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Abstract 

 

Model‐based small area estimation depends on models that can be susceptible to misspecification 

arising from rapidly changing economic conditions. When periodic survey estimates are available, 

time series modelling with benchmark constraints provides an effective approach for making small 

area estimation more robust. This paper describes a state‐space model for hierarchical grouping of 

areas, where the model for each area consists of a component which explicitly accounts for the survey 

design and a component that accounts for the behaviour of the population. The individual area models 

are combined into a multivariate state‐space model and a benchmark constraint is added that forces the 

model‐based predictors to agree with a reliable design‐based estimator for an aggregate of the areas. 

As an empirical illustration, we use the U.S. Bureau of Labor Statistics (BLS) monthly unemployment 

estimates for 9 census divisions (CDs) and the 50 States and the District of Columbia, which are 

grouped within these divisions. We also compare the time series approach to benchmarking with 

cross‐sectional approaches and demonstrate that the time series approach has special advantages. 

 

Keywords: Benchmarking, State Space Models, Fay‐Herriot estimator; correlated sampling error. 

 

1. Introduction 

 

The U.S. Bureau of Labor Statistics (BLS) uses state-space models for the production of all the 

monthly employment and unemployment estimates in the 50 States and the District of Columbia 

(Pfeffermann and Tiller, 2006). These models are fitted to the direct survey estimates obtained from 

the Current Population Survey (CPS).  The model for each series combines an extended version of the 

Basic Structural Model (BSM, Harvey 1989) for the true series, with an AR (15) model for the 

sampling errors. A high order AR model is necessary to reflect strong autocorrelations in the sampling 

errors due to the use of a complicated rotating sampling scheme in the CPS. The direct survey 

estimates are the sums of these two unknown components. In order to protect against possible model 

breakdowns and to satisfy arithmetic consistency in publication, the separate State estimates are 

benchmarked to the corresponding direct CPS estimates for the entire nation in a two stage process 

discussed below.  

 
We use a special type of benchmarking referred to as “internal” which guarantees consistency and 

robustness of the model estimates in real time.   

 

Let,  
Yd,t = true value in area d at time t, d = 1, 2,...,D 

yd,t = direct survey estimate 

,
ˆ
d tY = estimate obtained under a model for 

dty . 

Benchmarking modifies model based estimates, ˆ
dtY  , to satisfy the following constraint, 

, , ,

1 1 1

ˆ
D D D

bmk

d t t d t d t

d d d

Y B y Y
  

      

where Bt  is sufficiently close to the aggregate true value.  This is referred to as "internal” 

benchmarking because B𝒕 is just a weighted sum of the area survey estimates.  Since it provides no 

Proceedings 61th ISI World Statistics Congress, 16-21 JULY 2017, Marrakech (Session STS036) P. 1967



 

 

 

 

additional information it is suboptimal with respect to the model and therefore increases model 

variances.  This contrasts with “external” benchmarks which are independent of the series being 

benchmarked and available only after a substantial time lag. 

 

2. First Stage Benchmarking 

 

When survey data are structured hierarchically, it may be desirable to benchmark the model-dependent 

estimators at each level of the hierarchy.  For example, it may be computationally too costly or 

operationally inflexible to benchmark all of the area models in a single stage.  Moreover, to the extent 

that the survey data have a natural hierarchy, the benchmarking process may be tailored more closely 

to area characteristics. We begin with first stage benchmarking.   

 

Suppose there are D areas with direct sample estimates that sum to a reliable (low CV) national total.  

Let yt  (y1,t,…,yD,t ) be a vector of direct survey estimates, Yt  (Y1,t,…,YD,t ) a vector of true 

values, where each follows an independent BSM, and et  (e1,t,…,eD,t ) a vector of survey sampling 

errors. 

 

These series are represented by a multivariate linear state-space model, 

,  ,  ( ) 0,  ( ')t t t t t t t t ty Y e Y Z E e E e e       (1) 

1 ; ( ) 0, ( ') , ( ') 0, 0,  ( ') 0,  ,t t t t t t t t k tT E E Q E k E e t                 (2) 

where Zt and 
t  are known matrices.  In the first stage, model-based predictors, 

,
ˆbmk

d tY of the true 

values, Yt, are forced to add up to the aggregate direct survey estimate, 

, , , ,1 1 1 1

ˆ .
D D D Dbmk

d t d t d t d td d d d
Y y Y e

   
       (3) 

To satisfy (3) we augment (1) as follows, 

 1, 1,;          ,t t t t t t Dy Z e        (4) 

 , ,1
1

,
, ,

D t

t t d t td
t Dt

Z
y y y Z

Z Z

 
   

 
 ,  , ,1

D

t t d td
e e e




  .  

The autocovariance matrix of the augmented survey error vector,
te is given by,  

     

 

, ,

, , , , ,1 1
, ,

, ,1

;   ,  , ,  

, .

D Dt t

t t t t t d d td d
t t

D

t d td

h
E e e E e e v Cov e e

h v

h Cov e e

 

     

 

 

 



 
        



 



 (5) 

Predictions are produced from a random coefficients model, 

| 11
ˆ bmk

t tt

t

t tt

I uT

Z ey





     

      
    

 (6) 

t1where is the predictoˆ  r of bmk

tT  with prediction error, | 1 1
ˆ bmk

t t t tu T     and covariance matrix 

 / 1 / 1 / 1

bmk

t t t t t tE u u P  
  . 
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The covariance matrix of the regression errors in (6) is given by, 

/ 1/ 1

/ 1

,

( , )

bmk bmk

t t tt t

t t t t bmk
t t t t

P Cu
V E u e

e C





   
     

      

,  / 1
ˆ ,bmk bmk

t t t t tC E T e 
  
 

. (7) 

The presence of correlated survey errors results in contemporaneous covariances, bmk

tC , between 

prediction errors and survey errors which invalidates the use of the classic Kalman filter.  To account 

for these sampling error covariances, we develop a GLS filter (Pfeffermann and Tiller, 2006) 

described below. 

 

For the benchmark constraint to be binding, it is necessary to initially set the aggregate benchmark 

sampling error to zero in (4).  This is done by setting the variance of the benchmarked error and all its 

covariances with the sampling errors for the first stage areas to zero.   

0

0

0

,

0

/ 1 ,

, ,

bmk bmk

t t t

t bmk

t t

P C
V

C


 
 

   

 (8) 

where, 

     ,

, , , , , / 10 0 0 0 0 0,

0
ˆ, , ,  ,0

0 0

t t bmk

t t t t t t t t t te e E e e C E T e 

            
 

 

Setting the benchmark errors to zero is a device for satisfying the constraints but it is not correct for 

computing variances.  Later we make the appropriate adjustments to compute the correct variances. 

 

Standard GLS yields the recursive predictors, 

1

' 1 ' 1
1

, , ,0 0
ˆ( , )[ ] ( , )[ ] ,  

bmk
bmk bmk bmk

t
t t t t t d t t t

t t

I TI Z V I Z V Y Z
Z y

 



 


    
     

    
 (9) 

which can be computed more efficiently without having to invert the Vt matrix using an algorithm 

similar to the Kalman Filter (KF). 

     

1 1

1

/ 01 , / 1 , , ,0 0 0,

ˆ ˆˆ ˆ ˆ ˆ;  

ˆ ˆ ,  

bmk bmk bmk bmk bmk bmk

t t t t t t t t t t t

bmk bmk bmk bmk bmk bmk bmk

t t t t t t t t t t t t t t t t t

Y Z Z T K d d y Z T

K P Z C Var d Var d Z P Z Z C C Z

   



 

     
 

         
 (10) 

Notice that if ,0

bmk

tC in (10) contains all zeroes the GLS filter is identical with the KF. 

 

Now we have to correct the V-C matrix for the benchmarked predictor which ignored the 

benchmarking errors when imposing the constraint. 

/ 1 ,
ˆ ˆ[( )( ) ]bmk bmk bmk bmk bmk bmk

t t t t t t t t t t t t t t t t t t t

t t

P E G P G K K G C K K C G

G I K Z

    
            

 
 (12) 

The true variances and covariances  , 1
ˆ,  ,bmk bmk

t t t t t tE e e C Cov T e   
        are reflected in (12). 

 

Proceedings 61th ISI World Statistics Congress, 16-21 JULY 2017, Marrakech (Session STS036) P. 1969



 

 

 

 

The first stage Benchmarked Predictors, ˆ ˆbmk bmk

t t tY Z  are unbiased under correct model specification.  

They are also design consistent in the sense that as sample size in area d at time t increases, the 

benchmarked predictor for that area and time converges to the true value even under the wrong model 

specification.  This property follows from the property that the sampling error for area d goes to zero 

as the sample size increases. 

 

3. Second Stage Benchmarking 

 

In two stage benchmarking, each first stage area is subdivided into second stage sub-areas.  The D 

model- dependent first stage estimates are benchmarked to the reliable national aggregate direct 

survey estimate.  Within each first stage area, the second stage model-based estimates are 

benchmarked to the first stage benchmarked estimates.  Let 
, ,

ˆbmk

s d tY be the benchmarked model estimate 

for the sth sub-area in the dth area.  As in the first stage, each sub-area is modeled as a BSM plus 

sampling error component and combined into a multivariate state-space model with a benchmark 

constraint.  The 2nd stage benchmark constraint is given by, 

,, ,
ˆ ,  1, ,

bmk
bmk

d ts d t d

s

Y Y s s   (13) 

Notice that the 2nd stage benchmarking is a model-based estimate, rather than a direct survey 

estimator, and is correlated with the model errors and the sampling errors in a complicated way.  For 

more details see Pfeffermann, Sikov, and Tiller (2014). 

 

4. Empirical Example 

 

We use as an example State unemployment for the U.S. over the period of 2008-12 which reflects the 

effect of the Great Recession (December 2007 to June 2009) on the labor market.  The 50 States are 

grouped into 9 Census Divisions.  The CPS state unemployment estimates are aggregated by Census 

Division where each of the 9 Divisions are modeled and constrained to sum to the national CPS values 

(CV of about 2%).  States within each Division are modeled and constrained to sum to their respective 

benchmarked Division model estimates.  This two stage process guarantees that all State benchmarked 

model estimates will sum to the national CPS aggregates.  

 

Figure 1compares the direct aggregate national CPS estimators with the sum of the not benchmarked 

Division models.  From March 2008 to July 2009 the models were systematically underestimating the 

rapidly rising unemployment levels.  Figure 2 plots the model-CPS differences which in a number of 

consecutive months exceeded twice the standard error of the CPS estimator.  The first stage 

benchmarking of the Census model estimates eliminate these differences.   

 

In the second stage the State models are benchmarked to their Division benchmarked models.  Figure 

3 shows for the State of Illinois the direct CPS estimators, the not benchmarked model predictors, and 

benchmarked predictors. Benchmarking corrects in real time the under estimation of the not 

benchmarked predictors, with the largest corrections occurring in 2008-09.  Figure 4 highlights the 

bias reduction by plotting the differences between the not benchmarked and benchmarked model 

predictors. 

 

5. Cross-Sectional Benchmarking 

 

Another approach to benchmarking, used extensively in the small area literature, is based on cross-

sectional modeling.  This approach models differences among areas independently for each time 
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period and then benchmarks each area to an aggregate of all area survey estimates, again 

independently for each time period.  Pfeffermann, Sikov, and Tiller (2014) demonstrated with a 

simulation that the time series approach has a number of important advantages when compared with 

an equivalent Fay‐Herriot model.  With a sufficiently long time series (50 or more time series 

observations per area), benchmarking of TS estimators yields more accurate predictors than 

benchmarking of the Fay‐Herriot estimators.   

 

In the case of a model breakdown, cross-sectional benchmarking only corrects the bias in some of the 

areas, but not in all of them.  While it may reduce the average MSE across all the areas, for some areas 

it will increase the MSE.  In contrast, cross-sectional benchmarking of time series estimators will 

correct a bias induced by a model breakdown in every area, if the breakdown is similar in all areas.  As 

shown in our empirical example, this is likely to occur when there are nationwide shocks to the 

economy. 

 

 

 

Figure 1.  U.S. CPS Unemployment and Sum of 

Not Benchmarked Division Models 

----- U.S. CPS;—— Division Models 

Figure 2.  Difference between Sum of Not 

Benchmarked Division Models and U.S. CPS 

—— Difference;----- 2SE(CPS) 

 

  

Figure 3.  Illinois Unemployment 

--- CPS;— BMK Model; — Not BMK Model 

Figure 2.  Difference between Not BMK and 

 BMK Illinois Model 

— Difference; --- 2SE(BMK) 
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5. Conclusions 

 

A state‐space model for hierarchical grouping of areas was developed, where the model for each area 

combines a model of the sampling error with a model of the population. The individual area models 

were combined together with a multivariate state‐space model and an internal benchmark constraint 

added that forces the model‐based predictors to agree with a reliable design‐based estimator for an 

aggregate of the areas.  This approach was illustrated with the U.S. Bureau of Labor Statistics (BLS) 

monthly unemployment estimates for 9 census divisions (CDs) and the 50 States and the District of 

Columbia.  By reducing bias during the Great Recession this internal benchmarking improved the 

robustness of the real time unemployment estimates.  Unlike cross-sectional benchmarking, time series 

benchmarking may correct a bias induced by model breakdown in every area, if the breakdown is 

similar in all areas. 
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