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Abstract

This work develops simultaneous confidence bands for the expected discounted warranty costs in coherent sys-
tems under physical minimal repair, by means of computer intensive methods based on resampling. For this
purpose, it is shown that, under the framework of the Martingale processes and the central limit resampling
theorem (CLRT) over stochastic processes proposed by Belyaev (2000) and Belyaev & Seleznjev (2000), that
the discounted warranty costs processes satisfy the conditions set by the central limit resampling theorem
(CLRT). Additionally, a simulation study is performed on the most relevant variables, such that the finite
sample features of the proposed bands may be assessed, based on their actual coverage probabilities. The
results in the considered scenarios show that resampling-based simultaneous confidence bands have coverage
probabilities that are close to the nominal coverage. In particular, the agreement is good when there are 100
systems or more where a large number of resamples are used for the approximation.

Keywords: central limit resampling theorem; coverage probability; general lifetime model; resampling;
weakly approaching.

1. Introduction
When a manufacturer puts a new product on the market, it is expected that a warranty program will come
along with the product, which could become a great cost if it is a low-quality product (Thomas 2005). Bai &
Pham (2006) highlight that warranty analysis is very important for cost modeling, especially for discounted
costs (Blischke & Murthy 1994; Chien 2005; Ja et al. 2002; Murthy & Djamaludina 2002; Nguyen & Murthy
1984). Discounted warranty cost models consider the product age and provide a proper measurement of the
costs involved in the warranty program, given that they can be treated as random cash flows. Therefore, it is
possible to model their evolution throughout the lifetime of the product under warranty, as well as to estimate
the necessary fund reserve levels to meet future warranty claims. Several aspects regarding discounted
warranty costs and their corresponding reserves have been studied by Bai & Pham (2004), Duchesne & Marri
(2009), Ja et al. (2002), Jain & Maheshwari (2006), Patankar & Mitra (1995), and Thomas (1989).
In practice, many products consist of several components, that is, the product can be seen as a system. If
every component has its own warranty, they can be combined to produce one warranty for the system, in
which it is necessary to keep in mind both the system structure and warranty service costs at its compo-
nent level (Thomas, 1989). Several previous works have considered warranty cost analysis for component
systems (Ritchken & Fuh, 1986; Chukova & Dimitrov, 1996; Hussain & Murthy, 1998; Bai & Pham, 2006;
Balachandran et al., 1981; Jung, et al., 2010). There are many ways to model the impact of repair actions
over system failure times. In literature, it is frequently assumed that repairing a system leaves it as good
as new (Block et al., 1985). Nevertheless, this hypothesis and its implications have been criticized by many
authors on the argument that repairing can only, in many practical cases, restoring the system back to the
performance conditions right before the failure (Block et al., 1985; Ascher, 1968; Ouali et al., 2011), which is
called minimal repair. In complex systems, repairing is frequently assumed as minimal (Blischke & Murthy,
1994). The definition of the state of the system immediately before failure depends on the information level
one has about the system (Aven & Jensen, 1999), so that minimal repairs are classified into two types:
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statistical minimal repair, which implies replacing the full system for another one just as old as the other
one would be if it had not failed (Nguyen & Murthy, 1984; Aven, 1983; Sheu et al., 1995; Ja et al., 2001),
and physical minimal repair, in which the system is supposed to be observed at its component level and,
therefore, only the critical component that caused the system to fail, gets minimal repair (Aven & Castro,
2008; Gonzalez & Bueno, 2011).
Gonzalez & Bueno (2011) propose a Martingale estimator for the expected discounted warranty costs for a
coherent system under physical minimal repair and include the calculation of specific confidence limits which
do not make up a simultaneous confidence band, given that the aforementioned set of limits generally has
no correct coverage probability (Fleming & Harrington, 1991). The main purpose of constructing simul-
taneous confidence bands is to assess an estimator’s precision, which can be described by the distribution
(or a function of it) of that estimator’s deviations from its real value (Belyaev, 2007). The problem is that
the aforementioned distribution is unknown, even if asymptotic convergence results of distribution can be
obtained (Gonzalez & Bueno, 2011). In the practice, sample sizes are not always large enough for those
approximations to work properly. In general, computer intensive (CI) methods provide a way to find asymp-
totically precise approximations of the estimator deviation distributions from the real unknown parameters
(Belyaev, 2000). The bootstrap, introduced by Efron (1979) is a rather universal method, nevertheless, the
need to find a proper estimator of the real parameter which can describe data distribution, may be a difficult
problem, which is why resampling can be used alternatively (Belyaev, 2000).
Resampling is used in this work to develop simultaneous confidence bands for the mean function of the
discounted warranty costs of a system under physical minimal repair. For this, based on the theoretical
framework of Martingale process and the Central Limit of Resampling Theorem (CLRT) over stochastic
processes proposed by Belyaev (2000) and Belyaev & Seleznjev (2000), proof is presented that the discounted
warranty costs processes under the general lifetime model comply with CLRT conditions. In addition, a
simulation study was conducted on the most relevant variables to test the finite sample features of the
proposed simultaneous confidence bands by means of the actual coverage probability.
Section 2 presents the theoretical framework that is necessary in the development of this work. The proposal
of constructing simultaneous confidence bands is developed in Section 3. In Section 4, the performance of
the proposed simultaneous confidence bands is assessed by means of a simulation study. Section 5 presents
the work’s most important conclusions and recommendations.

2. Theoretical Framework
In this work it is assumed that there is a coherent system under physical minimal repair, that is, under
the physical approach of the general failure model (Aven & Jensen, 1999). Next section summarizes some
theoretical results which are necessary for the development of the remaining sections in the work.

2.1. Physical Minimal Repair Model for a Coherent System and Discounted Warranty Costs
Let us suppose a system with m components, where T is the system lifetime, Si is the lifetime of component
i, i = 1, . . . ,m and Ñt is the number of minimal repairs of the system in the interval [0, t], defined on a
complete probability space (Ω,F , P ) with the filtration F = (Ft)t≥0,

Ft = σ
(
Ñs, I (Si > s) , 0 ≤ s ≤ t, i = 1, . . . ,m

)
, (1)

where I(A) is the indicator of the event A. The indicator I(A) is equal to 1 when the event A happens and
it is 0 otherwise. Therefore, the system repair/failure process is observed at the level of its m components.
Suppose the following conditions are hold:

a) 0 < Si < ∞ P -a.s., i = 1, . . . ,m, where P -a.s. denotes that an event E happens almost surely with
respect to the probability P .

b) For every i 6= j, P (Si = Sj) = 0, that is, there are not two components failing simultaneously.

c) All lifetimes Si are totally inaccessible Ft-stopping times, and consequently all the compensators A i of
the respective simple counting processes N i

t = I (Si ≤ t), are continuous P -a.s.
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Given that the condition b) implies that the observable failure blocks (sets of components which can fail
simultaneously) in an instant t consist of only one of the m components, the m (only P-a.s.) compen-
sators A i

t corresponding to the simple counting processes N i
t = I (Si ≤ t) are obtained from Doob-Meyer

decomposition,
N i
t = A i

t +M i
t , M i

t ∈M2
0, i = 1, . . . ,m, (2)

where,

A i
t =

∫ t

0

I (Si > s)λ i (s) ds <∞ P -a.s., i = 1, . . . ,m, (3)

and A i
t the failure rate function for component i. Likewise, the system failure indicator process Nt = I (T ≤ t)

is given by
Nt = At +Mt, Mt ∈M2

0, (4)

where, assuming that at {T > t}, T has a Ft-intensity λt, the compensator of Nt = I (T ≤ t) corresponds to

At =

∫ t

0

I{T>s}λsds <∞ P -a.s. (5)

Aven (1983) established that the component i contributes to system failure only after its critical level Yi,
that is, the first instant after which failure of component i causes the system failure. Let Kj , j = 1, . . . , r,
be the minimal cut sets, that is, each Kj is a minimal subset of components whose joint failure causes the
system to fail (Barlow & Proschan, 1981). Then, the critical level Yi is the Ft-stopping time

Yi = min
j:i∈Kj

max
u∈Kj−{i}

Su. (6)

It assumes that Yi =∞ if either the system or component i fails before the latter becomes critical (Si ≤ Yi
or T ≤ Yi). Since there are not two components failing simultaneously, the system will fail at time t when
the first critical component for the system at t− fails at t. Therefore, the system lifetime can be written as

T = min
i:Yi<∞

Si, (7)

Gonzalez & Bueno (2011) show that the compensator in (5) has the following form,

At =

∫ t

0

I (T > s)

m∑
i=1

I (Yi < s)λ i (s) ds. (8)

From (5) and (8), it follows clear that the Ft-intensity of the system on {T > t} is given by

λt =

m∑
i=1

I (Yi < t)λ i (t) . (9)

Then, if minimal repair is done at each failure time on the respective component i, the corresponding
minimal repair counting process in [0, t] is a Non-Homogenous Poisson Process (NHPP) with the Doob-
Meyer decomposition (or Smooth Semimartingale (SSM) representation) given by

Ñ i
t =

∫ t

0

λ i (s) ds+ M̃ i
t , M̃ i

t ∈M2
0. (10)

Consequently, the expected number of minimal repairs on the component i in the interval [0, t] is E[Ñ i
t ] =∫ t

0
λ i (s) ds.

Let Hi (t) be the minimal repair discounted cost of component i at time t, a deterministic, continuous,

decreasing, bounded, and integrable function on the interval [0, t], such that
∫ t

0
Hi (s)λ i (s) ds < ∞,∀ 0 ≤

t < ∞, and let B̂ i
t =

∑Ñ i
t

j=1Hi (Sij) be the accumulated cost process by minimal repairs on component i in
[0, t], where Sij is the time of the j-th minimal repair of component i and Si1 = Si. Since the function Hi (t) is
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predictable and bounded in the interval [0, t], and E[Ñ i
t ] =

∫ t
0
λ i (s) ds <∞, then the process

∫ t
0
Hi (s) dM̃ i

s

is a mean zero and square integrable Ft-Martingale (Fleming & Harrington, 1991), whose Ft-compensator is

B i
t =

∫ t

0

Hi (s)λ i (s) ds <∞,∀ 0 ≤ t <∞. (11)

Suppose that only the critical component causing the system failure is minimally repaired, that is, consider
the set C i = {ω ∈ Ω : Si (ω) > Yi (ω)}. Gonzalez & Bueno (2011) show that in Ci,

i. The Ft-compensator of Ñ i
t is the process

Ã i∗
t =

∫ t

0

I (Yi < s)λ i (s) ds =

∫ t

Yi

λ i (s) ds <∞, ∀ 0 ≤ t <∞ P -a.s. (12)

ii. The Ft-compensator of B̂ i
t is the process

B i∗
t =

∫ t

0

I (Yi < s)Hi (s)λ i (s) ds

=

∫ t

Yi

Hi (s)λ i (s) ds <∞, ∀ 0 ≤ t <∞, P -a.s. (13)

Based on the previous results, which apply to each system component, the minimal repair counting process
and their corresponding cost processes for a coherent system are as defined next.

Definition 1. (Gonzalez & Bueno, 2011) For each ω ∈ Ω, the set of components which survive its critical
level is defined as

CΦ (ω) = {i ∈ {1, . . . ,m} : Si (ω) > Yi (ω)} . (14)

For each i = 1, . . . ,m define C i (ω) =

{
1 if i ∈ CΦ (ω)

0 otherwise
.

Then, the minimal repair counting process of the coherent system in [0, t] is Ñt (ω) =
m∑
i=1

C i (ω) Ñ i
t (ω) and

the warranty cost process is given by B̂t (ω) =
m∑
i=1

C i (ω) B̂ i
t (ω), whose compensator process is Bt (ω) =

m∑
i=1

C i (ω)B i
t (ω).

The Ft-Martingale estimator of process B i
t (ω), i = 1, . . . ,m, in C i, is the process B̂ i

t (ω) =
∫ t

0
Hi (s) dÑ i

s (ω)
(Gonzalez & Bueno, 2011). Then, from Definition 1 and equation (13), the expected cost of minimal repairs
carried out over the system in interval [0, t] is

B∗ (t) = E
[
B̂t

]
=

m∑
i=1

Bi∗ (t) , (15)

with

Bi∗ (t) = P (Si > Yi)E

[∫ t

Yi

Hi (s)λi (s) ds

∣∣∣∣Si > Yi

]
. (16)

Based on the results above, next section gives it is established an estimation method for B∗ (t) based on a
random sample of n identical systems (or n independent copies of the process).

2.2. Estimation Based on a Sample of n Identical Systems
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Consider n independent copies of the process
(
B̂ i
t , C

i, i = 1, . . . ,m
)
t≥0

which are denoted by
(
B̂
i(j)
t , C i(j), i = 1, . . . ,m, j = 1, . . . , n

)
.

For each j, let CΦ(j) be the set of critical components for the system j defined in (14), then the minimal
repair costs for the j-th system is

B̂
(j)
t =

m∑
i=1

C i(j)

∫ t

0

Hi (s) dÑ i(j)
s , (17)

whose compensator process is

B
(j)
t =

m∑
i=1

C i(j)

∫ t

Y
(j)

i

Hi (s)λ i (s) ds. (18)

From the n independent copies, the following mean processes are obtained,

B̂
(n)
t =

1

n

n∑
j=1

B̂
(j)
t y B

(n)
t =

1

n

n∑
j=1

B
(j)
t .

The following are results for the mean processes defined above.

Theorem 1. (Gonzalez & Bueno, 2011)

i. B̂
(n)
t is a consistent and unbiased estimator for B∗ (t).

ii. A consistent and unbiased estimator for Var
[
B̂

(n)
t

]
is V̂ar

[
B̂

(n)
t

]
=

m∑
i=1

%
2i(n)
t /n.

iii. An approximate 100 (1− γ) % confidence interval for B∗ (t), is

B̂
(n)
t ± Zγ/2

√√√√ m∑
i=1

%
2i(n)
t

n
, (19)

where Zγ/2 is the (1− γ/2) quantile of the standard normal distribution and

%
2 i(n)
t =

(
n

n− 1

)
1

n

n∑
j=1

Ci(j)
[(
B̂
i(j)
t −Bi∗ (t)

)2

−
(
B̂
i(n)
t −Bi∗ (t)

)2
]
,

Despite having a set of approximately 100 (1− γ) % level pointwise confidence limits in [0, t], given by (19),
they do not form 100 (1− γ) % level simultaneous confidence bands. The following section introduces a gen-
eral definition of simultaneous confidence bands for random functions.

2.3. Simultaneous Confidence Bands for Random Functions
Suppose the goal is to estimate and bound a function f (t) in the interval [0, t]. That is, given a coverage
probability of (1− γ), we want to find two random functions b1 (s) and b2 (s) with the property

P
[
b1 (t) ≤ f (t) ≤ b2 (t) , ∀ s ∈ [0, t]A

B
]
≈ 1− γ, (20)

Except for functions having a very simple structure, there are no simultaneous confidence bands with an
exact (1− γ) coverage probability (Knowles, 1988).

Let
(
f̂

(n)
t

)
t≥0

be an estimator of the function f (t), based on a random sample of size n, then the weak con-

vergence of processes with the form
√
n
(
f̂

(n)
t − f (t)

)
provides a general method for calculating simultaneous

confidence bands for the function f (t) (Fleming & Harrington, 1991). When
√
n
(
f̂

(n)
t − f (t)

)
converges in

distribution (
w−→) on interval [0, t] to a limit process Q, the Continuous Mapping Theorem implies that

sup
0≤s≤t

√
n
∣∣∣f̂ (n)
s − f (s)

∣∣∣ w−→ sup
0≤s≤t

|Q (s)| . (21)
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If qγ (t) satisfies

P

(
sup

0≤s≤t
|Q (s)| ≤ qγ (t)

)
≈ 1− γ, (22)

where qγ (t) is the (1− γ) quantile in the distribution of sup
0≤s≤t

|Q (s)|, then, asymptotically,

P

(
sup

0≤s≤t

√
n
∣∣∣f̂ (n)
s − f (s)

∣∣∣ ≤ qγ (t)

)
≈ 1− γ. (23)

Then, the construction of simultaneous confidence bands is based on finding qγ (t) which satisfies the desirable
coverage probability on the interval [0, t].

Simultaneous confidence bands based on sup0≤s≤t
√
n
∣∣∣f̂ (n)
s − f (s)

∣∣∣, will be useful only when sufficient con-

ditions for the convergence of
√
n
(
f̂

(n)
t − f (t)

)
on reasonable intervals [0, t] are not too restrictive, when

qγ (t) is easy to calculate, and when the resulting bands have appealing properties (Fleming & Harrington,
1991). Even when the general conditions for weak convergence could be fulfilled, calculating qγ (t) requires

determining the limit process sup0≤s≤t |Q (s)| to which the process sup0≤s≤t
√
n
∣∣∣f̂s − f (s)

∣∣∣ converges, and

this is not easy when only a sample of n systems is available.
The following section presents the weak approach of processes introduced by Belyaev (2000) and Belyaev &
Seleznjev (2000) as an extension of weak convergence of processes, which justifies the use of resampling in
the approximation of asymptotic distributions.

2.4. Weakly Approaching Distributions
Let {L (Un)}n≥1 and {L (Vn)}n≥1 be two sequences of distributions of random variables Un and Vn which
have values on Hn, a metric space with metric dn, and let Cb (Hn, dn) be the set of all bounded real-valued
continuous functions on Hn.

Definition 2. (Belyaev, 2000) The distributions {L (Un)}n≥1 weakly approach {L (Un)}n≥1, denoted by

L (Un)
wa←→ L (Vn), n→∞, if for all h = h (·) ∈ Cb (Hn, dn) it holds that

E [h (Un)]− E [h (Vn)]→ 0, n→∞. (24)

Here after we make the assumption that the random variable Wn ∈ Wn (a metric space) is defined on the
same probability space of Un. Also suppose that the regular conditional distribution L (Un|Wn) exists.

Definition 3. (Belyaev, 2000) The Random distributions {L (Un|Wn)}n≥1 weakly approach {L (Vn)}n≥1

in probability, denoted by L (Un|Wn)
wa(P )←→ L (Vn), n → ∞, if for all h ∈ Cb (Hn, dn) the condition

E [h (Un)|Wn]− E [h (Vn)]
P−→ 0, n→∞ is satisfied. Here

P−→ denotes convergence in probability.

Lemma 1. (Belyaev, 2000) Let Un,Wn and Vn be as defined before. Suppose that L (Un|Wn)
wa(P )←→ L (Vn)

and let Zn be an Hn-valued random variable defined on the same probability space of Un, such that Zn
P−→
w

0, n→∞. Then,

L (Un + Zn|Wn)
wa(P )←→ L (Vn) , n→∞. (25)

The notion of weakly approaching establishes a variant of Lyapunov’s Central Limit Theorem (CLT) for Rk,
as follows. Let Un = {U1n, . . . ,Unn}, n = 1, 2, . . ., be a triangular scheme of independent vector-valued

random variables, where for each n, Uin = (U1in, . . . , Ukin)
T

. Let C in, i = 1, . . . , n be the covariance matrix
between the k variables of Uin and define U·n =

∑n
i=1 Uin, µ·n =

∑n
i=1E (Uin) and C·n = (1/n)

∑n
i=1 C in.

Theorem 2. CLT in Rk (Belyaev, 2000) Suppose that for some constants δ > 0 and c = c (2 + δ) <

∞, E |
√
nUhin|

2+δ ≤ c for all (i, n) ∈ T . Then it holds that

L
(√
n (U·n − µ·n)

) wa↔ Nk
(
0k,C·n

)
, n→∞, (26)

where Nk
(
0k,C·n

)
is the k-dimensional normal distribution with mean 0k and the covariance matrix C·n.
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Now consider a triangular scheme Un = {U1n, . . . ,Unn} of independent vector-valued random variables with
Uin ∈ Rk, (i, n) ∈ T , where T = {(i′, n′) i′ = 1, . . . , n′, n′ = 1, 2, . . .}. Let J?1n, . . . , J

?
nn be the indexes of a

resample from Un, indicating which of the observations Uin is chosen as the i-th element in the resample.
Let N?

hn =
∑n
i=1 I (J?in = h) be the number of times that the observation h is drawn in the resample and

define the vector-valued random variable

U?0
·n :=

n∑
i=1

(N?
in − 1) Uin.

Theorem 3. CLRT in Rk (Belyaev, 2000) Suppose the assumptions of Theorem 2 are fulfilled and that
E [Uhin] = µhn, that is, the expectation does not dependent of i. Then, it holds that

L
(
U?0
·n
∣∣Un) wa(P )←→ L (U·n − µ·n) , n→∞. (27)

In general, the resampling process consists of simulating G copies {J?r1n, . . . , J
?r
nn}, r = 1, . . . , G, (which are

used to approximate L
(
U?0
·n
∣∣Un)). Then, U?0r

·n =
∑n
i=1 (N?r

in − 1) uin is obtained for r = 1, . . . , G, where
uin is the observed value of Uin. So, for any Borel set A ⊂ Rk it has that

1

G

G∑
r=1

I
(
U?0r
·n ∈ A

) P−→ P
(
U?0
·n ∈ A

∣∣Un) , G→∞. (28)

Belyaev (2000) shows that to assess the accuracy of some nonparametric estimators, it is necessary to consider
more general spaces than Rk. For instance, for many non-parametric statistical models it is necessary to
consider the Skorokhod space D [0, t] , t > 0, of the so-called cadlag functions. That is, the set of all real
functions v (·) defined in [0, t] such that for all s ∈ (0, t) there are limit values v (s± 0) = limh↓0 v (s± h) and
v (s) = v (s+ 0).

Theorem 4. CLRT in Skorokhod space (Belyaev, 2000). For the Un = {U1n (t) , . . . , Unn (t)} triangu-
lar scheme of D[0, t]-valued random variables which are independent for each n = 1, 2, . . .. Let U·n (t) =∑n
i=1 Uin (t). Suppose that E [Uin (s)] = µn (s) , i = 1, . . . , n, s ∈ [0, t] and that there are positive constants

c1, c2, c3 and δ > 0 such that for every 0 ≤ t1 ≤ s ≤ t2 ≤ t.

C-1. nE[(Ujn (t2)− Ujn (t1))
2
] ≤ c1 |t2 − t1|(1+δ)/2

,

C-2. n2E[(Ujn (s)− Ujn (t1))
2

(Ujn (t2)− Ujn (s))
2
] ≤ c2 |t2 − t1|1+δ

, and

C-3. E
[
|
√
nUjn (s)|2+δ

]
≤ c3.

Then, it holds that

L

 n∑
j=1

(
N?
jn − 1

)
Ujn (·)

∣∣∣∣∣∣Un
 wa(P )←→ L (U·n (·)− µn (·)) , n→∞. (29)

3. Simultaneous Confidence Bands for the Expected Discounted Warranty Cost
In constructing simultaneous confidence bands for B∗ (t) it is important to assess the distribution of the

unobservable processes
√
n
(
B̂

(n)
t −B∗ (t)

)
. Theorem 4 and the use of resampling allow approximating rel-

evant distribution when information about an initial sample of n systems is available. For this purpose, define

U·n (t) =
√
n
(
B̂

(n)
t −B∗ (t)

)
=

n∑
j=1

1√
n

(
B̂

(j)
t −B∗ (t)

)
=

n∑
j=1

Ujn (t) (30)

where,

Ujn (t) =
1√
n

(
B̂

(j)
t −B∗ (t)

)
, (31)
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are stochastic processes in D[0, t], which can be arranged in a triangular scheme Un.
To use the CLRT in D[0, t], it must be verified that the processes Ujn (t) satisfy the conditions C-1, C-2 and
C-3 established in Theorem 4, which is summarized in the following theorem (see proof in Lopera (2014))

Theorem 5. Let Ujn (t) be as defined in (31). Then for every 0 ≤ t1 ≤ s ≤ t2 ≤ t <∞, there exist positive
constants c1, c2, c3 and δ > 0, such that

C-1. nE[(Ujn (t2)− Ujn (t1))
2
] ≤ c1 |t2 − t1|(1+δ)/2

,

C-2. n2E[(Ujn (s)− Ujn (t1))
2

(Ujn (t2)− Ujn (s))
2
] ≤ c2 |t2 − t1|1+δ

, and

C-3. E
[
|
√
nUjn (s)|2+δ

]
≤ c3.

The following corollary formalizes the application of the CLRT to warranty cost processes.

Corollary 1. Consider a sample of n independent copies of
(
B̂ i
t , C

i, i = 1, . . . ,m
)
t≥0

and the triangular

scheme Un (t) = {Un1 (t) , . . . , Unn (t)} with Ujn (t) given in (31). Then, for the process

U?0·n (t) =

n∑
j=1

(
N?
jn − 1

)
Ujn (t) , (32)

one can show that

L
(
U?0·n (t)

∣∣Un) wa(P )←→ L (U·n (t)) , n→∞. (33)

Proof. By applying Theorem 5 over the process Ujn (t), the necessary conditions for Theorem 4 are obtained,
from whose application the result is obtained.

In practice the processes Ujn (t) are unknown and they need to be estimated. The following section uses
estimations of the processes Ujn (t) to construct simultaneous confidence bands based on resampling.

3.1. A Proposal for Simultaneous Confidence Bands for the Expected Warranty Cost
The unobservable Ujn (t) can be rewritten as follows:

Ujn (t) = Ûjn (t) + Ũjn (t) , (34)

where

Ûjn (t) =
1√
n

(
B̂

(j)
t − B̂(n)

t

)
y Ũjn (t) =

1√
n

(
B̂

(n)
t −B∗ (t)

)
.

The following result establishes that the weakly approaching of the process U?0·n (t), given in (32), is kept in
an estimated version of itself.

Corollary 2. The process Û?0·n (t) =
∑n
j=1

(
N?
jn − 1

)
Ûjn (t) has the property that

L
(
Û?0·n (t)

∣∣∣Un) wa(P )←→ L (U·n (t)) , n→∞. (35)

Proof. By using (34) in (32), the identity

U?0·n (t) = Û?0·n (t) + Ũ?0·n (t) , (36)

is obtained, where Û?0·n (t) =
∑n
j=1

(
N?
jn − 1

)
Ûjn (t) and Ũ?0·n (t) =

∑n
j=1

(
N?
jn − 1

)
Ũjn (t).

Notice that Ũ?0·n (t) ≡ 0 (since Ũ?0·n (t) does not dependent of j by definition and
∑n
j=1N

?
jn = n). Then,

Ũ?0·n (t)
P−→ 0, therefore by using Lemma 1 the result is obtained.

The latter allows proposing simultaneous confidence bands for the expected discounted warranty cost in
coherent systems under physical minimal repair.
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Theorem 6. An approximate 100 (1− γ) % simultaneous confidence band for B∗ (t), the expected discounted
warranty cost process for a coherent system under physical minimal repair on the interval [0, t], is

B̂
(n)
t ±

q?γ (t)
√
n
, 0 ≤ s ≤ t, (37)

where, q?γ (t) is the (1− γ) quantile of the empirical distribution of sup
0≤s≤t

∣∣∣Û?0·n (s)
∣∣∣.

Proof. Gonzalez & Bueno (2011) showed that the process U·n (t) weakly converges in the space D [0, t] to a
Gaussian stochastic process denoted by Q (t) which implies

sup
0≤s≤t

|U·n (s)| w−→ sup
0≤s≤t

|Q (s)| . (38)

By following the definition of simultaneous confidence bands introduced in Section and from (38) the idea
is finding qγ (t) such that:

P

(
sup

0≤s≤t
|Q (s)| ≤ qγ (t)

)
≈ 1− γ, (39)

where the process sup
0≤s≤t

|Q (s)|, to which the process sup
0≤s≤t

|U·n (s)| weakly converges is unknown. Using

Corollary 1

L
(
U?0·n (t)

∣∣Un) wa(P )←→ L (U·n (t)) , n→∞.

Thus, instead of finding qγ (t) satisfying (39), the purpose is obtaining q?γ (t) such that:

P

(
sup

0≤s≤t

∣∣U?0·n (s)
∣∣ ≤ q?γ (t)

)
≈ 1− γ. (40)

This is equivalent, using Corollary 2, to find the value of q?γ (t) such that

P

(
sup

0≤s≤t

∣∣∣Û?0·n (s)
∣∣∣ ≤ q?γ (t)

)
≈ 1− γ. (41)

Thus, q?γ (t) can be chosen as the (1− γ) quantile of the empirical distribution based on resampling from

sup
0≤s≤t

∣∣∣Û?0·n (s)
∣∣∣. Thus, considering that

sup
0≤s≤t

∣∣∣Û?0·n (s)
∣∣∣ = lim

M→∞
max
tj∈A

∣∣∣Û?0·n (tj)
∣∣∣ , (42)

where A = {t0 = 0 ≤ t1 ≤ · · · ≤ tM−1 ≤ tM = t} is a partition of interval [0, t], then, with a value of M large
enough, it holds that

P

(
B̂

(n)
t −

q?γ (t)
√
n
≤ B∗ (s) ≤ B̂(n)

t +
q?γ (t)
√
n

: 0 ≤ s ≤ t
)
≈ 1− γ, (43)

such that B̂
(n)
t ± q?γ (t) /

√
n, 0 ≤ s ≤ t, is an approximate (1− γ) level simultaneous confidence band for

B∗ (t) within interval [0, t].

4. Simulation Study
This section uses simulation to assesses the properties of the proposed simultaneous confidence bands. The
simulation study considers different scenarios which depend on factors that may affect the performance of
the bands established in Theorem 6.

4.1. Simulation Factors and Parameters
The following are the factors considered in the simulation study:
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• System type. A three-component parallel system and a 2-out-of-4 components system are considered.
To avoid confusion, both systems are treated as k-out-of-m systems, which are denoted by: a) Φ1:3

t for
the three-components parallel system or 1-out-of-3 components system, and b) Φ2:4

t for the 2-out-of-4
components system.

• Number of systems under warranty. This is denoted by n and corresponds to the number of inde-
pendent and identical copies of the repair/cost process used for constructing simultaneous confidence
bands. The levels considered are n = 10, 30, 50, 100, 500 and 1000.

• Discount function. Denoted by Hi(t) describes the consumer share of physical minimal repair costs
for the system during the W warranty term. Hi(t) = cie

−t, ci
(
1− tW−1

)
e−t, i = 1, . . . ,m were used.

• Number of resamples. This is denoted by G. The levels of G are 500, 1000, 5000 and 10000.

• Partition size. This is denoted by M and it determines how thin is the partition of the warranty
period, for the approximation of the supreme of the limit process given in (38). The levels of M are
100, 500 and 1000.

Table 1 summarizes the levels considered in the simulation factors.
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Table 1: Simulation Factors and Their Levels
Factor Levels

Φk:m
t Φ1:3

t , Φ2:4
t

n 10, 30, 50, 100, 500, 1000
Hi (t) cie

−t, ci
(
1− tW−1

)
e−t

G 500, 1000, 5000, 10000
M 100, 500, 1000

The following are fixed values or simulation parameters:

• Component failure distributions. For the systems considered (Φ1:3
t and Φ2:4

t ) in each component i,
whose associated lifetime is denoted Si, the respective cumulative distribution function Fi is considered,
thus: Fi (t) = Weibull(η = 1.0, β = 1.5), i = 1, 2; Fi (t) = Weibull(η = 2.0, β = 2.0), i = 3, 4.

• Warranty term. W denotes the time period within which the system is under warranty. The
simulation uses W = 5. This can be interpreted as representing five years or five thousand use cycles.

• Minimal repair cost by component. It corresponds to the minimal repair value in the i-th com-
ponent and is denoted ci. For this study, c1 = c2 = 3 and c3 = c4 = 5 were considered.

• Nominal coverage probability. Denoted by (1− γ). It specifies the expected probability that the
true mean cost function is bounded. A value of (1− γ) = 0.95 was considered.

• Number of simulations. This is denoted by N . A total of N = 10000 simulations were used.

The Weibull distribution for component lifetime was chosen for its frequent use in industrial reliability.
Besides, the values of Weibull distribution parameters set for each component ensure the distributions have
increasing failure rates, and a record of failures with at least one event during the established warranty term.
The constrains F1 ≡ F2 and F3 ≡ F4 were used to simplify the simulation scenarios.
Table 2 summarizes the fixed values for the parameters considered in the simulation study.

Table 2: Fixed Values of Simulation Parameters
Parameter Fixed value

Fi (t) , i = 1, 2 Weibull (η = 1.0, β = 1.5)
Fi (t) , i = 3, 4 Weibull (η = 2.0, β = 2.0)
W 5
ci c1 = c2 = 3, c3 = c4 = 5
(1− γ) 0.95
N 10000

The purpose, at this point, is to assess the performance of the simultaneous confidence band proposed in
each scenario, by estimating the coverage probabilities.

4.2. Coverage Probabilities

Let SCB
(n)
t be a simultaneous confidence band for the function B∗ (t) in [0, t], based on a sample of n systems,

then the coverage probability (CP) for SCB
(n)
t is defined as:

CP = P
(
B∗ (t) ∈ SCB

(n)
t

)
. (44)

If simultaneous confidence band SCB
(n)
t has a (1− γ) level, then CP ≈ 1− γ.

The following is the procedure followed during the simulations:

i. For each scenario, generate N simulations of n systems under warranty.
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ii. For each simulation:

(a) Observe the component failure processes in [0,W ], record C i(j), B̂
i(j)
t , B̂

(j)
t , i = 1, . . . ,m, j =

1, . . . , n and calculate B̂
(n)
t .

(b) Obtain G resamples of size n say {J?r1n, . . . , J
?r
nn}, r = 1, . . . , G. Calculate max

tj∈A

∣∣∣Û?0·n (tj)
∣∣∣ for each r,

where A is a partition of size M of [0,W ].

(c) Obtain q?γ (t), the (1− γ) quantile of the estimated approximate distribution for sup0≤s≤t

∣∣∣Û?0·n (s)
∣∣∣.

(d) Using (37) and the information on n systems, obtain a (1− γ) level simultaneous confidence band

for B∗ (t) (SCB
l(n)
t , l = 1, . . . , N).

iii. For each scenario, calculate the actual coverage probability for the simultaneous confidence band,

ĈP =
1

N

N∑
l=1

I
(
B∗ (t) ∈ SCB

l(n)
t

)
, (45)

where the indicator variables determine if the function B∗ (t) is totally contained within the resulting
bands in each simulation.

Since the function of the expected cost B∗ (t) is unknown, it is approximated with B̂
(n)
t for a sample of 100000

systems. Figure 1 shows the functions B∗ (t) for coherent systems and discount functions under study.

a) 1-out-of-3 components system b) 2-out-of-4 components system

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

t
0 1 2 3 4 5

0

1

2

3

4

t

Figure 1: Approximate B∗ (t) for systems under study. The solid curve is calculated for Hi(t) =
ci exp (−t) and the dashed cure is calculated for Hi(t) = ci

(
1− tW−1

)
exp (−t).

Then, the actual coverage probability for the proposed simultaneous confidence bands is obtained from (45).
The following are the results of the simulation study for each of the coherent systems considered.

4.3. Actual Coverage Probabilities for the 1-out-of-3 Components System
For each value considered of the partition size M of the warranty period, Figure 2 shows the results for
analyzing the effects of the size of resamples G and the size of sample n, over the actual coverage probabilities
for both discount functions.
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Hi (t) = ci exp (−t) Hi (t) = ci
(
1 − tW−1

)
exp (−t)
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Figure 2: ĈP for SCB
(n)
t , for the 1-out-of-3 components system, varying G for both discount

functions.

Note that for the values of M = 100 and 500 considered for the partition size, there are just small differences
between the ĈP curves for the resample sizes G studied in each discounted cost model considered. This
suggests that for this study the resample size G does not affect the behavior of the actual coverage probabil-
ities of the proposed bands. Nevertheless when dealing with fine partitions M = 1000, the actual coverage
probabilities increase because the larger number of resamples. Figure 2 shows that the differences in actual
coverage probabilities achieved by the two discount functions decrease when the number of systems increases,
reaching values close to the nominal level of (1− γ) used in the simulation.

4.4. Actual Coverage Probabilities for the 2-out-of-4 Components System
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Figure 3 shows the effect of the resample size G over the actual coverage probabilities under different sample
sizes, for both discount functions. Figure 3 shows that, similar to, the 1-out-of-3 system, when the number

Hi (t) = ci exp (−t) Hi (t) = ci
(
1 − tW−1

)
exp (−t)
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Figure 3: ĈP for SCB
(n)
t , for the 1-out-of-3 components system, varying G for both discount

functions.

of systems under warranty increases, the actual coverage probabilities of the simultaneous confidence bands
increase toward the confidence level (1− γ). At each level of the partition size M , the smaller coverage
probabilities suggest an improvement when the resample size G increases. It is worth noting that there are
large differences between the coverage probabilities for both discount functions when the number of systems
is smaller or equal than 100. But similar values to the nominal (1− γ) level are achieved in both discount
functions when the number of systems is greater than 100.
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5. Conclusions
For some statistical models, assessment of the precision of the statistical inferences may be carried out by
means of intensive computer methods (Efron, 1979; Davison & Hinkley, 1997; Belyaev, 2007). Resampling was
efficiently used in this work to obtain simultaneous confidence bands, for the expected discounted warranty
cost under physical minimal repair. This is a useful tool to assess the precision of the estimator, avoiding the
complications of the asymptotic analysis of the related stochastic processes.
The proposed computation of the simultaneous confidence bands is valid in a wide range of models that
satisfy with the general conditions identified in Section 2.
The proposed computation of the simultaneous confidence bands for the expected discounted warranty cost
of coherent systems under minimal repair is easy to implement in current statistical package, since it only
involves random sampling with replacement. Also, in the simulation scenarios studied in Section 4, reason-
able actual coverage probabilities were obtained, particularly when it there was a number of systems under
warranty greater than 100, a fine partition of the warranty term and a large number of resamples.
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