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Abstract

Fisher expected information can be found a priori and as a result its inverse is the primary variance ap-
proximation used in the design of experiments. However, it is more common to use the inverse of Fisher
observed information for the analysis of experiments. The full Fisher observed information cannot be known
a priori, however, if an experiment is conducted sequentially (in a series of runs) then the Fisher observed
information from previous runs is available. In the current work an adaptive procedure is proposed that uses
the Fisher observed information from previous runs to design current and future runs. The objective of this
procedure is to optimize the observed efficiency of Fisher observed information from the entire experiment.
By optimizing Fisher observed information instead of Fisher expected information it provides a better con-
nection between the design and the analysis of the experiment. This procedure is examined in the context of
a Gamma Hyperbola regression model. In this simulated example the OM following the adaptive procedure
had greater efficiency compared to well established designs.
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1 Introduction
Fisher observed information (OM) and Fisher expected information (FIM) are measures of the accuracy

of estimates of the unknown model parameters. Large values indicate more information corresponding to
smaller variability associated with these estimates. In most experimental settings FIM can be found a priori
and as a result in the optimal design of experiments, in maximum likelihood estimation, an intuitive goal is
to “maximize” this quantity. When the maximum likelihood estimate (MLE) is a minimal sufficient statistic
FIM contains all the information in the data and is suitable for use in the analysis of the experiment. However,
when the MLE is not minimally sufficient there is information loss in FIM.

Information loss can be recovered, at least in part, by considering the distribution of the MLE, µ̂, con-
ditional on an ancillary random variable, a. An ancillary random variable is any variable with a distribution
that does not depend on the model parameters. In order for information to be recovered it is required that a
be a function of the minimal sufficient statistic. The objective of the current work is to develop an adaptive
procedure that uses the OM from previous runs to inform the designs of the current run, in cases where (µ̂, a)
is the minimal sufficient statistic. The use of OM to define designs is motivated by Efron and Hinkley (1978)
where it is shown that the inverse of OM is more closely related to Var[µ̂|a] than the inverse of FIM.

Adaptive designs have been proposed and examined in optimal designs where FIM depends on the model
parameters, see Dragalin and Fedorov (2005), Lane, Yao, and Flounoy (2014), among others. In such cases
the dependence of FIM on the model parameters results in optimal designs that are locally optimal, i.e.,
designs are only optimal neighborhood of the true parameters. The majority of the literature with adaptive
procedures for optimal designs use the MLE based on previous stages to determine locally optimal designs
for the current stage. While we develop our procedure for a general model that includes cases where FIM
depends on the model parameters it is not required for our procedure to be used.

2 Model
An exact design, ξn, is represented by a set of design points {x1, x2, . . . , xd} and corresponding weights

{n1/n, n2/n, . . . , nd/n}, where each xi is a point in the design region, X ; ni is the sample size at each design
point and; the total sample size n =

∑
ni.

Consider a set of independent responses y = (y1, . . . , yn) with density f(y|µ0), where µ0 = µ(x,θ0) is a
scaler, θ0 is a p dimensional vector of the unknown but true parameters, x ∈ X is a q dimensional vector
within the design space X with q ≤ p. Let Dn = Dn(ξn) be all available data collected from an experiment
of size n and note that it is a function of the exact design.
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Let yi = (yi1, . . . , yini
) be the responses obtained from observations with covariate equal to xi,

u(yi, µi) = −
ni∑
k=1

∂2 log f(yik|µi)
∂µ2

i

and v(µi) = E[u(yi, µi)].

Note u(yi, µi) and v(µi) are scalars. The OM for µ = {µ1, . . . , µd}, Iµ̂(Dn), is a diagonal matrix with entry
Iµ̂i

(Dn) = u(yi, µ̂i) on the ith diagonal. The FIM is Fµ is a diagonal matrix with Fµi
= v(µi) on the ith

diagonal.
Now write u(yi, µi) = u(yi, xi,θ) and v(µi) = v(xi,θ), where θ is an arbitrary point in the parameter

space, Θ. Further let V (xi,θ) be a matrix with jkth element equal to

Vjk(xi,θ) = E

[
∂2 log f{y|µ(xi,θ)}

∂θjθk

]
= v(xi,θ)

∂µ(xi,θ)

∂θj

∂µ(xi,θ)

∂θk
.

and U(yi, xi,θ) be a matrix with jkth element equal to

Ujk(yi, xi,θ) = u(yi, xi,θ)
∂µ(xi,θ)

∂θj

∂µ(xi,θ)

∂θk
.

Further let

Iθ(Dn) =
d∑
i=1

U(yi, xi,θ) and Fθ(ξn) =
d∑
i=1

niV (xi,θ).

Then OM and FIM for θ are Iθ̂(Dn) and Fθ(ξn), respectively. In most cases OM is thought of as a post

experiment measure, i.e., θ̂ has been obtained following an experiment and Iθ(Dn) can be directly evaluated at
the observed θ̂. However, for our purposes we will at times consider a pre-experiment version of OM, Iθ(Dn),
where θ is some pre-experimental guess of the true parameter. This is of interest since it is analogous to
what is done in traditional optimal design, details given in Section 2.1, where some initial guess of θ is used
to determine locally optimal designs.

2.1 Traditional Optimal Design
The requirement that all ni are integers is restrictive in the search for optimal designs. The concept

of continuous designs relaxes the restriction such that design points have corresponding weight wi where
0 ≤ wi ≤ 1 and

∑
wi = 1. A continuous design, ξ, is a probability measure on X and is a member of the

set, Ξ, which represents all measures defined on the Borel Field generated by the open sets of X such that∫
X ξ(dx) = 1.

For a continuous design, ξ, the per-subject information matrix is

M(ξ, θ) =

∫
X
V (x,θ)ξ(dx) =

d∑
i=1

wiV (xi,θ).

The exact analog of the per-subject information is M(ξn,θ) = 1
nFθ(ξn).

We use the case of D-optimal design to describe traditional optimal design and the adaptive procedures.
The traditional optimal design as well as the adaptive procedures do not depend on the D-optimality criterion
and can readily be developed for other traditional criteria. A locally D-optimal design ξ∗θ is defined as

ξ∗θ = arg max
ξ∈Ξ

log |M(ξ,θ)|. (1)

When M(ξ,θ) depends on the parameter θ we refer to this as a locally D-optimal design since, ξ∗θ, is a
function of θ. If M(ξ,θ) does not depend on θ it is a globally optimal design.

From the General Equivalence Theorem for nonlinear models in White (1973) it is known that a design,
ξ∗θ, is D-optimal if and only if

d(x, ξ∗θ ,θ) = tr
{
V (x,θ)M−1(ξ∗θ,θ)

}
≤ p
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for all x ∈ X with equality if and only if x is a support of the optimal design. The function d(x, ξ∗,θ) is
referred to as the sensitivity function and can be used to verify if a design is optimal. The procedures we
propose do not attempt to find this optimal design. It is expected that these designs can be found using
existing methods and are therefore known. Throughout we refer to ξ∗θ as the locally optimal design satisfying
(1) for a fixed θ ∈ Θ. The the design points and corresponding weights in ξ∗θ will be denoted x∗i and w∗i ,
respectively, for i = 1, . . . , d.

2.2 Benchmark for Observed Information
In traditional optimal design exact design, ξn, are often assessed using D-efficiency, defined as

Deff =

{
|M(ξ,θ)|
|M(ξ∗,θ)|

}1/p

.

In the current setting the same design can lead to different realized OM. If the OM from one experiment is
greater than the OM from another experiment it does not necessarily indicate a superior design but instead
may indicate more fortunate observed data. Instead we introduce an observed version of D-efficiency defined
below.

Definition 2.1. For any observed data Dn, the observed Dc-efficiency is

Dc-obs-eff{Dn} =

{
|I(Dn)|
|cM(ξ∗,θ)|

}1/p

.

For observed Dc-efficiency to be useful c must be an informative benchmark or lower bound on the OM.
Consider the following:

Theorem 2.1. For any observed data Dn and θ ∈ Θ let

qθ(Dn) =
d∑
i=1

u(yi, xi,θ)

v(xi,θ)
, ωi =

1

qθ(Dn)

u(yi, xi,θ)

v(xi,θ)

for i = 1, . . . , d and

τ =

{
x1 x2 . . . xd
ω1 ω2 . . . ωd

}
.

If τ ∈ Ξ then

log |Iθ(Dn)| ≤ log |qθ(Dn)Mθ(ξ∗θ,θ)| .

Proof. We can write

log

∣∣∣∣ 1

qθ(Dn)
Iθ(Dn)

∣∣∣∣ = log

∣∣∣∣∣ 1

qθ(Dn)

d∑
i=1

[
ni∑
k=1

u(yk, xi,θ)

] [
∂2µ(xi,θ)

∂θ2

] [
∂2µ(xi,θ)

∂θ2

]T ∣∣∣∣∣
= log

∣∣∣∣∣
d∑
i=1

aiv(xi,θ)

[
∂2µ(xi,θ)

∂θ2

] [
∂2µ(xi,θ)

∂θ2

]T ∣∣∣∣∣
= log |M(τ,θ)| ≤ log |M(ξ∗θ,θ)|

where the inequality is a direct application of the General Theorem in White (1973) since τ ∈ Ξ.

Theorem 2.1 shows that using c = qθ(Dn) in Definition 2.1 compares the efficiency of I(Dn) to a lower
bound qθ(Dn)M(ξ∗,θ).

A useful assessment of two OM from two different experiments is what we will refer to as observed relative
efficiency

Definition 2.2. For any two sets of observed data, D1n and D2n, the observed relative efficiency is

Dobs-rel-eff(D1n,D2n) =

{
|qθ(D2n)Iθ(D1n)|
|qθ(D1n)Iθ(D2n)|

}1/p

.
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3 Adaptive Procedure in D-Optimal Designs
Consider an experiment with J sequential runs. Each run has mj independent observations j = 1, . . . , J .

Denote the total sample size up to and including the jth run as Mj =
∑j
k=1mk and note n = MJ . To frame

the problem in a similar fashion as traditional optimal design denote the exact and continuous design of the
jth run as

λjmj =

{
x1j x2j . . . xdjj

m1j/mj m2j/mj . . . mdjj/mj

}
and λj =

{
x1j x2j . . . xdjj
w1j w2j . . . wdjj

}
,

respectively, where xij , i = 1, . . . , dj are the design points at run j, mj =
∑dj
i=1mij and

∑dj
i=1 wij = 1. Here

λj is a probability measure on X and is a member of the set, Λj , which represents all measures defined on
the Borel Field generated by the open sets of X such that

∫
X λj(dx) = 1.

In the context of an adaptive procedure ξMj =
∑j
k=1 λkmk

represents the exact design from the first j
runs. Let DMj = D(ξMj ) be all available data collected from the first j runs and note that it is a function of
the exact design ξMj

.
A meaningful quantity, around which the proposed adaptive procedure will be based, given the observed

data from the previous j − 1, DMj−1
, is

Kθ(λj ,DMj−1
) = m2

dj∑
i=1

wijV (xij ,θ) + Iθ(DMj−1) = m2M(λj ,θ) + Iθ(DMj−1). (2)

We define a continuous design, λ∗j , to be D(DMj−1
)-optimal if

λ∗j (θ) = arg max
λj∈Λj

log |Kθ(λj ,DMj−1
)|

We write this D(DMj−1
)-optimal since the optimal design for run j will depend on the observed data from

the previous j − 1 stages. For this set-up the following general equivalence theorem can be shown to hold.

Theorem 3.1. For all θ ∈ Θ the following are equivalent

1. λ∗j is D(DMj−1
)-optimal

2. tr
[
V (x,θ){Mαj

(λ∗j ,θ)}−1
]
≤ tr

[
M(λ∗j ,θ){Mαj

(λ∗j ,θ)}−1
]

3. dK(x, λ∗j ,θ) ≤ p

for all x ∈ X , with equality if and only if x is a support point of λ∗j , where αj = mj/Mj,

dK(x, λj ,θ) = αjtr
[
V (x,θ){Mαj

(λj ,θ)}−1
]

+
1

Mj
tr
[
I(DMj−1

){Mαj
(λj ,θ)}−1

]
and

Mαj (λj ,θ) = αjM(λj ,θ) +
1

Mj
I(DMj−1),

for j = 2, . . . , J .

The proof of Theorem 3.1 is a direct application of Theorem 11.6 and Lemma 6.16 from Pukelsheim
(1993). The results from Pukelsheim (1993) do not require D-optimality and thus Theorem 3.1 can easily be
adapted for other common optimality criteria.

From Theorem 3.1 we define an adaptive procedure for the OM quantity in (2) as

1. Initiate the design by placing the first run at a design that ensures I(DM1
) is nonsingular. Ideally 1

observation at each of the d optimal design points in ξ∗.

2. For runs j = 2, . . . , J allocate patients according to design λ∗j or λ∗jmj
.
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4 Example: Gamma Hyperbola Regression (GHR)
Here we develop a regression model based on the bivariate Gamma Hyperbola model. This model is

characterized by two independent random variables (s, t) = (z1e
µ, z2e

−µ) observed simultaneously, where
zk ∼ Gamma[β, 1], k = 1, 2, where β is known.

For the development of the model and relative quantities we assume we have some fixed design ξn. In a
regression setting, with µ(x,θ) = θTfx(x), two independent random variables

(sj , tj) = (z1je
µ(xij ,θ), z2je

−µ(xij ,θ)),

j = 1, . . . , n are observed simultaneously. We refer to (sj , tj) as a pair since they are observed simultaneously,
however, we stress that they are uncorrelated. Let ni =

∑n
k=1 I(xij = xi), Si =

∑n
k=1 I(xij = xi)sk,

Ti =
∑n
k=1 I(xij = xi)tk and ri =

√
SiTi then

g(ri) =
2r2niβ−1
i

Γ[niβ]2

∫ ∞
−∞

e−2ri cosh(ui)dui.

for i = 1, . . . , d. Note µ̂i = 1
2Log[Si/Ti] is the MLE of µ(xi,θ). Further let µ̂ = (µ̂1, . . . , µ̂d) and r =

(r1, . . . , rd) then joint distribution of (µ̂, r)

f(µ̂, r) = e−
∑d

i=1 2ri cosh{µ̂i−µ(xik,θ)}
d∏
i=1

2r2niβ−1
i

Γ[niβ]2

From the factorization theorem of sufficiency we can see that the statistic (µ̂, r) is a sufficient statistic for µ.
Further the conditional distribution of µ̂ given r is

f(µ̂|r) =
e−2

∑d
i=1 ri cosh{µ̂i−µ(xi,θ)}∏d

i=1

∫∞
−∞ e−2ri cosh(ui)dui

.

For the GHR model in the sequential setting suppose there are J total runs. Within each run there are
2mj observations. For k = 1, . . . ,mj two observations are observed simultaneously at the same xjk, where
the value of xjk is at the experimenters discretion. Denote the kth set of observations within the jth run as

(sjk, tjk) for k = 1, . . . ,mj and j = 1, . . . , J . Let Sij =
∑j
l=1

∑ml

k=1 I(xlk = xi)slk, Tij =
∑j
l=1

∑ml

k=1 I(xlk =
xi)tlk be the sums of the observations from all runs up to and including run j. Further let rij =

√
SijTij .

The OM for the sequential experiment is

I(Dj) = 2
d∑
i=1

fx(xi)fx(xi)
T rij

for j = 1, . . . , J .
Fisher expected information can be easily derived as M(ξ) = 2β

∑d
i=1 wifx(xi)f

T
x (xi). This is convenient

since the optimal design is equivalent to the optimal design in the linear model case.

4.1 Simulation
The simulation consisted of 10,000 iterations from a GHR model with θ = (1, 1, 1), fx(x) = (1, x, x2),

X = [−1, 1] and β = 1. For this model the continuous optimal design does not depend on θ, i.e., ξ∗θ = ξ∗,
and consists of three points {−1, 0, 1} each with a weight of 1/3. Let Dn(K) and Dn(ξ∗) be the observed
data from experiments conducted using the adaptive procedure with and the optimal design ξ∗, respectively.
Let θ̂K and θ̂ξ∗ be defined similarly.

Different values of β and n were used with mj = 1 for all j. In the simulation all sample sizes n are
multiples of p. This ensures that the exact optimal design is equivalent to the continuous optimal design.
Results are presented in Table 1. Consider first rows corresponding to the observed efficiency, Dq{Dn}−obs−eff .
Data are presented as 10th, 25th, 50th, 75th and 90th percentiles. In every case and for every percentile
the observed efficiency of Dn(K) was superior to the observed efficiency of Dn(ξ∗). The results are the most
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significant for smaller β or a smaller sample size. For example when β = 0.1 and n = 60 approximately 25%
of simulation conducted using the fixed optimal design had an observed efficiency less than 0.65. Compare
this to the results for the adaptive procedure where the 25th percentile had an observed efficiency of 0.92.
In this same case the 25th percentile of the observed efficiency for the adaptive procedure is greater than the
75th percentile of the observed efficiency of Dn(ξ∗). Considering all simulations for observed efficiency the
adaptive procedures improve the observed efficiency for almost every experiment.

β = 0.1 n 36 60

Dq{Dn(K)}−obs−eff 0.74, 0.86, 0.94, 0.98, 0.99 0.84, 0.92, 0.97, 0.99, 1.00
Dq{Dn(ξ∗)}−obs−eff 0.36, 0.54, 0.72, 0.87, 0.95 0.51, 0.65, 0.80, 0.91, 0.97

Dobs−rel−eff{Dn(K),Dn(ξ∗)} 1.55 1.62

|V ar[θ̂K ]|/|V ar[θ̂ξ∗ ]|−1/p 1.29 1.16

β = 0.5 n 12 24

Dq{Dn(K)}−obs−eff 0.77, 0.87, 0.94, 0.98, 0.99 0.94, 0.97, 0.99, 1.00, 1.00
Dq{Dn(ξ∗)}−obs−eff 0.59, 0.72, 0.85, 0.94, 0.97 0.80, 0.87, 0.93, 0.97, 0.99

Dobs−rel−eff{Dn(K),Dn(ξ∗)} 1.13 1.06

|V ar[θ̂K ]|/|V ar[θ̂ξ∗ ]|−1/p 1.13 1.11

β = 1.0 n 12 24

Dq{Dn(K)}−obs−eff 0.90, 0.94, 0.97, 0.99, 1.00 0.97, 0.99, 0.99, 1.00, 1.00
Dq{Dn(ξ∗)}−obs−eff 0.80, 0.87, 0.93, 0.97, 0.99 0.90, 0.94, 0.97, 0.99, 1.00

Dobs−rel−eff{Dn(K),Dn(ξ∗)} 1.05 1.03

|V ar[θ̂K ]|/|V ar[θ̂ξ∗ ]|−1/p 1.07 1.05

Table 1: Results from 10,000 iterations from the GHR model of the observed efficiency, Dq{Dn}−obs−eff , are summarized as
the 10th, 25th, 50th, 75th and 90th percentiles. Dobs−rel−eff and the efficiency of the variance of the MLEs are the mean from
the simulations. Values θ = (1, 1, 1), fx(x) = (1, x, x2), mj = 1, X = [−1, 1] and β = 1 were used.

5 Conclusion
The majority of existing optimum design literature uses the inverse of FIM as the a priori variance

approximation. This represents a disconnect with the more common recommendation to use OM in the
analysis of experiments. This work proposes an adaptive procedure that uses the well developed tools of
optimum design to incorporate the OM from previous runs in the design of current and future runs with
the objective of increasing the efficiency of the OM from the entire experiment. A simulated example in the
context of a GHR model showed that the OM following the adaptive procedure had greater efficiency when
compared to a fixed design carried out at the traditional optimal design.
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