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Abstract

In this paper we discuss on the methods of estimating the parameters of the Seasonal FISSAR model. First we
implement the regression method based on the log-periodogram and the classical Whittle method for estimating the
memory parameters. For estimating all model parameters simultaneously, innovation parameters and memory pa-
rameters, the maximum likelihood method, and the Whittle method based on the MCMC simulation are considered.
We can show empirically the consistency and we investigate the asymptotic normality of the estimators by various
results from simulation. The simulation results give the average values, the corresponding sample standard deviation
(sd), the root mean square error (RMSE) and the mean absolute error (MAE) of the estimation procedures based on
Monte Carlo replications.
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1 Introduction

Statistics for spatially referenced data are becoming increasingly important as they are nowadays collected in large
quantities in various areas of science. This requires specific probabilistic models and corresponding statistical methods.
Boissy et al. [2005] had extended the long memory concept from times series to the spatial context and introduced the
class of fractional spatial autoregressive model. Shitan [2008] used independently this model, called the Fractionally
Integrated Separable Spatial Autoregressive (FISSAR) model to approximate the dynamics of spatial data when the
autocorrelation function decays slowly.

Inference problems in spatial location or two-dimensional process have been studied by several authors. Hosking [1981],
Yajima [1985] and Fox and Tagqu [1986] have discussed problems of asymptotic estimation based on one-dimensional
fractionally differenced autoregressive process. Sethuraman and Basawa [1995] have studied the asymptotic proper-
ties of the maximum likelihood estimators in two-dimensional lattice. The authors considered models which permit
dependence between time points as well as within the group of individuals at each time point.

Periodic and cyclical behaviours are present in many observations, and the Seasonal FISSAR model will have a
lot of applications, including the modelling of temperatures, rainfalls when the data are collected during differend
seasons for different locations. Cisse et al. [2016] incorporated Seasonal patterns into the FISSAR, thus introduced
the Seasonal FISSAR model and discussed on the statistical properties of the model. In this paper, we investigate
on estimating procedures of this model parameters. Spatial analysis includes a variety of techniques, many still in
their early development, using different analytic approaches and applied in fields as diverse as econometrics techniques.

The paper is organized as follows. In the next Section, we compute the methods for estimating the model parameters.

The methods are illustrated in Section 3 with an extensive simulation study and an empirical applications. Conclusions
are given in Section 4.

2 Estimation Procedures

In this section, we discuss the methods of estimation of the memory parameters and examine the properties of the
estimators through a simulation study. The fundamental concept of parameter estimation is to determine optimal
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values of parameters for a numerical model that predicts dependent variable outputs of a function, process or phe-
nomenon based on observations of independent variable inputs.

Let {Xij}iyjez_'_ be a sequence of spatial observations on two dimensional regular lattices. The Seasonal FISSAR
process is defined as

(1 = ¢10B1 — ¢po1B2 + ¢p10¢01B1B2) (1 — 10 Bi — 101 B5 + 1001 B Bs)
x (1= B)™ (1= Bi)"* (1 - Bs)™ (1 - B5)™ Xi; = ey 1)

This equation (1) is equivalent to the following equations:

(1= ¢10B1) (1 = ¢o1B2) (1 = ¢h10B7) (1 = o1 B3) Xi5 = Wi; (2)
(1= B)™ (1-B)” (1- By)™ (1 - B3)”2 Wy Eij 3)

where s is the seasonal period, B; and B, are the usual backward shift operators acting in the " and j** direction,
respectively. In addition, the parameters d; and d2 are called memory parameters D1 and D2 are fractional parame-
ters and {ei;}, ; ¢z, is a two-dimensional white noise process, mean zero and variance o2. We denote {W;;} the
two-dimensional seasonal fractionally integrated white noise process.

,J€ELy

On the estimation procedure of the parameters models in times series, a well-known procedure is the Whittle Method.
It is known that under fairly general assumptions, it leads to consistent estimates and asymptotically normal. More
in the Gaussian case, it’s asymptotically efficient. Here we will present this method in spatial context and make a
comparison with a regression method based on the log-periodogram that we will present in following.

2.1 Log-periodogram Regression Method

Probably the most commonly applied semi parametric estimator in time series is the log-periodogram regression
estimator introduced by [Geweke and Porter-Hudak, 1983]. [Ghodsi and Shitan, 2009] provided a regression method of
estimating long memory processes in spatial context and we briefly describe this method for estimating the parameters
of the Seasonal FISSAR model.

Let

Hy = (1= B)" (1-Bi)"* (1 - B2)™ (1 - B5)™ Xy, (4)
and fx (A1, A2) the spectral density function of the process defined in (1). Then fx (A1, A2) can be written as:

—2d _ e —2dz _ M —2D1 1 _ eishe

) —2Dy
Fx(A,Ae) = ]1 — Fr(h, ) (5)

where 5
O-E

A2 |1 — 1o e—M |2 [1 — gor e—i%2|? |1 — thrg e—i71 2 1 — oy e—i2 |2

Taking the natural logarithm in (5), we obtain:

fa(A1, X)) =

—ixn |2 —ixg|? —isag |2
log fx(A1,A2) = long(0,0)—dllogll—e —dzlog‘l—e —Dllog‘l—e
—ishg|? fr (A1, A2)
-D ’176 isha|” 4 1o LHCD 22) 7
’ ® 1 (0,0) @
Replacing A1 by wi,; and A2 by w2 ; in (7), we obtain
. 2 . 2 ) 2
log fx (w1,j,w2;) = log fu(0,0) — dilog ‘1 —e WLl —dylog ‘1 —e 23| — Djlog ‘1 — e MWL
—q 12 fH(w1 iy W2 )
D ’1 —emiswag | | og JHWLI W2,5) 8
e T (0.0) ®

Denote N1 X N» the size of the regular rectangle when the process {X;;} is defined, and define

2
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to be the periodogram of the process. By adding log I (w1 j,w1,;) in (8) , we obtain:

. 2 ) 2 . 2
log I (w1,5,w1,;) = log fu(0,0)—dilog ‘1 —e "Il —dylog )1 —e 23| — Djlog ’1 —e WLd
—iswz |2 fr (w5, w2,5) I (w15, w1,5)
-D ‘l—e w25 4o 32925) 4 Jog § W15 10
? & fH(OaO) fX(w1,]7w2,]) ( )

fr(w1,5,w2,5)

71 (0.0) would be negligible when compared with the other

If wi1,; and w1 ,; are close to zero, then the term log

terms of (10), and equation (10) reduces to:

2 2 .
— dzlog )1 — e w2

. 2 _ 2
log I (w1,5,w1,;) = log fu(0,0)—dilog ‘1 —e " — D1 log ’1 —e WLy

I(CUl’j,wl,j) (11)

2
+ lo .
& (@i, ws.)

1— e—iswzj

_D,

Therefore we can write (11) as a multiple regression equation
X;=Po+ B12Z1,5 + B2Z2; + B3Z3,5 + PaZsj + €5 (12)

e 512
where X; =log I (w1,j,w1,5), Bo=log fu(0,0), f1 = —di, B2 = —da, fs =—D1,Bs=—Da, Z1; =log|l —e “ni|",
—iwe ]2 —iswq 5|2 iswo ;|2 I(wy,j,w1,;
Za,; =log|1—e 2fJ| . 23,5 :10g|1—e 1’J| y Zaj =log|1—e 2vJ} , and ¢; :lOgW' The har-
monic ordinates wi,; and w2 ; are the jth element of wi and ws vectors, respectively, such that

2

w1 = —(—mh...,—1,1,...,ml,...,—ml,...,—l,l,...,ml),
N
2motimes
27
we = —(—ma,...,—ma,—ma+1,...,—ma+1,...,=1,...,=1,1,...,1,...,ma,...,ma);
No N—— N’
2m1times 2mqtimes 2m1qtimes 2m1qtimes 2mqtimes

for j = 1,2,...,4mim2 where mi = [\/Ni] and m2 = [v/N2]. We refer to Gh0d51 and_ Shitan (2009) [Ghodsi and
Shitan, 2009] more details. Now di1, d2, D1 and D2 may be estimates as 7,6’1, ,82, ,35, and 64 respectively by
last squares estimation as in the usual multiple regression. The least squares optimality criterion minimizes the sum
of squares of residuals between actual observed outputs and output values of the numerical model that are predicted
from input observations.

2.2 Whittle Method

The Whittle method was studied by many authors to estimate the long memory parameters and it is based on
evaluation of the Whittle likelihood function in temporal context. See for instance Kluppelberg and Mikosch [1993],
Kluppelberg and Mikosch (1994) Claudia Kluppelberg [1994],Mikosch et al. [1995], Embrechts et al. [1997]. Assuming
the process {Xi;}ijez, is a stationary Seasonal FISSAR model defined in (??), the Whittle likelihood function may

expressed as
2 wla]17w17J2)
13
3= 7w, ZZ : (13)
J1

(W1,51,W1,55)

where 8 = (di1,d1, D1, D2, $10, ¢o1, %10, %01) is the parameter vector of interest, I (w1,j,,w1,j,) is the periodogram

define as

N1 N3 2

1 i
I()\1,)\2) = m ZZX (kX1+1X71) (14)

k=11=1
4n? . . .
and g (w1,j;,w1,j,) = 2o f (w1,5,,w1,5,) and f(.,.) is the spectral density defined in (?7).

Hence, an estimation pls"ocedure of 8 is to minimize (13) over 8. The Whittle estimator is given by:

B3 = Argmin {02 (ﬂ)} (15)
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2.3 Exact Maximum Likelihood method

The maximum likelihood methods are considered among the most important estimation methods to estimate the long
memory parameter. These are the most effective methods to estimate all parameters simultaneously. The advantages
of the maximum likelihood estimation are discussed. Several researchers have used ML approach for estimating the
statistical parameters in spatial models. On spatial linear models Mardia [1990] studied ML estimators for Direct
Representation (DR), Conditional AutoRegression (CAR) models and Simultaneous AutoRegression (SAR) models
in gaussian case. In addition, the author gives extension of the method in multivariate case, block data and missing
value in lattice data. Earlier, Mardia and Marshall [1984] described the maximum likelihood method for fitting the
linear model when residuals are correlated and when the covariance among the residuals is determined by a parametric
model containing unknown parameters. Pardo-Igizquiza [1998] used the maximum likelihood method for inferring
the parameters of spatial covariances. The advantages of the ML estimation are discussed in Pardo-Igizquiza [1998]
for the multivariate distribution of the data and spatial analysis.

In this section, the maximum likelihood (ML) method for inferring the parameters of the Seasonal FISSAR model
introduced Cisse et al. [2016] is examined. The causal moving average representation for the processes {X;;} in (1)
and {W;;} in (2) are given in Cisse et al. [2016], Proposition (2.1):

400 o0 oo +oo

Xij = SN SlodorTeYeL Wi k—msyj—1-mas (16)
k

=0 1=0 m=0n=0

where
+o0o +oo +oo +oo
Wi =3 33> ¢uldi)du(dz)m (D1)dn(D2)eik—mor —i-nss» an
k=0 =0 m=0n=0
with
¢r(dr) = T(k+1DT(d1) ke ; ¢i(da) =< T+ 1DI'(d2) ifl€Zy (18)
0 ifk ¢ Z4 0 ifl ¢ Z
and
Tm+Dy) oy Tm+Dy) oy
ém(D1) = { T(m+1)I(Dy) A én(D2) = { T(n+ 1T (D) + (19)
0 ifm ¢ Zy 0 ifn ¢ Zy

Our ML method is presented for both the two-dimensional seasonal fractionally integrated white noise process and
the Seasonal FISSAR model. Asymptotic properties of maximum likelihood estimators for fractionally differenced
AR model on a two-dimensional lattice were considered by Sethuraman and Basawa [1995], who showed that the
usual asymptotic properties of consistency and asymptotic normality are satisfied under several conditions. Same
procedures in Sethuraman and Basawa [1995] have been developed for obtaining maximum likelihood estimates of the
parameters of the Seasonal FISSAR model and theirs asymptotic properties.

First we consider a {W;;} process defined as (2). We suppose that the stationary conditions are satisfied. Under this
assumption and the normality assumption of the bi-dimensional white noise, construction of the likelihood function
simply amounts to expressing the autocovariances of the process. Let {Y;;} define by

(1-B)" (1-B)2Y,; = ¢ (20)
The process {W;;} can be rewritten as
+oo oo
Wiz =3 wuldi)oi(de)Yios st (21)
k=0 1=0

Therefore

400 +o00 +oo0 400

Cov (Wis, Wiy5y) = Z Z Z @k(dl)‘pl(dﬂwkl (dl)‘pll(dZ)COV (Yi*51k1j*5217Yilfslklvjlfszh) (22)
k=0 1=0 k1=010,=0
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The likelihood function of the sample W = (W;;,i = 1,. =1,...,n) is seen to be

Ly
2 )
where Xy is the variance-covariance matrix of X determined by (22)

The likelihood function of the Seasonal FISSAR X = (X;;,i = 1,. =1,...,n) sample defined in a n x n regular
lattice will be defined by the same way.

LW _ (271_)7712/2‘2 1/2

l_l

2.4 MLE method based on Whittle function

Here we consider the maximum likelihood method based on approximated Whittle function that usually gives a good
estimator. This estimator is a parametric procedure due to Whittle with extension in the spatial context for the the
regular lattice. The estimator is based on the periodogram and it involves the function

/\1,/\2)
dAi1dAz, 23
/—7( fX )\17>\2>ﬂ) ! 2 ( )

where fx (A1, A2, 8) is the known spectral density function at frequencies A1 and A2 and § denotes the vector of
unknown parameters. The estimator is the value of 8 which minimizes the function L(). For the Seasonal FISSAR
process the vector 8 contains the parameter di,d2, D1, D2 and also all the unknown autoregressive parameters. For
computational purposes, the estimator is obtained by using the discret form of L():

I . .
ZZ{logfx(wl,h,m,m (1,91, @155) } (24)
i1 J2

4NN £ Ix (W11, w1,55, 8)

L(B) =

We have that the maximum likelihood estimator of the long memory parameters in temporal case is strongly consistent,
asymptotically normally distributed and asymptotically efficient in the Fisher sense (Dahlhaus,1989 Dahlhaus [1989]
and Yajima,1985 Yajima [1985].

With the Monte Carlo study, we can show empirically the consistency and the asymptotic normality of the estimators.

3 Simulations and Discussions

To demonstrate the performance of the proposed methods several experiments was performed. The Monte Carlo
study is designed to check variability of the Regression method in comparison with the classical Whittle method
and Whittle MCMC procedures. The simulation results give the average values, the corresponding sample standard
deviation (sd), the root mean square error (RMSE) and the mean absolute error (MAE) of the estimation procedures
based on 500 replications. All calculations were carried out with fixed seasonal period s = 4 of the following models
for various sample sizes summarized in Table (1).

innovation parameters memory parameters
Parameters ¢10  ¢o1 P10 o1 dy da D, Dy
Model 1 0.10 0.15 0.10 0.20 0.10 0.10 0.10 0.20
Model 2 0.10 0.15 0.10 0.20 0.10 -0.10 0.10 0.20
Model 3 0.10 0.15 0.10 0.20 0.10 —0.10 0.10 —0.20
Model 4 0.10 0.15 0.10 0.20 —-0.10 —-0.10 —0.10 —0.20

Table 1: Data generating processes

‘Which one to choose? This article provides several techniques for estimating parameters of the Seasonal FISSAR
model. MLE is of fundamental importance in the theory of inference and is a basis of many inferential techniques in
statistics. The first motivation behind ML estimation is to estimate all parameters simultaneously, unlike our proposal
regression method and Wittle method. On the other hand referring to the computational times the Regression
method bases on Log-periodogram would be preferred. unfortunately the AR parameters are typically not accurately
estimated. However, the computational complexity of maximum likelihood (if there are N x N sampling points, then
3 is an N x N matrix, and the process can be slow if NV is large) may be outweighed by its convenience as a very widely
applicable method of estimation. Generally, it is suggested to try all proposal estimation approaches and compare.
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4 Conclusion

The paper discuss and investigates the procedures estimation of the Seasonal FISSAR model. The classical Whittle
and a log-regression method are used to estimate the memory parameters of the model. For estimating the innovation
parameters and memory parameters simultaneously , the exact maximum likelihood method and the MLE based on
Whittle function are considered.

Several directions of extending the Seasonal model and estimating methods are immediate. In this work we focused
on a lattice setup, the essentials of this new model can be carried over to irregularly spaced data, in which case, weight
matrices must be appropriately chosen for each location.
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