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Abstract

In this paper, a classification method based on L2 distance of unclassified observations to spatial
median of the data cloud for high dimensional data is proposed. Possibility of using depth ori-
ented medians in place of spatial medians is also considered. The performance of the proposed
method is examined by using simulations and the results are compared with the results from
some existing methods. Analysis of real data examples shows that median based methods yield
a good performance among their competitors.
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1 Introduction

In classifying objects in Rd, classification rules based on distance measures perform well under suitable
conditions and can be viewed as alternatives to popular methods in literature such support vector machine
(Vapnik, 1998), maximum depth classifiers (Ghosh and Chaudhuri, 2005) and logistic regression in low
dimension setting. Distance based classification methods include discriminant analysis(Fisher, 1936), centroid
based classifiers (Hastie et al., 2001), k-nearest neighbour rule, among others. Some of these methods have
intuitive features like optimality under necessary conditions. However, these methods are either based on
some distribution assumptions or assume some parametric surfaces. Some involve estimating location and
scale parameter whose model estimates are affected with outlying observations if present in the data.

When dimension of data cloud is greater than the sample size, implementation of many of the classifi-
cation methods becomes practically difficult especially for discriminant analysis and maximal depth classi-
fiers(Ghosh and Chaudhuri, 2005). Hall et al. (2009) proposed a classification method based on minimising L1

distance to component-wise median to solve classification problem in high dimension. This method performs
well, especially when competing distributions are heavy-tailed. Makinde and Chakraborty (2015) proposed
multivariate rank based classification methods.

Multivariate median is a nonparametric and robust estimate for the centre of multivariate distribution
or data cloud. The multivariate medians include spatial median, componentwise median, depth oriented
median, etc. In this paper, classification rule based on Euclidean distance of test observations to spatial
median is proposed. Use of depth oriented medians, such as half-space median, random projection median,
is raised. The performance of the proposed classifiers is compared with some existing classification methods
using simulation and real data sets.
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2 Classification rule

Suppose X is a d-dimensional random vector having a distribution F , which is assumed to be absolutely
continuous with respect to the Lebesgue measure Rd. The spatial median of X ∈ Rd with respect to
distribution F is defined as

m = arg min
y
E[‖y −X‖ − ‖X‖]

where ‖ · ‖ is the usual Euclidean norm. Alternatively, Makinde and Chakraborty (2015) defined a spatial
median as a point in F whose spatial rank outlyingness is zero. Liu et al. (1999) defined a data depth as
measure of how outlying or central an observation is with with respect to data cloud. It follows immediately
that the spatial median of the distribution F is the point in Rd with highest spatial depth value.

Consider J populations π1, π2, . . . , πJ , then assign x to population πk with distribution Fk if

D(x,mk) = min
1≤j≤J

D(x,mj), 1 ≤ j ≤ J

where D(x,mj) = ‖x−mj‖ and mj is the spatial median of the distribution Fj .
In practice, mj will hardly be known completely and we need to estimate them from the training samples.

Let Xj1,Xj2, . . . ,Xjnj
∈ Rd be a random sample from the population πj having distribution Fj . We define

the empirical spatial median m̂j as

m̂j = arg min
y

nj∑
i=1

[‖y −Xji‖ − ‖Xji‖].

The empirical classification rule for any y ∈ Rd can be defined as

assign y to πk if D(y, m̂k) = min
1≤j≤J

D(y, m̂j). (1)

We denote the classification rule in (1) by D-SM where there is no confusion.
It is observed that depth oriented median, observation with highest depth value in the data cloud, can

be used in place of spatial median for the above classification rule depending on the notion of data depth
considered. Depth oriented medians in literature include half-space median, simplicial median, projection
median, among others. However most of the depth oriented medians are limited in application due to their
computational difficulty especially for large dimension. Exact half-space median and simplicial median can
only be computed when dimension of data cloud is 3 and 2 respectively. Projection median is the observation
in the data cloud with highest depth value. It can be computed in high dimension. The classification rule
based on projection median, denoted by D-RP, assigns an observation to the group for which it attains
minimum L2 distance to the group projection median.

3 Numerical Results

3.1 Simulation

Here, some simulation studies to investigate the performance of our proposed classification method in high
dimension. Suppose there are 200 observations equally split between two competing groups G1 and G2. Each
experiment consists of measurements on 1000 features with 50 observations belonging to each training set
and 50 observations to each test set.

[Simulation 1] Suppose ith observation is in kth group, then Yi ∼ N(µk, I), where µk = (µk1, µk2, . . . , µk1000)>

with µ1j = 0 for 1 ≤ j ≤ 1000, µ2j = 0.7 if 1 ≤ j ≤ 500 and µ2j = 0 otherwise, I is an identity
matrix and k = 1, 2.

[Simulation 2] Suppose each experiment consists of measurements on independent features such that
for i ∈ G1, Yij ∼ exp(1) for 1 ≤ j ≤ 1000 and for i ∈ G2, Yij ∼ exp(1) + 1 if 1 ≤ j ≤ 500 and
Yij ∼ exp(1) if 501 ≤ j ≤ 1000.
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Figure 1: Box plot of proportions of correct classification for simulated data in high dimension.

[Simulation 3] Suppose the distribution F is normal mixture distributions, defined as

F =

{
N(µ1

1, I), with p
N(µ2

1, I), with 1− p

and the distribution G is multivariate normal distribution N(µ2, I), where p ∈ (0, 1) is the mixing
proportion, µ1

1j = 0 for 1 ≤ j ≤ 1000, µ2
1j = 0.7 if 1 ≤ j ≤ 500 and µ2

1j = 0 if 501 < j ≤ 1000 and I
is an identity matrix .

[Simulation 4] Suppose G1 consists of observations Yi, i = 1, . . . , 50 such that

Yi =

{
Y0

i , with p
Y1

i , with 1− p

where Y 0
ij ∼ exp(1) and Y 1

ij ∼ exp(1) + 1 for 1 ≤ j ≤ 1000. Suppose G2 consists of observations
Xi = {Xi1, Xi2, · · · , Xi1000}, i = 1, . . . , 50, where Xij ∼ exp(1) + 0.5 for 1 ≤ j ≤ 1000.

The mixing proportion p is taken to be 0.7 and 0.6 for simulations 3 and 4 respectively. We compare the
performance of the D-SM and D-RP with shrunken centroid regularized discriminant analysis (SCRDA)(Guo
et al., 2007), diagonal linear discriminant analysis (DLDA), centroid classifier (C.C) (Hastie et al., 2001),
nearest shrunken classifier (NSC) and componentwise median classifier (D-CM)(Hall et al., 2009). We have
tuned the threshold parameter for NSC to be 1 and parameters α and δ of SCRDA to be 0.2 and 0.5
respectively.

Figure 1 presents the performance of the classifiers in terms of proportions of correct classification. All
the competing classifiers achieve 100% proportions of correct classification in Simulation 1 except D-RP and
SCRDA while all the classifiers perform well in Simulation 2. In Simulations 3 and 4, D-SM and D-CM
perform competitively in terms of mean proportion of correct classification.

Small (1990) presented a survey of multidimensional medians. These include L1 median, Oja simplex
median, half-space median and simplicial median. These medians work well in low dimension setting. To
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Figure 2: Box plots of proportions of correct classification for simulated data in low dimension.

illustrate the performance of these classifiers in low dimension, we present a simulation study. Consider F and
G to be bivariate spherically symmetric distributions with centre of symmetries µ1 = (0, 0)> and µ2 = (δ, 0)>,
respectively. Suppose X1, . . . ,Xn1 and Y1, . . . ,Yn2 are random samples from F and G respectively, where n1
and n2 are taken to be 100. We simulate a new random sample Z1, . . . ,Zm from F and Zm+1, . . . ,Z2m from
G with m = 100 and compute the proportion of correct classification in Z1, . . . ,Z2m. The simulation size is
1000. For δ = 1, 2, normal and Laplace samples are considered. These multivariate medians are considered
in our simulated examples. D-SM is compared with L2 distance to half-space median (D-hm), L2 distance
to simplicial median (D-sm), L2 distance to Oja median (D-om), L2 distance to projection median (D-RP),
centroid classifier (Hastie et al., 2001) and maximal depth classifiers based on half-space depth(denoted by
HD), simplicial depth (denoted by SD) and Oja depth (denoted by OD) using the simulation procedure
described above.

Figure 2 presents the performance of competing classifiers in terms of proportions of correct classification.
Bayes equivalence of maximal depth classifiers based on half-space depth(HD), simplicial depth(SD) and
Oja depth (OD) was established in Ghosh and Chaudhuri (2005). Under independence of features and
normality of competing classes, C.C is equivalent to Bayes rule. The fact that the mean proportion of correct
classification of maximum depth classifiers and distance based classifiers are equivalent suggests that distance
based classifiers are equivalent to Bayes rule. However, this claim needs theoretical verification and validity.

3.2 Real data

Two data sets are analysed to illustrate the performance of the proposed classification methods. The real
datasets are lung cancer data and Leukaemia data, and are available in R package rda. Colon cancer data
is a sparse data with two classes of sizes 22 and 40 with 2000 genes. Feature selection is performed on the
colon cancer data to remove non-contributing genes using SCRDA with parameters α = 0.2 and δ = 0.4 as
discussed in Guo et al. (2007). We choose a random training sample of size 15 and 30 while random test
samples are taken to be the complementary of the training data. Leukaemia data consists of two groups
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Figure 3: Box plot of proportions of correct classification for colon cancer and leukaemia data.

of sizes 27 and 11 with 3051 features. Feature selection is performed on the leukemia dataset to remove
non-contributing genes using SCRDA with parameters α = 0.1 and δ = 0.9. Random training samples of
sizes 15 and 7 are chosen and while random test samples are taken to be the complementary of the training
data. The performances of D-SM and D-RP are compared with that of SCRDA, DLDA, NSC, D-CM and
C.C. The choice of values of parameters α and δ for SCRDA classifier is as considered for feature selection.

Figure 3 present the proportions of correct classification of competing classifiers for colon cancer and
leukaemia data using boxplots. All the classifiers perform well for leukaemia data. Averages of proportions
of correct classification of SCRDA, C.C, NSC, D-CM, D-SM and D-RP(distance to projection median) are
0.9956, 0.9994, 0.994, 0.9975, 0.9975 and 0.9706 respectively. For colon cancer data, D-sm and D-RP compete
well with their competitors, however D-RP performs best. Averages of proportions of correct classification of
SCRDA, C.C, NSC, D-RP, D-CM and D-SM are 0.8518, 0.8682, 0.7506, 0.9047, 0.8641 and 0.8641 respectively.

4 Conclusion

Classification rule based on spatial median and generally, depth oriented median perform well when the
dimension is less than sample size depending on the notion of data depth. However in high dimension, use of
depth oriented median is limited due to computational difficulty. Classification method based on L2 distance
of test observation to spatial median and projection median can be computed for any dimension.
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