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Abstract

We explore the use of importance sampling based on signed root log-likelihood ratios in-

corporating exponential tilting to obtain versions of various asymptotic formulae for Bayesian

computation. The modifications are designed to avoid repeated evaluation of conditional max-

ima of the likelihood function. This leads to a more stable computational procedure as well as

significantly reducing computational time. A substantial reduction in sampling variability can

also be achieved by incorporating antithetic variates. Implementation of the modified signed root

based importance sampler and antithetic variates are illustrated by a censored regression model.
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1 Introduction

Accurate asymptotic formulae for posterior expectations and predictive distributions were ob-

tained in Sweeting (1996), Sweeting and Kharroubi (2003) and Kharroubi and Sweeting (2010).

One difficulty with applying these formulae is the need for repeated computation of conditional

maxima of the likelihood function in multiparameter cases. This can be particularly problematic

when it is required to invert the signed root log-likelihood ratio, since a maximization procedure

has to be included within a nonlinear inversion routine, as pointed out in Sweeting (1996) and

the ensuing discussion. Recently, Kharroubi and Sweeting (2016) used exponential tilting to de-

velop alternative asymptotic approximations for posterior expectations, predictive distributions

and marginal posterior distributions that do not require any conditional maximization. The new

tilted approximations are shown to be particularly relevant for the signed root based importance
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sampler and antithetic variates of Kharroubi and Sweeting (2010). A number of researchers

have obtained useful asymptotic approximations in statistics based on exponential tilting; see for

example, Schennach (2005, 2007), Cerquetti (2007) and Sweeting and Kharroubi (2005).

In the present paper we follow on from Kharroubi and Sweeting (2016) work by using ex-

ponential tilting to develop a modified signed root based importance sampler for moderately

parameterized models that give rise to exact (that is, simulation-consistent) computation of

various posterior quantities of interest, including posterior moments and marginal posterior den-

sities. It is further shown that by incorporating antithetic variates we can achieve a substantial

reduction in sampling variability with relatively short runs of the schemes. The potential of the

methodology is explored throughout the paper using a censored regression model.

2 Signed roots using exponential tilting

Suppose that the data x arise from a parametric model with θ = (θ1, . . . , θd) ∈ Ω ⊂ IRd, where

d ≥ 1, and that the associated likelihood function L(θ) is available. Suppose the availability of a

prior density λ(θ) of θ, continuous and positive throughout Ω. Then the posterior density of θ is

p(θ|x) = c−1L(θ)λ(θ) , (1)

where c =
∫

L(θ)λ(θ) dθ. Assume that the likelihood function is twice continuously differentiable.

Let l(θ) = logL(θ) and define l̇(θ) = dl(θ)/dθ = (l1(θ), . . . , ld(θ))
T , where lj(θ) ≡ ∂l(θ)/∂θj , j =

1, . . . , d,. Further define l̈(θ) = d2l(θ)/dθ2, j(θ) = −l̈(θ) and J = j(θ̂), the observed information.

As in Sweeting and Kharroubi (2003), for 1 ≤ i ≤ d we let θi = (θ1, . . . , θi) be the vector of the

first i components of θ and θ(i) = (θi, . . . , θd) the vector of the last d− i+ 1 components.

We assume that, for each 1 < i ≤ d and fixed θi−1, there exists a local conditional maxi-

mizer θ̂(i)(θi−1) = (θ̂i(θi−1) . . . , θ̂
d(θi−1)) of L(θ). For 1 ≤ j ≤ d, θ̂j(θi−1) will denote the jth

component of (θi−1, θ̂
(i)(θi−1)); thus θ̂

j(θi−1) = θj for 1 ≤ j < i.

It follows from Kharroubi and Sweeting (2016) that the first-order term in the Taylor expan-

sion of the jth component of the conditional maximizer of l(θ) given θi about θi = θ̂i is

θ̄j(θi) = θ̂j +

i
∑

k=1

θ̂jik(θ
k − θ̂k) (2)

for 1 ≤ i < j ≤ d, where θ̂jik = ∂θ̂j(θi)/∂θ
k evaluated at θi = θ̂i. Further write θ̄(j)(θi) =

(θ̄j(θi), . . . , θ̄
d(θi)) for 1 ≤ i < j ≤ d.

As in Kharroubi and Sweeting (2016), we will use the following convention: for any function

g(θ) and 1 ≤ i < d, g(θi) will denote g(θi, θ̄
(i+1)(θi)), where g(θ0) is understood to be g(θ̂). That

is, we simply replace θ̂(i+1)(θi) by θ̄(i+1)(θi). Now, define the functions

hi(θ) =
d

∑

j=1

cji lj(θ) = cTi l̇(θ) , 1 ≤ i ≤ d ,
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where ci = (c1i , . . . , c
d
i )

T and cji = 0 (j < i), cii = 1, cji = θ̂jii (j > i). The exponentially tilted

log-likelihood function is defined by

l̄(θ) = l(θ)−
d

∑

j=1

hj(θj−1){θ
j − θ̄j(θj−1)} (3)

on setting θ0 = θ̂. Note that θ̂ is also the maximizer of l̄(θ) since, for 1 ≤ j ≤ d, θ̄j(θ̂j−1) = θ̂j .

It is shown in Kharroubi and Sweeting (2016) that, for 1 < i ≤ d, θ̄(i)(θi−1) is the unique local

conditional maximizer of l̄(θ) given θi−1.

Now define the functions Hi(θi) = exp{hi(θi−1){θ
i − θ̄i(θi−1)} for 1 ≤ i ≤ d and let H(θ) =

∏d
i=1 H

i(θi). Then from (3) the exponentially tilted likelihood function is given by L̄(θ) =

L(θ)/H(θ), so the exponentially tilted prior density λ̄(θ) = λ(θ)H(θ).

Specifically, for 1 ≤ i ≤ d define the tilted log-likelihood ratios

w̄i(θi) = 2{l̄(θi−1)− l̄(θi)} = 2{l(θi−1)− l(θi) + hi(θi−1)(θ
i − θ̄i(θi−1))}

and the tilted signed root log-likelihood ratios r̄(θ) = (r̄1(θ1), . . . , r̄
d(θd)) by

r̄i(θi) = sign{θi − θ̄i(θi−1)}{w̄
i(θi)}

1/2

3 Importance sampling based on tilted signed roots

Consider the posterior expectation µ = E{v(θ)|x} of the smooth function v(θ). Let g(θ) be any

density function from which it is easy to sample. It follows that, since

µ = c−1E

{

v(θ)
L(θ)λ(θ)

g(θ)

}

,

the constant of proportionality c in (1) and µ are consistently estimated by, respectively

ĉ = (km)−1
m
∑

j=1

uj (4)

µ̂ =

m
∑

j=1

v(θ[j])wj (5)

where θ[1], . . . , θ[m] are m independent draws from g(θ), uj = L(θ[j])λ(θ[j])/h(θ[j]) are the impor-

tance weights, wj = uj/
∑m

i=1 ui the normalized importance weights and g(θ) = kh(θ).

The importance sampling scheme of Kharroubi and Sweeting (2010) entails a large amount of

conditional maximization so the use of exponential tilting is highly relevant here. We therefore

modify this scheme by replacing r(θ) with r̄(θ). Thus, for 1 ≤ i ≤ d, θi ≡ θi(R̄i) are defined

by inversion of r̄i(θi) = R̄i for fixed θi−1, where the R̄i are independently sampled from the

standard normal distribution. The simulation-consistent estimators of c and µ are then given by

(4) and (5) respectively with k = (2π)d/2L̄(θ̂) and uj = u(θ[j]), where

u(θ) = λ̄(θ)

d
∏

i=1

{

r̄i(θi)

−l̄i(θi)

}

.
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Finally, it follows as in Kharroubi and Sweeting (2010) that a simulation-consistent estimator

of the marginal posterior density p(θi|x) of the first i components of θ is given by

p̄(θi|x) =
(2π)(d−i)/2

ĉm

m
∑

j=1

L̄(θ[j]i)L̄(θi, θ̃
(i+1)
[j] )λ̄(θi, θ̃

(i+1)
[j] )

L̄(θ[j])

d
∏

k=i+1

−R̄k
[j]

l̄k(θ[j]k)
, (6)

where, for j = 1, . . . ,m, θ̃
(i+1)
[j] = θ

(i+1)
[j] + θ̄(i+1)(θi)− θ̄(i+1)(θ[j]i).

It is also possible to employ antithetic variate techniques for variance reduction, simply by

replacing r(θ) in Kharroubi and Sweeting (2010) by r̄(θ). This can achieve high accuracy with a

much smaller importance sample. Variance reduction techniques in conjunction with importance

sampling can be found in Hammersley and Handscomb (1964) and Evans and Swartz (2000).

Here there is a natural antithetic variate, namely ˜̄R = −R̄, which also has the multivariate

standard normal distribution. Suppose that θ[j] = θ(R̄[j]) and θ̃[j] = θ( ˜̄R[j]) for j = 1, . . . ,m.

Then, from (4) and (5), the Monte Carlo estimators of the normalizing constant and posterior

expectation under antithetic importance sampling are

ĉ = (km)−1
m
∑

j=1

1

2
(uj + ũj) (7)

µ̂ =
m
∑

j=1

{

v(θ[j])wj + v(θ̃[j])w̃j

}

(8)

respectively, where ũj = L(θ̃[j])λ(θ̃[j])/g(θ̃[j]) are the importance weights, wj = uj/
∑m

i=1(ui+ ũi)

and w̃j = ũj/
∑m

i=1(ui + ũi) are the normalized importance weights.

EXAMPLE. Normal regression model with censored data

We consider the censored regression model for the failure data given by Crawford (1970). These

data arise from temperature accelerated life tests on electrical insulation in 40 motorettes. Ten

motorettes were tested at each of four temperatures in degrees Centigrade (150◦, 170◦, 190◦ and

220◦), resulting in a total of 17 failed units and 23 unfailed (i.e. censored) units.

As in Schmee and Hahn (1979), the model for the data takes the form

Xi = β0 + β1vi + σǫi, i = 1, . . . , 40 ,

where Xi is the log10(ith failure time), with time in hours, vi = 1000/(temperature + 273.2)

and the errors ǫi are independent standard normal. Reordering the data so that the first k

observations are uncensored, with observed log-failure times Xi, and the remaining n − k are

censored at times Zi, the log-likelihood function is

−k logσ −
1

2

k
∑

i=1

(

Xi − β0 − β1vi
σ

)2

+

n
∑

i=k+1

log

{

1− Φ

(

Zi − β0 − β1vi
σ

)}

,

For computational convenience we work with the parameterisation θ = (β0, β1, φ), where φ =

logσ. Here we find that θ̂ = (β̂0, β̂1, φ̂) = (−6.0193, 4.3112,−1.3502).
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For the purpose of illustration, we examine the accuracy of (5) with λ(θ) ∝ 1 and v(θ) =

β0 + β1 + exp(φ). The signed root based simulation algorithm using exponential tilting was run

with m = 1000 and the posterior expectation of v(θ) was found to be -1.4980. The corresponding

expectation obtained from the non-tilted algorithm was -1.4995. The exact posterior expectation

of v(θ), obtained via the data augmentation scheme of Tanner and Wong (1987), is −1.4986.

Even with m as low as 1000 both schemes produce very good approximations in this case.

However, generating a random sample of size m = 1000 via the tilted scheme achieves about a

60% time reduction compared with the untilted scheme. Another major advantage is that the

computational scheme is likely to be more stable as we are just computing many linear functions

as opposed to carrying out many conditional maximizations.

Suppose now that we are primarily interested in the regression coefficient β1. It is then

preferable to work in a parameterization with β1 the first component of θ, such as θ = (β1, β0, φ).

The marginal posterior density of β1 may then be readily computed from (6). The density,

represented by the dotted line in Figure 1, is hardly distinguishable from the exact (solid line).
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Figure 1: Marginal posterior density of β1 for the censored normal regression model via impor-
tance sampling (dotted line) and exact (solid line).

We next apply the method of antithetic variates to this example. The signed root based sim-

ulation algorithm using exponential tilting was run with m = 500 and the posterior expectation

of v(θ) was found to be -1.4982. We observe that the posterior expectation estimate shows a

slight improvement, as well as a saving of cpu time, over those obtained using formula (5). The

method of antithetic variates here provides a small but worthwhile reduction in variability.

4 Discussion

In this paper we have explored the use of importance sampling based on signed root log-likelihood

ratios incorporating exponential tilting to obtain versions of various asymptotic formulae for
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Bayesian computation. The twin advantages of using exponential tilting are computational sta-

bility and saving of computation time. In particular, we found that calculating signed roots

using exponential tilting took about 1/10 of cpu time, and that generating a random sample of

size m = 1000 via the signed root based algorithm achieves about a 60% time reduction. The

computational stability aspect is particularly important in higher-dimensional models where re-

peated computation of conditional maxima may be difficult. In contrast, the tilting method just

requires repeated computation of linear functions. The theory and examples indicate that there

is good reason to believe that they will often perform extremely well in moderately-dimensioned

problems. More extensive investigation is required, however, to study the full range of application

and to make proper comparisons between various competing methods.

A set of [R] programs to implement the approach here is available on request. The main code

is generic and the user only needs to supply the necessary code specific to his/her model.
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