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Abstract 

 

This paper considers the old but very important problem of how to estimate the mean squared error 

(MSE) of seasonally adjusted and trend estimators produced by X-11-ARIMA or other decomposition 

methods. The MSE estimators are obtained by defining the unknown target components like the trend 

and seasonal effects to be the hypothetical X-11 estimates of them that would be obtained if there were 

no sampling errors and the series was sufficiently long to allow the use of the symmetric filters 

embedded in the programme, which are time invariant. This definition of the component series conforms 

to the classical definition of the target parameters in design-based survey sampling theory, so that users 

should find it comfortable to adjust to this definition.  
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1.   Introduction 

 

We consider estimation of the mean squared error (MSE) of seasonally adjusted and trend estimators 

produced by X-11-ARIMA or other decomposition methods. We define the target seasonally adjusted 

and trend components to be the hypothetical X-11 estimates of them that would be obtained in the 

absence of sampling errors and if the time series under consideration was sufficiently long for 

application of the symmetric filters embedded in the original X-11 procedure, which are time invariant. 

This definition of the component series conforms to the classical definition of target finite population 

parameters in design-based survey sampling theory. In fact, in one variant of the proposed definition, 

the target components are shown to be linear combinations of finite population means or totals. The 

MSE of X-11-ARIMA and other estimators are defined with respect to this definition.    We estimate 

the MSE by conditioning on the target components, thus accounting for possible conditional bias in 

estimating them. More detailed results can be found in Pfeffermann and Sverchkov (2014). 

 

2.   Target Components, Bias and MSE of X-11-ARIMA Estimators 

2.1.   Target components 

We begin with the usual notion that an economic time series, ; 1,2,...tY t   can be decomposed into a 

trend or trend-cycle component tT , a seasonal component tS , and an irregular component tI ; 

t t t tY T S I   . In practice, it is often the case that the series tY  is unobserved and the available series 

consists of sample estimates, ty , obtained from repeated sample surveys. Consequently, the series ty  

can be expressed as the sum of the true population value, tY , and a sampling error, t . More generally, 

the observed series can be viewed as the sum of a signal, tG , and an error, te ; t t ty G e  , where the 

signal, and hence the error, may be defined in two alternative ways:  

GE1. t t tG T S  , t t te I   . In this case te  is the combined error of the time series irregular and the 

sampling error (Pfeffermann, 1994); 

GE2. t t t tG T S I   , t te  . In this case the irregular term is part of the signal, and te  is the 

sampling error (Bell and Kramer, 1999). 
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   We assume without loss of generality that the series started at time 1startt   , but ty  is only 

observed for the time points 1,...,t N , such that 

                            ,t t ty G e  ,...,0, 1,..., , 1,...,

t

start

y observed unobservedunobserved

t t N N   .                                                 (1) 

It is assumed also that under both definitions of the signal, te  is independent of 

{ , ,..., }t startG t t  G  for all t , with ( ) 0tE e  , ( )tVar e  , although in practice the sampling 

error, and in particular the variance of the sampling error, sometimes depends on the magnitude of the 

signal.   

   The X-11-ARIMA program first forecasts and backcasts the time series under consideration based on 

an ARIMA model fitted to the observed series, and then applies a sequence of moving averages (linear 

filters) to the series augmented by the forecasts and backcasts. It follows that the X-11-ARIMA 

estimators of the trend and the seasonal components can be approximated as, 

                                 
( 1)

ˆ
N t

T

t kt t k

k t

T w y




 

  , 
( 1)

ˆ
N t

S

t kt t k

k t

S w y




 

  ,                                                          (2)                                                               

where the coefficients { }T

ktw , { }S

ktw  are defined in general by the program options for the observed time 

interval 1,...,t N , the ARIMA model used to forecast and backcast the series and by the number of 

backcasts and forecasts. However, at the central part of the series, the filters in (2) are time-invariant 

and symmetric; 
T T

kt kw w , 
T T

k kw w   for T Ta t N a   ; 
S S

kt kw w , 
S S

k kw w   for S Sa t N a   , 

where ,T Sa a  are defined by the X-11-ARIMA program options. The length of the symmetric filters is 

2 1Ta   ( 2 1Sa  ), such that 0T T

kt kw w   if [ , ]T Tk a a   and  0S S

kt kw w   if [ , ]S Sk a a  . Note 

that in the central part of the series the X-11-ARIMA estimators are the same as the X-11 estimators 

with no ARIMA extrapolations, such that the symmetric filters only depend on the X-11 program options 

and not on the ARIMA extrapolations.  

Remark 1. The use of X-11-ARIMA involves also ‘non-linear’ operations such as the identification and 

estimation of ARIMA models used for forecasting and backcasting the original series, and the 

identification and gradual replacement of extreme observations. We assume that the time series under 

consideration is already modified for extreme values, thus robustifying the variance estimates described 

in Section 2.3. As illustrated in Pfeffermann et al. (1995) and Pfeffermann et al. (2000), the effects of 

the identification and non-linear estimation of ARIMA models are generally minor.  

Definition 1. Assuming min( , )start T St a a    and following Bell and Kramer (1999), we define the 

trend component at time t  to be 
11

T

T

a
X T

t k t k

k a

T w G 



  . Analogously, the seasonal component is defined 

as 
11

S

S

a
X S

t k t k

k a

S w G 



  . The target components 
11X

tT  and 
11X

tS  are thus the hypothetical components 

that would be obtained by application of the X-11 symmetric filters to the signal G  at time point t , 

1,..., .t N  It follows therefore that the observed series may be decomposed as the sum of the ‘X-11-

trend’, 
11X

tT , the ‘X-11-seasonal component’, 
11X

tS , and the ‘X-11 error’,  
11 11 11X X X

t t t te y T S   ; 

                                                
11 11 11X X X

t t t ty T S e   .                                                                  (3) 

Result 1. For T Ta t N a   , 
11 ˆ( | )X

t tT E T G  and for S Sa t N a   , 
11 ˆ( | )X

t tS E S G , where 

ˆˆ ,t tT S  are the X-11-ARIMA estimators defined in (2) and the expectation is taken over the distribution 

of the errors { , 1,..., }te t N , with the signal G  held fixed. It follows therefore from our definition 

Proceedings 61th ISI World Statistics Congress, 16-21 JULY 2017, Marrakech (Session STS036) P. 1962



 

 
 

 

that in the central part of the series, the X-11-ARIMA estimators ˆˆ ,t tT S  of the trend and the seasonal 

component are unbiased. (As noted before, we assume that the observed series is already modified for 

extreme values. The identification and estimation of ARIMA models are irrelevant at the center of the 

series.)  

Remark 2. For X-11 filters 
T Sa a  because the final trend filter is applied after the final seasonal and 

seasonally adjusted components are computed. Thus, max( , )T S Ta a a . 

Remark 3. We define the trend and seasonal components to be the (hypothetical) outputs that would be 

obtained when applying the symmetric filters to the signal, since the filters at the non-central parts of 

the series are asymmetric and depend on the time points with data. In particular, the filters applied for a 

time point Tt N a   change every time that a new observation is added to the series until Tt N a 

, when the symmetric filter is applied. As mentioned before, the decomposition (3) has been used by 

Bell and Kramer (1999) with the error defined by the sampling error, such that the irregular term is part 

of the signal; t t t tG T S I    (Definition GE2). Notice that with this definition, the target values are 

just linear combinations of the unadjusted population values of the series, which in most cases are finite 

population means or totals, in line with classical survey sampling theory. 

2.2.   Conditional Bias and MSE of X-11-ARIMA estimators 

The conditional bias, variance and MSE of the X-11-ARIMA estimators of the trend with respect to the 

decomposition (3), given the signal, are as follows:  

11

( 1)

ˆ ˆ( | ) [( ) | ]
T

T

aN t
X T T

t t t kt t k k t k

k t k a

Bias T E T T w G w G


 

  

    G G .                                       (4) 

                   

2

( 1) ( 1)

2 2

( 1) ( 1)

ˆ[ | ] {[ ( | )] | }

{[ ( )] | } ( )

N t N t
T T

t kt t k kt t k

k t k t

N t N t
T T

kt t k t k kt t k

k t k t

Var T E w y E w y

E w y G E w e

 

 

   

 

  

   

 

  

 

 

G G G

G

                             (5) 

                         
11 2ˆ ˆ( | ) [( ) | ]X

t t tMSE T E T T G G
2ˆ ˆ( | ) ( | )t tVar T Bias T G G .                           (6)                            

Similar expressions hold for the seasonal and seasonally adjusted estimators.  

 The expressions (4)-(6) are general and apply to any linear estimator with arbitrary coefficients { }T

ktw , 

as defined by the X-11-ARIMA options, the ARIMA model used for extrapolations and the number of 

forecasts and backcasts. In fact, and as shown in Section 3, the expressions (4)-(6) hold equally for other 

linear filters, not necessarily embedded in the X-11-ARIMA program. In the next sections we discuss 

ways of estimating the MSE in (6).   

2.3. Variance estimation 

Under Definition GE2 of the signal and error in Section 2.1, t te   is the sampling error, and by (5), 

ˆ( | )tVar T G
2

( 1)

( )
N t

T

kt t k

k t

E w 




 

  = ( , )T T

kt lt t k t l

k l

w w Cov    . Similar expressions apply when 

estimating the seasonal or the seasonally adjusted component. We assume the availability of estimates 

of the variances and covariances of the sampling errors, which enables estimation of the variance 

ˆ( | )tVar T G  and the variance of any other component estimator.  

   Next, consider the estimation of the variance under Definition GE1 of the signal and error, by which 

t t te I   . By (5), the variance of the X-11-ARIMA trend estimator is in this case a linear combination 

of the covariances ( , )tm t mv Cov e e , , 1,...,t m N . Following Pfeffermann (1994) and Pfeffermann 
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and Scott (1997), let ˆ ˆ
t t t tR y S T    

( 1)

N t
R

kt t k

k t

w y




 

   define the linear approximation of the X-11-

ARIMA residual term at time t , where 0 0 01R S T

t t tw w w    and 
R S T

kt kt ktw w w    for 0k  . Then,  

2

( 1) ( 1)

( 1) ( 1)

( | ) {[ ( ( | ))] | } ( )

( , | ) [ , ] ( , )

N t N t
R R

t kt t k t k kt t k

k t k t

N t N m
R R R R

t m kt t k lm m l kt lm t k m l

k t l m k l

Var R E w y E y Var w e

Cov R R Cov w e w e w w Cov e e

 

  

   

 

   

   

  

 

 

  

G G G

G

.           (7) 

The residuals tR  are not stationary because of the use of asymmetric filters towards the two ends of the 

series. However, Let 
1

1
( ) ( )

N m

t t mt
U m Cov R R

N m







 , 0,..., 1m N   and suppose that the errors 

t t te I    are stationary (see Remark 4 below). Then, by (7), the vector U  of the means ( )U m  and 

the vector V  of the covariances ( , ) ( , )k t t k t t t k t kV Cov e e Cov I I       , 0,..., 1k N   are 

related by the system of linear equations,   

      DU V ,                                                                            (8)                                                                                                                                   

where the matrix D  is defined by the known weights { }R

ktw . Since the X-11-ARIMA residuals are 

known for every 1,...,t N , one may estimate ( )U m  by 
1

1
( )

N m

t t mt
U m R R

N m







 . Substituting 

( )U m  for ( )U m in (8) enables estimation of V  by solving the resulting equations; see Pfeffermann 

(1994) and Pfeffermann and Scott (1997). Notice that the use of (8) does not require the availability of 

estimates of the variances and covariances of the sampling errors. However, the estimators obtained in 

this way can be very unstable since the number of unknown variances and covariances generally equals 

the number of equations. A possible solution to this problem is to assume that the covariances kV  are 

negligible beyond some lag C and hence can be set to zero, and then solve the reduced set of equations 

for 0 ,..., CV V . This is a mild ergodicity condition assumed for the series te . Notice that with this 

assumption it is no longer needed to consider the estimates ( )U m  for large m . Additionally, when 

estimates for the autocovariances of the sampling errors are available, they can be substituted into the 

vector V and taken as known, in which case one only needs to estimate the unknown variance and 

covariances of the time series irregular terms, tI . This reduces the number of unknown covariances and 

hence the number of equations very drastically. Note that all these procedures are basically ‘model free’. 

See Chen et al. (2003) for a different approach to estimating U  and V . Bell and Kramer (1999) 

consider model based estimation of the variance and covariances of the sampling errors.  

Remark 4. The linear equations in (8) can easily be extended to the case of heteroscedastic sampling 

errors for which ( , )tk t t k tk kV Cov e e L V   with known coefficients tkL . Another potential 

modification consists of utilizing all the equations (or most of them) in (8), and estimating 0 ,..., CV V  by 

a discounted least-squares procedure.  

2.4.   Bias and MSE estimation 

   Estimation of the conditional bias of the estimator ˆ
tT  (or any other linear estimator) given the signal, 

and hence the conditional MSE is more involved. We propose to estimate the bias by estimating the 

signal and then substituting the estimate in the right hand side of the bias expression (4). A possible way 

of estimating the signal is by application of the programme       X-13ARIMA-SEATS, which is now in 

common use in many statistical bureaus around the world (replacing X-12-ARIMA). The programme 
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enables extraction of the models holding for the trend and the seasonal effects from the ARIMA model 

fitted to the observed series, and use of these models in order to estimate the signal within the observation 

period, and to forecast and backcast the signal for 
Ta  time points with no observations. Denote by ˆ

tG  

the estimated signal for time t ,  including before or after times 1,..., N . The bias is estimated then as, 

               
11

( 1)

ˆ ˆˆ ˆ ˆˆ [ | ] [( ) | ]
T

T

aN t
X T T

t t t kt t k k t k

k t k a

Bias T E T T w G w G


 

  

    G G ,  1,...,t N .                 (9) 

Use a similar expression for estimating the bias of the seasonally adjusted estimator. 

The SEATS models are obtained by application of canonical signal extraction and under correct model 

specification, the estimators have minimum MSE (Hilmer and Tiao, 1982).  

   Having estimated the conditional variance and bias, a conservative estimator of the conditional MSE 

defined by (6) is obtained by adding the variance estimator to the square of the bias, i.e., 

                             
2ˆ ˆ ˆ ˆˆ ˆ( | ) ( | ) ( | )t t tMSE T Var T Bias T G G G .                                                     (11) 

The estimator in (11) is conservative since 
2 ˆˆ[ ( | ) | ]tE Bias T G G

2ˆˆ{ [ ( | )] | }tE Bias T G G   

ˆˆ[ ( | ) | ]tVar Bias T G G
2ˆˆ{ [ ( | )] | }tE Bias T G G . The overestimation of the MSE can be corrected by 

subtracting an estimate of ˆˆ[ ( | ) | ]tVar Bias T G G . Notice that ˆˆ ( | )tBias T G  is a linear combination of 

the signal estimates, ˆ
tG , which in turn are linear combinations of the observed series, ty . Thus, 

ˆˆ ( | )tBias T G  is a linear combination of the ty ’s and hence ˆˆ[ ( | ) | ]tVar Bias T G G  can be estimated 

similarly to the estimation of ˆ[ | ]tVar T G  discussed in Section 2.3. The weights defining ˆˆ ( | )tBias T G  

can be obtained similarly to Burck and Sverchkov (2001).  

 

3. Estimation of MSE of Model-Based and Other Estimators of X-11 Components 

Consider any other set of component estimators of the form, 

                                   
( 1)

N t
T

t kt t k

k t

T h y




 

  ,   
( 1)

N t
S

t kt t k

k t

S h y




 

  .                                                     (13) 

Then, similar to the X-11-ARIMA estimators in Section 2, we can calculate the conditional bias and 

MSE with respect to the target X-11 components defined in Definition 1, yielding the same expressions 

as in (4)-(6) but with the weights ( )T S

kt ktw w  replaced by the weights ( )T S

kt kth h .  Notice that unlike the X-

11 estimators,  the estimators defined by (13) are potentially biased when conditioning on the signal 

even at the center of the series.                                                         

The weights in (13) can be calculated as in Burck and Sverchkov (2001). As in Section 2.4, the bias is 

estimated in this case by estimating the augmented signal 1 0( ,..., ,..., ,..., )
T T

aug

a N N aG G G G  G  

under an appropriate model. The bias and MSE estimators are obtained similarly to Eqs. (9)-(11).  

 

4.  Summary  
In this paper we propose a new method for estimation of MSE of X-11 ARIMA estimators or other 

linear estimators of the underlying components of a time series. Our approach has some important 

advantages over other approaches proposed in the literature. First, we follow Bell and Kramer (1999) 

by defining the target component values as the corresponding X-11 estimators that would be obtained if 

the series was free of sampling errors and long enough to permit the use of the symmetric filters 

embedded in the program. In other words, the target components are real entities defined as linear 

combinations of finite population means or totals over time, in close correspondence to the target values 

in classical finite population sampling. In particular, under definition GE2 of the signal, the target 

component values are just linear combinations of the unadjusted finite population values. Interestingly, 
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while the programme X-11 for seasonal adjustment and its previous and subsequent versions have been 

in wide use for many decades, the target estimated values were never defined in a precise form. This is 

rather unusual in statistics where an estimator is defined but not what is estimated. This problem does 

not exist when using model dependent methods where the targets are defined by the model, such as in 

the BSM, the Tramo and Seats program (Gomez and Maravall, 1996) and in one of the modules of X-

13ARIMA-SEATS, but purely model dependent estimators are not in common use, at least not in 

national statistical offices.  

   A second important advantage of the procedure is its flexibility in terms of the target values and the 

estimators used. It is applicable to the case where the signal consists of only the trend and the seasonal 

effect and the time series irregular is part of the error (definition GE1 of the signal and error), and to the 

case where the irregular is part of the signal, as under the Bell and Kramer (1999) approach. It is up to 

the user to decide which definition of the signal is more appropriate. In addition, the procedure is 

applicable to any linear estimator with known coefficients.  

   Taking into account the clear interpretation of the target values and the estimated MSE and the other 

advantages listed above, we hope that our proposed procedure will be experimented with by other users 

and we shall be happy to receive questions arising from these experiments.    
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