T ); �; �(1:T )j ~R(1:T ); R(1:T )
)
= p

(
��; �

(1:T ); �; �(1:T )j ~R(1:T )
)
: (10)

Sampling from (10) can be further divided into Steps 2a-2d, where each sub-step corresponds to sampling from
one of the formulas (3) � (6) presented earlier in the complete data situation. In (3) and (4), however, the
symbols R(1:T ), which now refer to possibly incomplete observed data, need to be replaced by the respective latent
variable symbols ~R(1:T ). Finally, as the main interest is generally in inferences on the consensus rankings �(1:T ), the
corresponding marginal posterior can be computed from the Monte Carlo samples taken from the joint posterior
p
(
��; �

(1:T ); �; �(1:T ); ~R(1:T )jR(1:T )
)
by restricting to only the corresponding �(1:T ) coordinates.

Step 1: Given the current ~R
(t)
j and the current values for the parameters, sample the new augmented vectors

(
~R
(t)
j

)0
separately for each j , j = 1; 2; :::; Nt and t, t = 1; 2; :::; T in G

(t)
j (set of all possible �ll-ins) from the leap-and-shift

proposal distribution (Vitelli et al., 2015) centered at ~R
(t)
j , as described in Section 3.2 (by retaining the observed mutual

ordering R
(t)
j for the items in U

(t)
j , while then randomly assigning compatible ranks for items in V

(t)
j by perturbing

~R
(t)
j ). The proposed

(
~R
(t)
j

)0
is then accepted with probability

min

1; exp

��(1:T )

n

Nt∑
j=1

d
{(

( ~R
(1:T )
j )0; �(1:T )

)
� d

(
~R
(1:T )
j ; �(1:T )

)} : (11)

Step 2a: Starting at �(1:T ) � 0; �(1:T ) 2 Pn and given the prior distribution �(�(1)) and �(�(1)), the proposal
(
�(1:T )

)0
is sampled from the symmetric leap and shift distribution and accept it with probability

min

1;
�((�(t))0)

�(�(t))
exp

��(t)

n

Nt∑
j=1

{
d
(
~R
(t)
j ; (�(t))0

)
� d

(
~R
(t)
j ; �(t)

)}
�

�

n

{[
d
(
(�(t))0; �(t�1)

)
+ d

(
(�(t))0; �(t+1)

)]
�
[
d
(
�(t); �(t�1)

)
+ d

(
�(t); �(t+1)

)]}
;

(12)

for time, t = 2; 3; ::::; T � 1.

Step 2b: We sample a proposal
(
�(1:T )

)0
according to N(�; �2

�) and accept it with probability

min

1;
Zn((�

(t))0)�Nt�((�(t))0)

Zn(�(t))�Nt�(�(t))
exp

�((�(t))0 � �(t)
)

n

Nt∑
j=1

{
d
(
~R
(t)
j ; �(t)

)}
�

(
[

(
(�(t))0 � �(t�1)

)2
�2
�

+

(
(�(t))0 � �(t+1)

)2
�2
�

]� [

(
�(t) � �(t�1)

)2
�2
�

+

(
�(t) � �(t+1)

)2
�2
�

]

)
;

(13)
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for time, t = 2; 3; ::::; T � 1. We use the obvious simpli�cation of (12) and (13) at t = 1 and t = T . Note that negative
(�t)

0s can be proposed, but they are accepted with zero probability because they are outside the prior support. We
tested also a lognormal proposal, which worked equivalently in our case.

Step 2c: We sample a proposal �0 from N(�; �2
�) and the acceptance probability for the Metropolis-Hastings algorithm,

is given by

min

{
1;

Zn(�
0)�(�0)

Zn(�)�(�)
exp

[
�
(�0 � �)

n

(
d(�(t); �(t�1))

)]}
: (14)

for t = 2; 3; ::::; T .

Step 2d: Sample �2
� from the inverse gamma distribution with scale b + 1=2

∑T
t=2

{
�(t) � �(t�1)

}2
and shape

�+ T=2.

Since Zn(�
(1:T )) does not depend on �(1:T ), it can be computed o�ine on a grid of �(1:T ) values and to yield an

estimate over a continuous range, see (Vitelli et al., 2015) for details.

Algorithm: TDRD with Bayesian Mallows Model

Input: G(t)
1 ; G

(t)
2 ; :::; G

(t)
j or r

U
(t)
j

, �, d (:; :), sd�, sd�, L, Zn(�
(1:T )), T, M.

Output: Posterior distribution of �(1:T ), �(1:T ), �, �2
�, ~R

(t)
1 ; :::; ~R

(t)
Nt

Initialize: �1, �1, � and ��

if
{
G
(t)
1 ; G

(t)
2 ; :::; G

(t)
j

}
are among inputs then

for t  � 1 to T

for j  � 1 to Nt

randomly generate ~R
(t)
j;1 in G

(t)
j

end
end

else
for t  � 1 to T

for j  � 1 to Nt

randomly generate ~R
(t)
j;1 in G

(t)
j compatible with r

U
(t)
j

end
end

end
for m  � 1 to M

for t  � 1 to T
Update �(t):

Sample
(
�(t)
)0
from leap-and-shift distribution centered at �(t)m�1

Compute: ratio = Equation (12) with �(t)  � �
(t)
m�1 and �(t)  � �

(t)
m�1

Sample: U � U (0; 1)

if U < ratio then
�
(t)
m  � �

0(t)

else
�
(t)
m  � �

(t)
m�1

end
Update �(t):
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Sample:
(
�(t)

)0
� N

{
�
(t)
m�1; �

2
�

}
Compute: ratio = Equation (13) with �(t)  � �

(t)
m and �(t)  � �

(t)
m�1

Sample: U � U (0; 1)

if U < ratio then
�
(t)
m  � �

0(t)

else
�
(t)
m  � �

(t)
m�1

end
Update ~R

(t)
1 ; ~R

(t)
2 ; :::; ~R

(t)
Nt
:

for j  � 1 to Nt

if
{
G
(t)
1 ; :::; G

(t)
Nt

}
are among inputs then

Sample:
(
~R
(t)
j

)0
in G

(t)
j from leap-and-shift distribution centered at ~R

(t)
j;m�1

else
Sample:

(
~R
(t)
j

)0
from leap-and-shift distribution centered at ~R

(t)
j;m�1 and compatible with r

U
(t)
j

end
Compute: ratio = Equation (11) with �(t)  � �

(t)
m and �(t)  � �

(t)
m and ~R

(t)
j  �

~R
(t)
j;m�1

Sample: U � U (0; 1)

if U < ratio then
~R
(t)
j;m  �

(
~R
(t)
j

)0
else

~R
(t)
j;m  �

~R
(t)
j;m�1

end
end

end
Update �:

Sample: �
0

� N
(
�m�1; �

2
�

)
Compute: ratio = Equation (14) with �(t+1)  � �(t)

Sample: U � U (0; 1)

if U < ratio then
�m  � �

0

else
�m  � �m�1

end
Update �2

�:

Compute: Equation (6) with �(t+1)  � �(t)

�2
� � IG

(
�+ T=2; b + 1=2

∑T
t=2

{
�(t) � �(t�1)

}2)
end

4. School Data Example

The student data set is available in the supplementary material. In this section we develop new methods needed to
represent and understand the results based on our Mallows model using the school data as example.
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Stat 2012, 00 1�18 9 Copyright c
 2012 John Wiley & Sons, Ltd.

Prepared using staauth.cls

Proceedings 61th ISI World Statistics Congress, 16-21 JULY 2017, Marrakech (Session OR-B13) P. 1192



Stat D A Teni et al.

A �rst impression of the mutual performance of the 18 students is provided by Figure 2 (a), which shows the ranking
of the students at the end of each of the four school years, based on the averages of their grades in the tests during
that same year. The coloured letter coding, from A to R, refers to individual students. Note that two or more students
can, and in fact do in Figure 2 (a), have the same test average, then leading to a tied rank. We see that student Q
joined the class only at the beginning of the second year, while student H left the class after the �rst year, and student
F after two years. In addition the attendance of the students in individual tests varied; for example, of the 16 students
in the class during the fourth year, the number of attendees in a test varied from 14 to 16. For missing data we apply
the data augmentation methods presented in section 3.2. Estimating the performance of the two students who left
school early is very di�cult, if at all possible, one wonders.

We consider the posterior distribution of the full 18-dimensional consensus rank vector, given by p(�(t)jR(1:t)); t =

1; 2; ::; 4. The performance of individual students can then be described in terms of the corresponding posterior marginal
mode (Figure 2 (b)) or the posterior marginal mean (Figure 2 (c)) of each student. Again, because we look at marginal
summaries, some ranks are tied. Note that, unlike the ranks in Fig. 2 (a) directly based on test grade averages in
year t, the estimates in Fig. 2 (b) and (c) account for the complete history of test results up to the end of year t,
but do so, for t = 2, 3 and 4, by progressively discounting the in�uence of the results from the earlier years. Looking
from this perspective, one might anticipate the resulting estimates to be somewhat more stable than those in Figure
2 (a). Moreover, if a student was absent from at most a few tests during a school year, the estimates produced by
the data augmentation method, shown in Figures 2 (b) and (c), could be expected to be similar to those that would
be obtained in the counterfactual situation in which these students had attended all tests.

But such a conclusion does not seem to hold for the two students, H and F, who had left the school early. They were
among the weakest students. Instead, we see in Figures 2 (b) and (c) what looks like a considerable improvement in
the performance of these two students over time: in the case of H starting from the second year, at which time he
had already left the school, and similarly for F, from the third year onwards. Perhaps unsurprisingly, in such open end
situations, where there are no data at all from some time point onwards, the modal and mean estimates obtained
by the data augmentation method start shifting towards the center of the range of possible values. This is clearly an
artefact produced by the uniform prior in absence of data in an open jaw case.

Given this variation in the point estimates, and particularly in view of the artefact concerning the performance of
students H and F, one may ask whether there would be some way to diagnose, and even solve, such potential problems.
The Bayesian recipe for solving problems of this kind is to account explicitly for the uncertainties in the estimates, as
represented by the full posterior. One way to do this is to consider the marginal posteriors for the ranks of individual
students in terms of their cumulative distribution functions (CDFs), shown in Figure 3, and then try to �nd instances
where students could be compared in the sense of stochastic ordering. According to this �gure, the same top three
students, G, I and K, in the class can be identi�ed with high credibility during all four years of school, with student
O being systematically their closest contender. At the low end there is more variability, but in year t = 4, a group of
three students (N, M and P) can be distinguished quite clearly from the others. (In applications to marketing, such
indications can be useful for deciding whether to continue, or to stop, promoting certain items in stock.) In the middle
range, the di�erences between students are somewhat less clear, and also vary somewhat from one year to the next.
On the other hand, the ordering between pairs of students in a given year, based in Fig. 2 (b) and (c) on posterior
point estimates, can in Fig. 3 often be seen to hold in the sense of stochastic ordering.

While such consideration on marginal posteriors for the consensus rankings, where one CDF dominates another in the
sense of stochastic ordering, o�ers a natural way of comparing student performance, there is another aspect in Figure
3 which catches the eye. The CDF for student H looks almost uniform between ranks 5 and 18 already in year t = 2.
A similar phenomenon, a major increase in the dispersion of the marginal posterior, can be found in connection of

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 2. The development of the ranks of the considered 18 students, measured at the end of each of the four school years:

ranking based on (a) the grade averages from the tests in that same year; (b) the posterior marginal modal rank, and (c) the

posterior marginal means, computed from the marginals of the posterior p(�(t)jR(1:t)), for t = 1; :::; 4. Best student has rank 1.

student F when comparing years t = 2 and t = 3. But we already have a natural explanation for these observations:
students H and F had not attended a single test in those years, and in this open end situation the posteriors became,
in fact, predictive distributions. In the consequent model based prediction, the memory from earlier test results is seen
to progressively fade out (with the strength of the memory being represented in the model by the discount factor
e��), and the dispersion of the posterior distributions increases accordingly. Our model thus gives clear indications on
the posterior uncertainty.

The marginal posteriors p(�(t)jR(1:t)); t = 1; :::; 4, and p(�jR(1:4)) for the model parameters are shown in Figure 4.
The stochastically smaller values of the scale parameter �(1) in comparison to the other �(t) reveals that the precision
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Figure 3.Marginal posterior CDFs for the consensus ranks of the individual students at the end of each of the four school years.

of the consensus ranking after only the �rst year of data was less precise than those from the second year onwards.

5. Prediction of Individual Test Results

The goal in section 4 was to estimate the consensus ranking of all 18 students at the end of each of the four school
years. The attendance of the students in individual tests varied in time, and three students missed one or more complete
years at school. This missing data problem was handled by applying, within the considered MCMC, a Bayesian data
augmentation method described in section 3.2. All computations and comparisons were then systematically performed
in terms of full 18-dimensional rank vectors. The situation changes if, instead of attempting to estimate the consensus
rank of the students, the goal is to predict his or her ranking in an individual test, based on results from earlier tests.
Then, if it is known which students are going to be absent from the considered test, it is no longer relevant to include
them in the ranking. Another obvious di�erence, is that prediction of the correct outcome of a game involves a far
higher degree of uncertainty than the assessment of the strength of a player. The same holds true for predicting the
results from an individual test.
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Figure 4. Posterior densities for model parameters �(t) and � when applying the Footrule distances.

For the Bayesian Mallows model, the prediction task can be handled by considering the corresponding predictive
distributions. However, the varying attendance of students in the tests complicates the issue. One possibility would be
to perform all computations, both for drawing statistical inferences and for making the predictions, separately for each
collection of students corresponding to true attendance, thus eliminating from the data those absent. Such elimination
of part of data seems wasteful, however, and it also forces one to repeat closely similar computations for each predicted
test. Here we follow a di�erent path, and compute the predictive distributions in the �xed setting of 18-dimensional
rank vectors. The prediction concerning the correct ranking of the students, who in fact took the test, is then handled
within the MCMC by performing the obvious mapping from the ranks of all 18 students to the ranks of the actual
attendees.

This idea is illustrated by considering the �nal test (No. 8) at the end of the fourth school year. The number of
students taking that test was 15 (with students H and F having left the school already earlier, but also student N
missing this test) so that the range of ranks was from 1 to 15. The prediction of the student rankings was carried
out in three di�erent ways: by using, as background data, the test results from (a) the two �rst school years; (b) the
three �rst school years; and (c) when combining (b)with results from the seven tests preceding the considered test
No. 8 in year four.

Figure 5 shows the posterior predictive CDFs for the ranks in test No. 8 computed in ways (a) on the top left , (b) on
the top right and (c) on the bottom. The true ranks derived from the observed test grades are indicated with small
balls of the same colour, on the x-axis. Note that there were some ties: students A, E and K were all ranked 4th,
because they got the same grade in this last test, and, for the same reason, B and L were ranked 11th. Table 1 gives

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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a) Predicted ranks, based on two years of data
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b) Predicted ranks, based on three years of data
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c) Predicted ranks, using additional test data
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Figure 5. The posterior predictive CDFs for the ranks of individual students in the �nal test (No.8) in year four, when based on

test results from the �rst two school years (a), the �rst three school years (b), and when (b) is combined with results from the

seven preceding tests in year four (c). The coloured balls on the x-axis show the observed true ranks.

some numerical values for the predictive probabilities appearing in Figure 5.

More generally, when comparing the three predictions (a), (b) and (c) to each other, it would seem plausible that,
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Based on background data from
Student True rank Two years Three years Three years + Seven preceding tests
I 1 0.5 0.6 0.61
G 2 0.61 0.64 0.65
O 3 0.43 0.53 0.48
K 4 0.56 0.66 0.57
A 4 0.39 0.31 0.47
E 4 0.21 0.19 0.34
Q 7 0.15 0.17 0.17
R 8 0.44 0.36 0.27
D 9 0.2 0.11 0.12
C 10 0.42 0.44 0.37
B 11 0.3 0.18 0.21
L 11 0.23 0.24 0.2
J 13 0.23 0.36 0.29
M 14 0.12 0.11 0.15
P 15 0.2 0.12 0.11

Table 1. Posterior predictive probabilities of being ranked among the true top-5 in test No. 8, when using three di�erent sets of

background data as explained in the text. The results correspond directly to the values of the posterior CDFs in Figure 5 when

read at rank 5, arranged in the order of the true outcome from that test.

when progressing from situation (a) via (b) to (c), the prediction should in both steps become more accurate. This
is because the predictions made later are based on more background information on the earlier performance of the
students, and also since such additional information is more recent and therefore closer in time to the predicted event
itself.

We have done such a comparison in Figure 6, by computing the distribution of the prediction error
(d (R8;pred ; R8;obs) jdata), where R8;obs and R8;pred are the observed and the predicted rank vector for test No.
8 for the 15 students who took that test, d is the Footrule distance, and data represents the background data in each
of the three situations (a), (b) and (c). The �gure (CDFs on the left, densities on the right) shows that, at least in the
considered context, having more background information was indeed useful in the sense that it made the prediction
error stochastically smaller.

6. Conclusion

In this paper we developed a new method based on the Mallows rank model, for preferences which vary in time and
involve missing observations. Data of this type arise in marketing, where customers/users are asked from time to time
to rank, rate or compare a number of products contained in a basket. Opinions of customers change in time, possibly
smoothly. Also, the content of the basket does not remain �xed, as some items may be dropped and others added.
For example, Shi, et al. (2012) presented a novel visualization method to help users explore the changes in value and
ranking in large time series data. Some rankings, such as best-seller lists or trends measured by Twitter and Wikipedia,
are intrinsically volatile, changing daily (Blumm et al., 2012). These types of data involve massive missingness, due to
permanent changes in the basket and limited expression of interests of customers. Here the missing data problem was

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 6. Distribution of prediction error in the form of cummulative distribution function (left) and in the form of density

function (right).

handled by applying Bayesian data augmentation within the Mallows model with Footrule distance.

Prediction can be seen as a missing data problem, solved here by sampling from the posterior distribution using Gibbs

sampling within Metropolis-Hasting algorithm. Our method describes uncertainty in predictions, which can be used to

understand the reliability of the forecasts themselves. Goodness-of-�t could be investigated by a systematic leave-one-

out approach and Bayesian prediction. We discussed several ways to learn from the joint posterior distribution over

all permutations of n items, producing interpretable summaries. We used the Footrule distance in the Mallows model,

though other right invariant distance could be used instead. We leave it to future work to compare various distances,

to select the most appropriate ones for missingness imputation and prediction.
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