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Abstract

The central limit theorem introduced by Stute (1995) does not hold for some class of heavy-tailed distributions. In this
work, we make use of the extreme value theory to propose an alternative estimating approach of the mean ensuring
the asymptotic normality property. A simulation study is carried out to evaluate the performance of this estimation
procedure and, as an application, confidence bounds to the mean of the survival time of Australian male Aids patients
are provided.
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1. Introduction

Let X1, ..., Xn be n ≥ 1 independent copies of a non-negative random variable (rv) X, defined over some probability
space (Ω,A,P) , with cumulative distribution function (cdf) F. These rv’s are censored to the right by a sequence of
independent copies Y1, ..., Yn of a non-negative rv Y, independent of X, with cdf G. At each stage 1 ≤ j ≤ n, we can
only observe the rv’s Zj := min (Xj , Yj) and δj := 1I {Xj ≤ Yj} , with 1I {·} denoting the indicator function. The
latter rv indicates whether there has been censorship or not. If we denote by H the cdf of the observed Z ′s, then, by
the independence of X and Y, we have 1−H = (1− F ) (1−G) . Throughout this Chapter, we will use the notation
S(x) := S(∞) − S(x), for any function S. Assume further that F and G are heavy-tailed or, in other words, that F
and G are regularly varying at infinity with negative indices −1/γ1 and −1/γ2 respectively. That is

lim
z→∞

F (xz)

F (z)
= x−1/γ1 and lim

z→∞

G(xz)

G(z)
= x−1/γ2 , (1)

for any x > 0. Consequently, H is heavy-tailed too, with tail index γ :=
γ1γ2
γ1 + γ2

. Examples of censored data with

apparent heavy tails can be found in Gomes and Neves (2011). The convergence rates of the limits (1) are formulated
by the well-known second-order condition of regularly varying functions. In other words, there exist constants ρj < 0
and functionsAj , j = 1, 2 tending to zero, not changing sign near infinity and having regularly varying absolute values
with indices ρj , such that for any x > 0

lim
t→∞

F (tx)/F (t)− x−1/γ1
A1(t)

= x−1/γ1
xρ1/γ1 − 1

γ1ρ1
, (2)

and

lim
t→∞

G(tx)/G(t)− x−1/γ2
A2(t)

= x−1/γ2
xρ2/γ2 − 1

γ2ρ2
. (3)

Proceedings 61th ISI World Statistics Congress, 16-21 JULY 2017, Marrakech (Session PO-B17) P. 1681

http://www.up.poznan.pl/biometrical.letters/index.php?p=abstract&a=2011.48.1.1


The class of heavy-tailed distributions, satifying the second-order condition, takes a significant role in extreme value
theory. It includes distributions such as Burr, Fréchet, Benktander, generalised Pareto, the log-logistic, log-gamma and
α-stable (0 < α < 2) , known to be appropriate models for fitting large insurance claims, log-returns, large fluctuations
of prices, etc ... (see, e.g., Resnick, 2007).

The nonparametric maximum likelihood estimator of cdf F is given by Kaplan and Meier (1958) as the product limit
estimator

F̂n(x) :=

 1−
∏

Zj:n≤x

(
n−j
n−j+1

)δ[j:n]

for x < Zn:n,

1 for x ≥ Zn:n,
(4)

where Z1:n ≤ ... ≤ Zn:n denote the order statistics pertaining to the sample Z1, ..., Zn with the corresponding con-
comitants δ[1:n], ..., δ[n:n] satisfying δ[j:n] = δi if Zj:n = Zi. The aim of this paper is to propose an asymptotically
normal estimator for the mean µ = E[X] :=

∫∞
0
F (x)dx. By substituting F̂n for F in the previous equation, Stute

(1995) defined the empirical mean for censored data by

µ̃n :=

n∑
i=1

δ[i:n]

n− i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δ[j:n]

Zi:n, (5)

and established, in Corollary 1.2, its asymptotic normality. Explicitly, the author showed that

√
n (µ̃− µ)

D→ N
(
0, σ2

)
as n→∞,

where σ2 := Var [Z1Γ0 (Z1) δ1 + Γ1 (Z1) (1− δ1)− Γ2 (Z1)] , with

Γ0(x) := exp

{∫ x

0

dH(0)(s)

H(s)

}
, (6)

Γ1 (x) :=

∫ x

0

sΓ0 (s)

H (s)
dH(1) (s) and Γ2 (x) :=

∫ ∞
x

∫∞
s
tΓ0 (t) dH(1) (t)[
H(s)

]2 dH(0) (s) ,

provided that

I1 :=

∫ ∞
0

x2Γ2
0(x)dH(1)(x) and I2 :=

∫ ∞
0

x

(∫ x

0

dH(0)(y)[
H(y)

]2
)1/2

dF (x), (7)

be finite, whereH(j) (v) := P (Z1 ≤ v, δ1 = j) , j = 0, 1, are two functions defined on R+, that will play a prominent
role in this work. However, assumptions (7) may be violated by a class of heavy-tailed distributions. We show that
when F and G satisfy the second order conditions (2)-(3) with γ1 > γ2/ (1 + 2γ2) , then both I1 and I2 are infinite.
In other words,the range

R :=

{
γ1, γ2 > 0 :

γ2
1 + 2γ2

< γ1 < 1

}
, (8)

is not covered by the central limit theorem established by Stute (1995). As an example of censored real datasets with
indices belonging to R, we may cite the Australian Aids data that will be described and analyzed in Section 4. After
noting that these medical observations exhibit a heavy right tail (see Einmahl et al., 2008), we estimate, in Section 4,
the corresponding extreme value index (EVI) γ1 and the proportion p := γ2/ (γ1 + γ2) by 0.29 and 0.90, respectively,
leading to a γ2 estimate equal to 0.37. These values of (γ1, γ2) clearly lie in the range R where Stute’s central limit
theorem is not valid and thus no confidence interval could be constructed for the mean of this dataset. Consequently,
we need to handle this situation by adopting an approach that is different from that of Stute (1995). This problem has
already been addressed by Peng (2001) and Johansson (2003) for sets of complete data from heavy-tailed distributions
with tail indices lying between 1/2 and 1. A bias reduced version of Peng’s estimator is provided in Brahimi et al.
(2013). Note that in the non censoring case, we have γ1 = γ meaning that γ2 =∞, consequentlyR reduces to Peng’s
range.

Proceedings 61th ISI World Statistics Congress, 16-21 JULY 2017, Marrakech (Session PO-B17) P. 1682

http://gen.lib.rus.ec/book/index.php?md5=8498030AEDFF22F1B6505B46BC6EDB7E#.Vr857G1CUSK
http://www.jstor.org/stable/2281868
http://projecteuclid.org/euclid.aos/1176324528
http://projecteuclid.org/euclid.aos/1176324528
http://projecteuclid.org/euclid.aos/1176324528
https://projecteuclid.org/euclid.bj/1202492791
http://projecteuclid.org/euclid.aos/1176324528
http://www.sciencedirect.com/science/article/pii/S0167715200002030
http://link.springer.com/article/10.1023%2FB%3AEXTR.0000025668.95782.3d
http://www.sciencedirect.com/science/article/pii/S0378375812003692
http://www.sciencedirect.com/science/article/pii/S0378375812003692


2. Main Result

To define our estimator, we introduce an integer sequence k = kn, representing a fraction of extreme order statistics,
satisfying

1 < k < n, k →∞ and k/n→ 0 as n→∞, (9)

and we set h = hn := H−1(1 − k/n), where K−1(y) := inf {x : K(x) ≥ y} , 0 < y < 1, denotes the quantile
function of a cdfK.We start by decomposing µ into the sum of two terms as follows: µ =

∫ h
0
F (x)dx+

∫∞
h
F (x)dx =:

µ1 + µ2, then we estimate each term separately. Integrating the first integral by parts and changing variables in the
second respectively yield

µ1 = hF (h) +

∫ h

0

xdF (x) and µ2 = hF (h)

∫ ∞
1

F (hx)

F (h)
dx.

By replacing h and F (x) by Zn−k:n and F̂n(x) of formula (4) respectively, we get

µ̂1 =

n−k∏
j=1

(
n− j

n− j + 1

)δ[j:n]

Zn−k:n +

n−k∑
i=1

δ[i:n]

n− i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δ[j:n]

Zi:n, (10)

as an estimator to µ1. Regarding µ2, we apply the well-known Karamata theorem (see, for instance, de Haan and
Ferreira, 2006, page 363), to write

µ2 ∼
γ1

1− γ1
hF (h) , as n→∞, 0 < γ1 < 1. (11)

The quantities h and F (h) are, as above, naturally estimated by Zn−k:n and

F̂n(Zn−k:n) =

n−k∏
j=1

(
n− j

n− j + 1

)δ[j:n]

,

respectively. Now, it is clear that to derive an estimator to µ2, one needs to estimate the tail index γ1. The general
existing method, which first appeared in Beirlant et al. (2007) and then developed in Einmahl et al. (2008), is to
consider any consistent estimator of the extremal index γ based on the Z-sample and divide it by the proportion of
observed observations in the tail. For instance, Einmahl et al. (2008) adapted Hill’s estimator to introduce an estimator
γ̂
(H,c)
1 := γ̂H/p̂ to the tail index γ1 = γ/p under random right censorship, where

γ̂H :=
1

k

k∑
i=1

log
Zn−i+1:n

Zn−k:n
and p̂ :=

1

k

k∑
i=1

δ[n−i+1:n],

are the classical Hill estimator and the proportion of upper non-censored observations respectively. Further results of
this last nature can be found in Ndao et al. (2014), Worms and Worms (2014), Brahimi et al. (2015), Ndao et al. (2016)
, Stupfler (2016) and Beirlant et al. (2016). Let us now continue with the construction our new estimator. By replacing,
in (11) , F and γ1 by their respective empirical counterparts F̂n and γ̂(H,c)1 , we obtain

µ̂2 :=
γ̂
(H,c)
1

1− γ̂(H,c)1

Zn−k:n

n−k∏
j=1

(
n− j

n− j + 1

)δ[j:n]

, for γ̂(H,c)1 < 1, (12)

as an estimator for µ2. Finally, with (10) and (12), we construct our estimator µ̂ of the mean µ as follows:

µ̂ :=

n−k∑
i=1

δ[i:n]

n− i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δ[j:n]

Zi:n +

n−k∏
j=1

(
n− j

n− j + 1

)δ[j:n] Zn−k:n

1− γ̂(H,c)1

.

Our main result consists in the asymptotic normality of the newly introduced estimator µ̂. It is stated in the following
theorem which results in a corollary that is very useful in the practical construction of an asymptotic confidence interval
for the expected value µ.
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Theorem 1 Assume that both second-order conditions of regular variation (2) and (3) hold with (γ1, γ2) ∈ R. Let
k = kn be an integer sequence satisfying (9) and h = hn := H−1(1 − k/n) such that

√
kA1(h) → λ,

√
kA2(h) =

O (1) and
√
khF (h)→∞. Then

√
k (µ̂− µ)

hF (h)

D→ N
(
m,V2

)
, as n→∞,

where
m :=

λ

(1− pρ1) (1− γ1)
2 +

λ

(γ1 + ρ1 − 1) (1− γ1)
,

and

V2 = V2 (p, γ1) :=
2pγ1

(
γ1 − p2γ21 + p2 + 2pγ21 − 3pγ1

)
(γ1 − 1)

2
(1− 2p+ 2pγ1) (1− p+ pγ1)

− 4γ21

(1− γ1)
3

(1− 2p+ 2pγ1)
+

2 (1 + 2p) γ21
p(1− γ1)4

.

Corollary 1 Under the assumptions of Theorem 1, with λ = 0, we have
√
k (µ̂− µ) /σn,k

D→ N (0, 1) , as n→∞,

where

σn,k := Zn−k:n

n−k∏
j=1

(
n− j

n− j + 1

)δ[j:n]

V
(
p̂, γ̂

(H,c)
1

)
.

3. Simulation Study

We carry out a simulation study to illustrate the performance of our estimator, through two sets of censored and
censoring data, from Burr model

F (x) = 1−
(

1 + x1/η
)−η/γ1

, G (x) = 1−
(

1 + x1/η
)−η/γ2

, x ≥ 0,

where η, γ1, γ2 > 0. We fix η = 1/4 and choose the value 0.3 for γ1. For the proportion of the really observed
extreme values, we take p = 0.40 and 0.70. For each couple (γ1, p) , we solve the equation p = γ2/(γ1 + γ2) to
get the pertaining γ2-value. We vary the common size n of both samples X1, ..., Xn and Y1, ..., Yn, then for each
size, we generate 1000 independent replicates to take our overall results as the empirical means of the results obtained
through all the repetitions. To determine the optimal number (that we denote by k∗) of upper order statistics used in the
computation of γ̂(H,c)1 , we apply the algorithm of automatic selection given in page 137 of Reiss and Thomas (2007).
The performance of the newly defined estimator µ̂ is evaluated in terms of absolute bias (abs bias), mean squared
error (mse) and confidence interval (conf int) accuracy via length and coverage probability (cov prob). The results,
summarized in the Table 1. As expected, the sample size influences the estimation in the sense that the larger n gets,
the better the estimation is. On the other hand, it is clear that the estimation accuracy increases when the censoring
percentage decreases, which seems logical.

4. Application to AIDS Survival Data

In this Section, we apply our estimation procedure to the dataset known as Australian Aids data and provided by Dr
P.J. Solomon and the Australian National Centre in HIV Epidemiology and Clinical Research. It consists in medical
observations on 2843 patients (among whom 2754 are male) diagnosed with Aids in Australia before July 1st, 1991.
The datafile is available under the name ”Aids2” in the package MASS of the statistical software R. In the literature,
these data were analyzed with different prospects by several authors like, for instance, Ripley and Solomon (1994)
and Venables and Ripley (2002) (pages 379 − 385), Einmahl et al. (2008), Ndao et al. (2014) and Stupfler (2016).
We apply the algorithm of Reiss and Thomas (2007) to obtain k∗ = 162 as the optimal k-value and the corresponding
estimates γ̂(H,c)1 = 0.90 and p̂ = 0.29. The mean survival time of male patients is estimated to be 1083.61 days with a
95%-confidence interval of 1082.58− 1084.64.

5. Conclusions
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γ1 = 0.3→ µ = 1.298

p = 0.40

n µ̂ biais abs mse bor. de conf. prob.couv. long.
500 1.247 0.052 0.021 1.043− 1.450 0.88 0.407
1000 1.244 0.054 0.020 1.099− 1.389 0.88 0.291
1500 1.233 0.065 0.005 1.119− 1.346 0.80 0.227
2000 1.231 0.067 0.005 1.135− 1.328 0.74 0.193

p = 0.70

500 1.265 0.033 0.003 1.069− 1.460 0.97 0.391
1000 1.269 0.029 0.002 1.123− 1.415 0.96 0.291
1500 1.279 0.019 0.001 1.162− 1.395 0.98 0.233
2000 1.278 0.020 0.001 1.178− 1.377 0.96 0.199

Table 1: Absolute bias, mean squared error and 95-confidence interval accuracy of the mean estimator based
on 1000 right-censored samples from Burr model with shape parameter 0.3

• The estimation of the mean of censored heavy-tailed distributions requires special methods because of their
specific characteristics:

– Rare observations in the tail.

– Presence of incomplete data.

• Estimation by the non-parametric method is not applicable because there exist heavy-tailed distributions for
which the Stute conditions are not satisfied.

• In practice, the Fréchet extreme-value type is the most interesting as it corresponds to heavy-tailed distributions.

• The main task in extreme value theory is the estimation of the EVI, which leads to solve problems related to the
extremes of a random variable.
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