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Abstract 

 

This paper provides a new method of specifying a distance function in applying the Nearest-Neighbor 

Imputation Method (NIM). We also propose utilizing a big data on the Internet in applying the NIM. 

In this paper, we show the applicability of NIM for imputing missing values on turnover, especially of 

restaurant business, in the Japanese 2012 Economic Census for Business Activity utilizing the 

“Restaurant Web Data” namely a “Big Data” which offers information on restaurants to consumers in 

Tokyo. While we apply the NIM, we must find a donor, which is the closest in the distance function 

specified in this paper to the unit with a missing value to be imputed. The distance function is defined 

as a sum of the following two variables; first, geographical distance between the unit with the missing 

value and the donor, second, a weighted sum of dummy variables, each of which takes a value of zero 

if the donor has the same characteristic or belongs to the same group of the unit with the missing value, 

and otherwise takes a value of one. To the best of our knowledge, we have no common method to 

specify weights for these dummy variables. In this paper, we weighted these dummy variables by 

estimating the appropriate proportions based on the regression coefficients. By using the distance 

function as defined above, we found the NIM works fairly well. 

 

Keywords: Nonresponse; Big Data; Regression; Japanese 2012 Economic Census for Business 

Activity. 

 

1. Introduction 

Bankier (2000)’s Nearest-Neighbor Imputation Method (NIM) is widely applied to impute missing 

values in surveys. We applied the NIM for imputing the missing values on turnovers in the records of 

restaurants in Tokyo surveyed by the Japanese 2012 Economic Census for Business Activity. We 

limited the scope of imputing the missing values to those records of restaurants in Tokyo because the 

nonresponse rate is relatively high in the restaurant business than other businesses and because we 

have more restaurants in Tokyo than in other areas in Japan. This imputation process has the following 

two steps: First, we linked each record of a restaurant in Tokyo in the Japanese 2012 Economic 

Census for Business Activity with the record, identified as that of the same restaurant, in a “Restaurant 

Web Data” namely a “Big Data,” in which a major Tokyo restaurant web information supplier service 

compiled their own database. We call the dataset consisting of these linked records as described above 

as a “Linked Dataset.” Second, we defined a distance function in which the statistical distance is 

defined as the distance between a unit with a missing value and the donor for applying the NIM.  

The distance function has two kinds of components. The first component is the geographical distance. 

Each record in the “Restaurant Web Data” has geographical latitude and longitude coordinates, which  
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enables us to calculate the geographical distance between any two restaurants in the dataset. The 

second component in the distance function is an index of the closeness in the statistical characteristics 

of any two restaurants, i.e., the kind of restaurant business, the cuisine category, the number of 

employees and so on. This index is the weighted sum of dummy variables, each of which takes a value 

of zero if two restaurants have the same characteristic or belong to the same group and otherwise takes 

a value of one.  

In this paper, first, we propose a new method of defining the appropriate proportions of these weights 

by regression coefficients. In section two we discuss the relevant literature, and in section three we 

discuss choosing weights in the distance function between any two restaurants in applying the NIM. In 

section four we discuss our conclusions. 

 

2. Literature  

An automatic error localization method was originally proposed by Fellegi, and Holt (1976) in which 

erroneous fields are located in the first step and other new values for the erroneous fields are imputed 

in the second step. An alternative method for automatic editing, called the NIM, does not employ 

separate steps as the Fellegi-Holt method does but achieves the localization of erroneous fields and the 

imputation of new variables simultaneously. Bankier et al. (1994) describes the background of this 

development of the NIM. To perform imputation by the NIM, we need to set a donor pool, i.e., a set of 

potential donors for hot deck imputation. We must define a distance measure between a unit i with a 

missing value in its record and another unit j which belongs to the donor pool. Let DNIMij denote the 

distance between these two units, the unit i and the unit j. We assume the unit i has a record depicted 

by a vector of (xi1,…,xiS) and the unit j has a record (xj1,…,xjS). We can define the DNIMij as the 

following if we specify the nonnegative weighting values of ws (s=1,…,S):  

 

DNIMij = w1 D1(xi1, xj1) + …. + wS DS(xiS, xjS)   (i=1,…,I,  j=1,…,J)                                             (1) 

 

, where D1 through DS are dummy variables that take a value of zero (Ds =0, s=1,…,S) if xis=xjs and 

otherwise take a value of one (Ds =1, s=1,…,S). We also assume ws=0 (s=1,…,S) if xis (i=1,…,I,  

s=1,…,S) has a missing value. In this paper, we propose a new method to define the proportions 

among ws (s=1,…,S) in the formula (1) based on regression analysis. 

 

3. Estimating Weights in the Distance Function by Regression Analysis 

 

3.1 Distance Function for the NIM 

In performing the NIM, a distance function describes a statistical distance between a unit with a 

missing value on turnover and the other unit of its donor. In this paper we define the distance function 

as the “Distance Function for the NIM” (DFNIM). We defined the “Left Hand Side (LHS)” value 

DFNIMij (i=1,…,I, j=1,…,J) of the function DFNIM, as sum of the two kinds of variables, i.e., (a) 

geographical distance Distij (i=1,…,I, j=1,…,J) between a restaurant, the unit i (i=1,…,I), with a 

missing value on the turnover and the other unit j (j=1,…,J) serving as a donor for imputing the 

missing value, and (b) the weighted sum of the dummy variables which represent a statistical distance 

between a restaurant, the unit i (i=1,…,I), with a missing value on the turnover and the other unit j 

(j=1,…,J) serving as a donor. We defined the unit i (i=1,…,I) as belonging to a group or a set of 

restaurants with a missing value to be imputed, and the unit j (j=1,…,J) as belonging to a group or a 

set of donors, which means that the union of these two sets is always a null set. 

For the elements composing the latter variable, i.e., (b) the weighted sum, of the DFNIM, we adopted 

the following four dummy variables, each of which takes a value of zero or one depending on the state 

of being close or distant, respectively, between the unit i (i=1,…,I) and the other unit j (j=1,…,J). 

 

(i) A dummy variable Ddb
ij that takes a value of zero when the unit i with a missing value belongs to 

the same group of the “kind of restaurant business” of a donor, the unit j, and otherwise takes a value 
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of one. The information regarding the “kind of restaurant business” for a certain restaurant is only 

offered by the records of the “Restaurant Web Data” and not by the records of the Japanese 2014 

Economic Census for Business Activity. 

(ii) A dummy variable Ddc
ij takes a value of zero when the unit i with a missing value belongs to the 

same group of the “cuisine category” of a donor, the unit j, and otherwise takes a value of one. The 

information regarding the “cuisine category” for a certain restaurant is only offered by the records of 

the “Restaurant Web Data” and we do not find this information in the records of the Japanese 2014 

Economic Census for Business Activity. 

(iii) A dummy variable Dde
ij takes a value of zero when the unit i with a missing value belongs to the 

same group of the “number of employees” of a donor, the unit j, and otherwise takes a value of one. 

The information regarding the “number of employees” for a certain restaurant is only offered, in this 

case, by the records of the Japanese 2014 Economic Census for Business Activity and we find no such 

information in the records of the “Restaurant Web Data.” 

(iv) A dummy variable Ddf
ij takes a value of zero when the unit i with a missing value belongs to the 

same group of the “legal form of business” of a donor, the unit j, and otherwise takes a value of one. 

The information regarding the “legal form of business” for a certain restaurant is only offered by the 

records of the Japanese 2014 Economic Census for Business Activity and we find no such information 

in the records of the “Restaurant Web Data.” 

To sum up, the analytical form of the function DFMIN is as follows:  

 

DFNIMij = Distij + alpha ( gamma1 D
db

ij + gamma2 D
dc

ij + gamma3 D
de

ij + gamma4 D
df

ij )   

(i=1,…,I, j=1,…,J)                                                                                                                    (2) 

 

, where gamma1, gamma2, gamma3 and gamma4 in the “Right Hand Side (RHS)” of the formula (2) are 

the weighting coefficients for these four dummy variables and alpha in the RHS of the formula (2) is 

the scaling coefficient that adjusts the scale of the weighted sum of the dummy variables in the round 

brackets to the scale of Distij. We note that the weight of Distij in the RHS of the formula (2) is 

specified as unity. The first superscript “d” for each of Ddb
ij, D

dc
ij, D

de
ij and Ddf

ij in the RHS of the 

formula (2) represents “the state of being distant.” Each of the second superscripts “b,” “c,” “e” and “f” 

of these dummy variables represents the “kind of restaurant business,” the “cuisine category,” the 

“number of employees” and the “legal form of business” respectively. Each of these four dummy 

variables shows the co-identity between any two restaurants, the unit i and the unit j, in the sense of 

the “kind of restaurant business,” the “cuisine category,” the “class of the number of employees” and 

the “legal form of business” respectively. It is the “Linked Dataset” that enables us to obtain the 

information on all of these dummy variables so that we can organize the DFNIM as defined in formula 

(2). Although we define the DFNIM to show a statistical distance specifically between the unit i with a 

missing value and the unit j a donor, as we stated above, the DFNIM generally shows a statistical 

distance between any two restaurants. 

 

3.2. Choosing the Weights of the DFNIM by Regression Analysis 

As previously noted, the DFNIM in this paper is the sum of two elements; (a) the geographical 

distance between a unit with a missing value and a donor, and (b) the weighted sum of the above four 

dummy variables. The problem here is how to choose the weights for these four dummy variables. In 

the literature and to the best of our knowledge, we find no specific solution to this problem. In this 

paper we propose to apply the method of ordinary least squares (OLS) regression analysis for 

choosing the weights for these four dummy variables Ddb
ij, D

dc
ij, D

de
ij and Ddf

ij. 

We performed an OLS regression analysis regressing the turnover Salesj (j=1,…,J), for the unit j, on 

the dummy variable Drb
jk (j=1,…,J, k=1,…,K) of the k-th “kind of restaurant business” for the unit j, 

the dummy variable Drc
jl (j=1,…,J, l=1,…,L) of the l-th “cuisine category” for the same unit j, the 

“number of employees” Ej for the unit j, and Drf
jm (j=1,…,J, m=1,…,M) of the m-th “legal form of 

business” for the unit j, but on no constant term.  
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Based on the “Restaurant Web Data,” we established (K=)19 “kinds of restaurant business,” (L=)52 

“cuisine categories” and (M=)4 “legal forms of business.” As for the class of the number of employees, 

we defined the class so that each class has only one element as the number of employees. The formula 

(3) below is the analytical form of the regression equation. 

 

Salesj = beta11 D
rb

j1 +…+ beta1K Drb
jK + beta21 D

rc
j1 +…+ beta2L D

rc
jL  

+ beta41 D
rf

j1 + …+ beta4M Drf
jM  

+ (beta311 D
rb

j1 +…+ beta31K Drb
jK + beta321 D

rc
j1 +…+ beta32L D

rc
jL  

+ beta341 D
rf

j1 + …+ beta34M Drf
jM ) Ej + uj   (j=1,…,J)                                                         (3) 

 

, where uj is a random disturbance, and beta1k (k=1,…,K), beta2l (l=1,…,L), beta4m (m=1,…,M), beta31k 

(k=1,…,K), beta32l (l=1,…,L),and beta34m (m=1,…,M) are all unknown coefficients. The first 

superscript “r” of the three dummy variables Drb
jk (k=1,…,K), Drc

jl (l=1,…,L), and Drf
jm (m=1,…,M), in 

the RHS of the regression equation (3) represents “regression,” which means these three dummy 

variables are defined for the regression analysis but not for the DFNIM. Each of the second 

superscripts of these three dummy variables “b,” “c” and “f” represents the “kind of restaurant 

business,” the “cuisine category” and the “legal form of business” respectively. Each of the dummy 

variables Drb
jk, D

rc
jl, and Drf

jm, in the RHS of the regression equation (3) takes a value of one if the unit 

j belongs to the k-th “kind of restaurant business,” the l-th “cuisine category” and the m-th “legal form 

of business” respectively and otherwise takes a value of zero. 

The linear combination of the dummy variables Drb
jk, D

rc
jl, and Drf

jm in the round brackets in the RHS 

of equation (3) is the variable slope coefficient of Ej that varies, that varies depending on the values of 

these dummy variables Drb
jk, D

rc
jl, and Drf

jm and the values of coefficients of beta31k (k=1,…,K), beta32l 

(l=1,…,L) and beta34m (m=1,…,M). 

We omitted the constant term in the RHS of the regression equation to avoid the problem of dummy 

variable trap. We also omitted those dummy variables highly correlated with other dummy variables, 

specifically those dummy variables whose correlation coefficients are beyond 0.5. For estimating the 

equation (3), we used the dataset consisting of those records of units with no missing value on 

turnover, which means those records of donors, the unit j (j=1,…,J).  

We adopted the OLS regression analysis for choosing the weights because of the geometric nature of 

the OLS fitting procedure. The geometric interpretation of OLS regression analysis shows that the 

OLS fitting procedure is broken down into the following two steps. First, the step of orthogonal 

projection finds the vector of the fitted variables in the LHS of the regression equation as the 

orthogonal projection of the vector of the observed variables in the LHS onto the column space that 

the linear combination of the column vectors in the RHS span. Next, the step of finding an estimate of 

coefficients in the RHS finds an estimate of coefficients which are the weights of the column vectors 

in the RHS so that the linear combination with these weights of the column vectors gives the vector of 

the fitted variables in the LHS. 

The geometric interpretation noted above gives an intuitive justification to the procedure for choosing 

the weights gamma1 through gamma4 for those variables Ddb
ij, Ddc

ij, Dde
ij and Ddf

ij in the RHS of 

formula (2), the DFNIM, with the estimates of the coefficients of Drb
jk, D

rc
jl, Ej and Drf

jm which are 

obtained by performing OLS regression for the equation (3). 

 

3.3 Obtaining the Weights of the DFNIM 

We estimated the regression equation (3) using a dataset of the donor pool, with the sample size of 

(J=)1,960. We have K estimates for the coefficients of Drb
jk, (k=1,…,K), L estimates for the 

coefficients of Drc
jl, and M estimates for the coefficients of Drf

jm. We obtained the weighted average 

for these coefficients with weights of the sample size of the events in which each of the dummy 

variables takes a value of one. Table 1 shows the weighted averages of these coefficients. As the Table 

1 shows, the weighted average of the coefficients for the “legal form of business,” Drf
jm (m=1,…,M) is 

negative, so we set the value of the corresponding coefficient in the formula (2), gamma4, as zero. We 
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obtained the estimate of the slope coefficient for the variable Ej by performing the OLS regression 

analysis on the following equation (4) instead of obtaining the weighted average of the estimates for 

those coefficients in the round brackets in the RHS of equation (3). 

 

Salesj = delta0 + delta1 Ej + vj   (j=1,…,J)                                                                               (4) 

 

, where vj is a random disturbance and delta0 and delta1 are unknown coefficients. 

We estimated the regression equation (4) using the same dataset that we used for estimating the 

equation (3). Table 2 shows the result of estimating equation (4). 

 

              Table 1: The Weighted Average of the Coefficients in Equation (3) 

Dummy Variable Weighted Average of the Estimated 

Coefficients 

Drb
jk (kind of restaurant business) 16,521,140 

Drc
jl (cuisine category) 12,184,936 

Drf
jm (legal form of business) -19,808,959 

 

              Table 2: Estimating the Result of Equation (4)  

 Estimate Standard. Error t-value P-value 

delta0 -15,156,322 1,553,051 -9.759 < 2 x 10-16 

delta1 8,584,145 142,450 60.261 < 2 x 10-16 

 

Based on the estimates shown in Table 1 and Table 2, we set the coefficients in the RHS of formula 

(2), the DFNIM, as follows: 

 

gamma1 = 16,521,140 

gamma2 = 12,184,936 

gamma3 =   8,584,145 

gamma4 =                 0 

 

3.4 Imputing the Missing Values of Turnovers and Assessing the Imputation Result 

We applied the estimated values obtained in the previous section to gamma1 through gamma4 in the 

RHS of formula (2), the DFNIM. We also adopted the inverse of 3,000 as the value of alpha in the 

RHS of the same formula to adjust the scale of the weighted sum in the round brackets in the RHS of 

formula (2) to the scale of Distij in the same formula. 

 

alpha = 1/3,000 

 

We imputed missing values by the NIM based on the distance function (2) with the specific 

coefficients discussed above. We imputed the missing values on the turnover of restaurants in Tokyo 

in the file of the Japanese 2012 Economic Census for Business Activity. Since the imputation 

performed was based on the NIM, it was preferable to find the donor very near to the unit with a 

missing value in the senses both of geographical and of statistical distance for these restaurants. Based 

on this reasoning, we adopted the occurring rate of the events where the unit with missing value 

belongs to the same group as the donor. 

We imputed missing values for turnover of (I=)1,196 restaurants in Tokyo. For each of the restaurants 

with the missing value, we selected a donor nearest to the unit with the missing value out of (J=)1,960 

donor candidates, which are the other restaurants in Tokyo belonging to the donor pool. Out of 1,196 

trials for imputation, the second column of the third row and the fourth row in Table 3 show the 

occurring ratio of the events where the donor belongs to the same “kind of restaurant business” of the 
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unit with a missing value and the occurring ratio of the events where the donor belongs to the same 

“cuisine category” of the same unit with a missing value.  

The second column of the second row in Table 3 shows the occurring ratio of the events where the 

donor belongs to the same ward in Tokyo of the unit with a missing value, again out of 1,196 trials for 

imputation. The higher occurring ratio for these events suggests that the donors are more likely to have 

similar characteristics to those of the unit with missing value. The figures of the occurring ratio of the 

events shown in Table 3 suggests that the NIM with the distance function proposed in this paper works 

fairly well. 

 

Table 3: Occurring Ratio of Events Where the Donor Belongs to the Same Group of the Unit with 

Missing Value 

Event of Belonging to the … Occurring Ratio 

Same Ward in Tokyo 0.722 

Same “kind of restaurant business”          0.750 

Same “cuisine category”          0.944 

 

4. Conclusions 

We proposed a new method of defining the distance function in the NIM. The new method is to 

determine the values of weighting coefficients of the distance function in the NIM based on regression 

analysis. With a distance function defined by this method, more than 70% of donors belong to the 

same “ward” as well as to the same “kind of restaurant business” as the unit with a missing value. As 

for “cuisine category,” we found more than 90% of the donors have the same characteristic as the unit 

with a missing value. These facts clearly suggest that the proposed method for determining the weights 

in the distance function in the MIN works fairly well. 
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