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Abstract 

 

We follow the practical guidelines described in [1] on how to use RGCCA for the analysis of 

microbiome data. We illustrate the flexibility and usefulness of RGCCA on a dataset of 200 volunteers 

from two Chinese cities, in which we obtained metabolomics data. Through the reduction to a few 

meaningful components and the visualization of relevant variables, we identified possible relevant 

metabolites. 
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1. Introduction 

 
Microbiome data is intrinsically structured in blocks of variables. Indeed, a set of Operational 

Taxonomic Units (OTUs), at a certain level of taxonomy, can be grouped into specific genera and 

define, when observed on a set of individuals, a data matrix called block thereafter. Considering the 

number of genus, a microbiome dataset can then be viewed as multiblock data set. Dedicated 

modelling algorithms able to cope with the inherent properties of these multiblock datasets are 

therefore mandatory for harnessing their complexity and provide relevant information. 

In this article, we present the principles of Regularized Generalized Canonical Correlation Analysis 

(RGCCA) [2, 3, 4], a component-based framework for the integrative exploration of multiblock and 

high-dimensional datasets. We apply it to an original microbiome dataset generated Pr. P. Lee (City 

University of Hong Kong) and show how the obtained results are useful as RGCCA allows both the 

identification of relevant variables and the reduction of the multiblock datasets into a few meaningful 

components that can be easily described as a set of graphical representations.  

This paper is organized as follows. In section 2, the RGCCA optimization problems are briefly 

presented. Section 3 illustrates on a real and challenging microbiome dataset the usefulness of 

RGCCA.  
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2. Regularized Generalized Canonical Correlation Analysis 

 

The following section describes a general framework for multiblock component methods, RGCCA 

and variations, that was previously published [2, 3, 4]. For the sake of comprehension of the use of this 

method, their theoretical bases will be briefly described in the next subsection.  

 

Let us consider J data matrices 𝐗1, … , 𝐗𝑗, … , 𝐗𝐽 .  Each 𝑛 × 𝑝𝑗  data matrix 𝐗𝑗 = [𝐱𝑗1, … , 𝐱𝑗𝑝𝑗
]  is 

called a block and represents a set of 𝑝𝑗  variables observed on 𝑛 individuals. The number and the 

nature of the variables may differ from one block to another, but the individuals must be the same 

across blocks. We assume that all variables are centered. The objective of RGCCA is to find, for each 

block, a weighted composite of variables 𝐲𝑗 =  𝐗𝑗𝐰𝑗, 𝑗 = 1, … , 𝐽 (where 𝐰𝑗 is a column-vector with 𝑝𝑗 

elements), called block component, summarizing the relevant information between and within the 

blocks. The block components are obtained such that (i) block components explain well their own 

block and/or (ii) block components that are assumed to be connected are highly correlated. Indeed, 

RGCCA can process a priori information defining which blocks are supposed to be linked to one 

another, thus reflecting hypotheses about the structural connection between blocks. The second 

generation RGCCA [4] subsumes fifty years of multiblock component methods. It provides important 

improvements to the initial version of RGCCA [2] and is defined as the following optimization 

problem: 

 

(1)   

  

The scheme function 𝑔  is any continuous convex function and allows to consider different 

optimization criteria.  Typical choices of 𝑔  are the identity (leading to maximizing the sum of 

covariances between block components), the absolute value (yielding maximization of the sum of the 

absolute values of the covariances) or the square function (thereby maximizing the sum of squared 

covariances). The design matrix 𝐂 =  {𝑐𝑗𝑘}  is a symmetric 𝐽 × 𝐽  matrix of nonnegative elements 

describing the network of connections between blocks that the user wants to take into account. 

Usually, 𝑐𝑗𝑘 = 1 for two connected blocks and 0 otherwise. The 𝜏𝑗 are called shrinkage parameters 

ranging from 0 to 1. Setting 𝜏𝑗 to 0 will force the block components to unit variance (var(𝐗𝑗𝐰𝑗) = 1), 

in which case the covariance criterion boils down to the correlation. The correlation criterion is better 

in explaining the correlated structure across datasets, thus discarding the variance within each 

individual dataset.  Setting 𝜏𝑗 to 1 will normalize the block weight vectors (𝐰𝑗
⊤𝐰𝑗 = 1) , which applies 

the covariance criterion. A value between 0 and 1 will lead to a compromise between the two first 

options and correspond to the following constraint 𝐰𝑗
⊤ ((1 − 𝜏𝑗)𝑛−1𝐗𝑗

⊤𝐗𝑗 + 𝜏𝑗𝐈) 𝐰𝑗 = 1 in (1). We 

mention that depending on the choices of the triplet (𝐂, 𝜏𝑗, 𝑔), RGCCA recovers several important 

multivariate analysis methods (see [4] for a complete overview). 

 

Optimization problem (1) focuses on the construction of the first block-components. It is possible to 

obtain more than one block-component per block. Higher stage block components can be obtained 

using a deflation strategy (see [4] for details). This strategy forces all the block components within a 

block to be uncorrelated. This deflation procedure can be iterated in a very flexible way.  It is not 

necessary to keep all the blocks in the procedure at all stages: the number of components summarizing 

a block can vary from one block to another.  

 

Finally, as a component-based method, RGCCA can provide users with graphical representations to 

visualize the sources of variability within blocks and the amount of correlation between blocks. 

 

max
𝐰1,…, 𝐰𝐽

∑ 𝑐𝑗𝑘𝑔 (cov(𝐗𝑗𝐰𝑗 ,  𝐗𝑘𝐰𝑘))
𝐽

𝑗,𝑘=1
     s. t. (1 − 𝜏𝑗)var(𝐗𝑗𝐰𝑗) + 𝜏𝑗‖𝐰𝑗‖

2

2
= 1 ,  𝑗 = 1,  … ,  𝐽 
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The function rgcca()of the RGCCA package [5] implements a monotonically convergent algorithm 

for the optimization problem (1) – i.e. the bounded criterion to be maximized increases at each step of 

the iterative procedure –, which hits at convergence a stationary point  of (1).   

 

In this paper, we applied RGCCA to a microbiome dataset by following the eight-step guideline 

described in [1]: (i) construction of the multiblock dataset, (ii) preprocessing, (iii) definition of the 

between-block connections, (iv) determination of the shrinkage parameters, (v) choice of the scheme 

function, (vi) determination of the number of components per block, (vii) visualization of the results 

and (viii) assessment of the reliability of parameter estimates using bootstrap confidence intervals. 

 

3. Application of RGCCA to a microbiome dataset 

 
The human microbiome contains a vast array of microbes (e.g. bacteria and fungi) that are essential to 

health and provide important metabolic capabilities. Several statistical analysis tools have been 

proposed to examine differences between microbial communities and to identify the key OTUs that 

are responsible of the differences. None of them use the intrinsic multiblock structure of microbiome 

data.  Indeed, it appears that microbiome data are intrinsically structured in block since each OTUs 

belongs to one specific genus. Therefore, we apply RGCCA on a cohort of 200 volunteers from two 

Chinese cities. The main objective of this analysis was to identify OTUs within each genus that (i) 

explain their own block and (ii) important for the discrimination between the two cities.  

 
(ii) Construction of the multiblock dataset. The variables that compose each block have to be 

defined carefully. For microbiome data, each block represents a set of OTUs belonging to a specific 

genus. Overall, 25 blocks (resp. 21) associated with bacteria (resp. fungi) are considered. This 

grouping strategy makes blocks more interpretable and facilitates the interpretation of the RGCCA 

model. Figure 1 gives details about the structure used during the RGCCA modeling process. 

 

(i) Data processing and normalization. The sparse nature of microbiome data makes preprocessing 

and normalization steps crucial. After removing samples with less than 10 OTU counts, we removed 

OTUs with proportional counts across all samples below 0.1%.  We then applied the Cumulative Sum 

Scaling normalization [6] on the log transformed counts using the metagenomeSeq package [7]. In 

addition, after a centering step, to make blocks comparable, we divide each block by the square root of 

its number of variables. 

 

(iii) Definition of the design matrix C. In the search of OTUs discriminating the two Chinese cities – 

we applied RGCCA to identify variables from the 46 blocks (i.e number of genus considered in the 

analysis) associated with the binary variable indicating the site of each volunteer. The between-block 

connections associated with this objective of analysis are presented in Figure 1. We chose a consensus 

PCA structure oriented toward the explanation of the site by imposing an additional connection 

between the superblock and the site variable.   
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Figure 1. Path diagram describing the between-block connections encoded by the design matrix C. 

 

(iv) Choice of the scheme function 𝑔. In this case, it was not expected that all the genus, contributed 

equivalently to the process. The block selector behavior of RGCCA was favored by using the scheme 

function 𝑔(𝑥) = 𝑥4 (see [4] for details).   
 

(v) Determination of the shrinkage parameters and (vi) the number of block components. Due to 

the high number of variables, we set the shrinkage parameters to 1 for all blocks. It yields stable block-

components (large variance) while simultaneously taking into account the correlations between 

connected blocks. Also, one component for the first order blocks and two components (using a 

deflation strategy) for the superblock were built. We mention that the shrinkage parameters and the 

number of components per block could have been determined by V-fold cross-validation with respect 

to the prediction of the site.  

 

 (vii) Visualization of the results. As a component-based method, RGCCA provides the users with 

graphical representations. This graphical displays allows visualizing the sources of variability within 

blocks, the relationships between variables within and between blocks and the amount of correlation 

between blocks.  The space spanned by the global components is viewed as a compromise space that 

integrated all the modalities. This global space was useful for visualization and eased the interpretation 

of the results. The graphical display of the individuals obtained by crossing the two first global 

components and marked with their status is shown in Figure 2.  

 

(viii) Assessment of the reliability of parameter estimates. It is possible to use a bootstrap 

resampling method to assess the reliability of parameter estimates obtained using RGCCA. B bootstrap 

samples of the same size as the original data is repeatedly sampled with replacement from the original 

data. RGCCA is then applied to each bootstrap sample to obtain the RGCCA estimates. For RGCCA, 

we calculate the mean and variance of the estimates across the bootstrap samples, from which we 

derived t-ratio and p-value (under the assumption that the parameter estimates exhibited asymptotic 

normality) to indicate how reliably parameters were estimated. Since several p-values are constructed 

simultaneously, Bonferroni or FDR corrections can be applied for controlling the Family-Wise Error 

Rate or the False Discovery Rate, respectively. Table 1 reports these confidence intervals and p-values 

for one specific block (Corynebacterium). 
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Figure 2. Sample space (left) and variable space (right) corresponding to the two first dimensions of 

the superblock. Individuals are colored according to the sites.   
 

Figure 2 shows the individuals and variables projected on the compromise space. Despite some 

overlap, the first global component exhibited a strong separation among the two sites. A variable that 

is highly expressed for a category of individuals will be projected with a high weight in the direction 

of that category. Likewise, the separation among volunteers from the two cities seemed to be driven by 

the OTUs located on the left and right of the variables map. 

 
Table 1. Bootstrap confidence intervals and associated p-values for the OTUs, example of OTUs 

belonging to Corynebacterium genus. 

Corynebacterium 
Initial  

weights 

Lower  

Bound 

Upper  

Bound 
p-value 

adjusted p-value 

(Bonferonni) 

adjusted p-value 

(FDR) 

B2 0,5326 0,3329 0,6842 0 0 0 

B5 -0,4475 -0,5535 -0,1924 0,0001 0,0006 0,0003 

B28 -0,4049 -0,5315 -0,1736 0,0001 0,0014 0,0005 

B10 0,4262 0,1483 0,5337 0,0005 0,0063 0,0016 

B4116 0,2548 0,1096 0,4845 0,0019 0,0227 0,0045 

B114 -0,1972 -0,467 -0,0529 0,0139 0,1664 0,0277 

B185 0,1304 -0,0404 0,3691 0,1157 1 0,1984 

B4417 0,1334 -0,0734 0,3431 0,2043 1 0,2743 

B25 -0,1478 -0,3424 0,0806 0,2251 1 0,2743 

B21 0,0816 -0,0791 0,3313 0,2286 1 0,2743 

B75 -0,0509 -0,2692 0,1493 0,5741 1 0,6263 

B298 0,0265 -0,1717 0,2505 0,7147 1 0,7147 

 

  

4. Conclusion 

 
RGCCA stands as a unique, general and original way for analyzing high-dimensional multiblock 

datasets. It allows the identification of a few meaningful variables that underline the between-block 

connections encoded by the design matrix 𝐂. RGCCA highlights important discriminative OTUs and 
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provides interpretable graphical outputs to better understand the role of each genus to the 

discrimination.  

 

Of note, the quality and interpretability of the RGCCA block components are likely affected by the 

usefulness and relevance of the variables of each block. Accordingly, RGCCA integrates a variable 

selection procedure, called SGCCA [8], allowing the selection of the most informative variables. The 

SGCCA algorithm is similar to the RGCCA algorithm and keeps the same convergence properties. 

The algorithm associated with SGCCA is available through the function sgcca() of the RGCCA 

package. Work in progress includes the application of SGCCA to the microbiome dataset presented in 

this paper. 
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