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Abstract

The logistic smooth transition autoregressive model (LSTAR) is a regime-switching nonlinear time series
model that has been adopted in a wide variety of applications. LSTAR is represented by a weighted average of
two or more linear autoregressive (AR) processes. Bayesian LASSO and horseshoe priors on the autoregressive
coefficients provide a more flexible model selection procedure than currently used alternatives. A simulation
study is used to demonstrate the efficacy of these methods. Application to a classic nonlinear time series
further illustrates the ability of these methods to achieve superior forecasting performance.
Keywords: Gibbs Sampler Algorithm; Regime-Switching Model; Bayesian LASSO.

1. Introduction
Consider the univariate time series of interest yt and let x′t = [1, yt−1, yt−2, · · · , yt−p]. Let also α =
[α0, α1, · · · , αp] and β = [β0, β1, · · · , βp] denote two vectors of unknown coefficients. A special class of
parametric nonlinear time series models follows the form in Equation 1.

yt = (x′tα)(1−G(zt, γ, δ)) + (x′tβ)G(zt, γ, δ) + εt where εt ∼ i.i.d. N(0, σ2) (1)

If 0 ≤ G(zt, γ, δ) ≤ 1, this model is a weighted average of two autoregressive processes of order p (AR(p))
where the weight depends on the value of the transition variable zt. When zt = yt−d the term “self-
exciting” is often applied and a delay parameter d is introduced (Petruccelli & Woolford, 1984). This model
becomes a logistic smooth transition autoregressive model of order p (LSTAR(p)) when G(yt−d, γ, δ) =
{1 + exp[−(γ∗/sy)(yt−d − δ)]}−1. The addition of the unknown slope parameter γ∗ > 0 and threshold pa-
rameter δ makes this process nonlinear. When yt−d < δ, G(yt−d, γ, δ) < 1/2, the AR(p) model x′tα in the
“low regime” is favored, and when yt−d > δ, G(yt−d, γ, δ) > 1/2, the AR(p) model x′tβ in the “high regime”
is favored. The transition slope γ∗ determines the speed of transition between low and high regimes around
δ. Scaling γ∗ by the sample standard deviation of the transition variable sy allows for scale-free compar-
isons across competing STAR models with differing transition variables (Deschamps, 2008). As γ∗ → ∞,
G(yt−d, γ, δ) → 1{yt−d>δ}(yt−d) that evaluates to 1 if yt−d > δ and 0 otherwise. In the limiting case when
regime changes are abrupt, the model is called a threshold autogressive model of order p (TAR(p)). Although
the focus is on the homoskedastic case, it is not hard to fathom the variance of yt exhibiting regime switching
dynamics along with the mean of yt. The majority of research regarding STAR models revolve around the
two regime case; however, extensions have been made to account for multiple (>2) regimes (MR-STAR).

The Bayesian approach for estimating two-regime LSTAR(p) models was developed by Lubrano (2000).
Lopes and Salazar (2006) expanded the aforementioned sampling algorithm to include the model order p,
using the reversible jump markov chain monte carlo (RJMCMC) algorithm presented in Green (1995). These
changes were inspired by Troughton and Godsill (1997) who applied RJMCMC to AR(p) models. Further
work by Gerlach and Chen (2008) accounted for heteroskedasticity. Current Bayesian estimation methods
of the LSTAR(p) typically assume that the autoregressive order p is the same in both regimes and include
all autoregressive terms yt−k for k ∈ {1, 2, ..., p}. If the true nonlinear data generating process (DGP) has
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regime-specific model orders and some autoregressive terms are not significant, the above-mentioned estima-
tion method is expected to be suboptimal in terms of out-of-sample predictive accuracy.

Section 2 explains how two Bayesian estimation methods for sparse signals can be incorporated in the sam-
pling algorithm for LSTAR models. Section 3 provides simulation results showing the efficacy of the two
methods. Section 4 presents a forecasting exercise which is based on benchmark data that have been analyzed
extensively in previous studies. Section 5 gives a positive outlook on how these methods may further advance
Bayesian estimation of complicated nonlinear processes.

2. Methodology
Recall the 2-regime LSTAR(p) model in Equation 1 and define the full vector of unknown parameters
θ = [α0, α1, · · · , αp, β0, · · · , βp, γ, δ, σ, d, p]′ where γ = γ∗/sy. In regards to α, β, and σ2 the prior spec-
ifications are generally αk ∼ N(µα, σ

2
α), βk ∼ N(µβ , σ

2
β), 1/σ2 ∼ IG(aσ2 , bσ2). To ensure that sufficient

representation exists in both regimes, the prior for δ is defined as follows: δ ∼ U [qY (0.15), qY (0.85)] where
qY (.) is the empirical quantile function of the observed transition variable. Using the 15th and 85th per-
centiles requires at least 15% of the data to be part of both regimes. Due to the difficulty in the estimation
for γ = γ∗/sy discussed across the literature, a variety of priors with positive supports have been used:
Gamma (Lopes & Salazar, 2006), Truncated Normal (Livingston & Nur, 2016), and Log Normal ( Gerlach &
Chen, 2008). For reasons justified by Gerlach and Chen (2008), the prior favored herein is γ∗ ∼ LN(µγ , σ

2
γ).

The parameter d is typically given a discrete uniform prior P (d = d̃) = 1/dmax for d̃ ∈ {1, 2, · · · , dmax},
where dmax is chosen a priori. From this point on, d is assumed to be known and is removed from θ.

Sampling algorithms of the joint posterior f(θ|y) exploit the fact that the LSTAR(p) model is conditionally
linear given γ∗ and δ. Specifically, Gibbs sampling is applied for α, β, and σ2 (Gelfand & Smith, 1990) and
Metropolis-Hastings (Metropolis et.al., 1953; Hastings, 1970) for γ∗ and δ. Since the length of θ increases
with the model order p, Lopes and Salazar (2006) extend the sampling algorithm outlined by Lubrano (2000)
to incorporate a reversible jump step to include the model order p in θ. RJMCMC allows the dimension
of the sampled vector θ to change dimension from 2(p+ 1) + 3 to 2(p′ + 1) + 3 whenever proposed changes
from p to p′ are accepted. Posterior analysis of p relies on comparing posterior model probabilities. The
most likely model order p̂ is defined as p̂ = maxp #{ps = p|s ∈ 1, · · · , S}/S where S represents the number
of samples from the joint posterior distribution after burn-in and ps represents the sampled value at iteration s.

Now, let p1 be the true linear AR model order in the low regime and p2 be its equivalent in the high regime.
Furthermore, let p = max{p1, p2}. The two cases where the previously explained method may never sample
from the correct parameter space are when p1 6= p2 or when ∃ j < p such that αj = 0 ∪ βj = 0. Minor
adjustments may be made to allow for a more flexible posterior inference of the true DGP by specifying p
a priori and utilizing alternative Bayesian model selection procedures. The conditional linear nature of the
LSTAR(p) model invites a plethora of Bayesian techniques for model selection through the editing of the
priors for α and β. For insight into the varieties, see O’Hara and Sillanpaa (2009); the focus here is on two
Bayesian analogues to the regularization techniques developed by the statistics and the machine learning
communities, known as LASSO-type estimators.

Bayesian methods for linear models have been developed to mimic penalized least squares designed to combat
overfitting by shrinking insignificant parameters to 0. Replacing the normal priors for α and β with double-
exponential (Laplace) priors is the cornerstone of Bayesian LASSO (BLASSO; Park & Casella, 2008). The
prior hierarchy is inspired from Andrews and Mallows (1974) who demonstrated the double-exponential
distribution can be expressed as a scaled-mixture of normal distributions. A global shrinkage parameter λ is
introduced and conditional priors are expressed as shown in Equation 2:

αj |σ2, τ2αj
∼ N(0, σ2τ2αj

), βj |σ2, τ2βj
∼ N(0, σ2τ2βj

), τ2αj
| ∼ EXP (λ2/2), τ2βj

| ∼ EXP (λ2/2). (2)

The parameter λ is usually chosen via cross-validation in frequentist analyses; in Bayesian spirit the gamma
hyperprior λ2 ∼ G(aλ, bλ) is applied here. The full Gibbs sampler outlined by Park and Casella (2008) may
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be applied to the LSTAR(p) model with Metropolis-Hastings still used for parameters {γ∗, δ}.

The horseshoe prior of Carvalho et. al. (2009) is similar to BLASSO since it can be expressed as a scale-
mixture of normals. Along with a global shrinkage parameter λ, Bayesian horseshoe adds local shrinkage
parameters λαj

and λβj
. This change allows finer discrimination between relevant and non-significant autore-

gressive parameters by preventing the simultaneous over-shrinking that may occur to the parameter space in
BLASSO. The Bayesian horseshoe (BHS) prior hierarchy in the LSTAR(p) context is presented in Equation
3 with C+ denoting the half-Cauchy distribution:

αj |λαj
∼ N(0, λαj

), βj |λβj
∼ N(0, λβj

), λαj
∼ C+(0, λ), λβj

∼ C+(0, λ), λ|σ2 ∼ C+(0, σ). (3)

Unfortunately, posterior sampling here does not compare to the ease of the Gibbs sampler for BLASSO since
full conditional distributions cannot be found analytically. Nevertheless, Carvalho et. al. (2009) provide
theoretical and empirical justifications for the horseshoe prior over the double-exponential prior and slice
sampling methods have been developed (Makalic & Schmidt, 2016).

Once a maximum considered model order p is specified a priori, BLASSO and BHS provide flexible model
building alternatives: unlike RJMCMC, nonlinear LSTAR(p) model estimation can be easily conducted using
popular Bayesian software such as JAGS (Plummer, 2003). Also, these methods may be applied to general
STAR and TAR nonlinear models. Because the regressors are lags of the endogenous time series yt, scaling
is unnecessary in this context. Also, intercepts in time series models carry a different interpretation than the
usual linear regression context; therefore, these parameters are also considered for shrinkage.

3. Simulation Study
Consider the nonlinear time series in Equation 4 for which 100 replications are made each of length 1000 after
a burn-in period of 500. This simulation study is identical to the one found in Lopes and Salazar (2006). The
maximum model order across regimes is specified p = 4 a priori and d = 2 is assumed to be known. Under this
specification, θ = [α0, α1, · · · , α4, β0, · · · , β4, γ, δ, σ]′ = [0, 1.8,−1.06, 0, 0, 0.02, 0.9,−0.265, 0, 0, 100, 0.02, 0.02]′.

yt = (1.8yt−1 − 1.06yt−2)[1−G1(yt−2)] + (0.02 + 0.9yt−1 − 0.265yt−2)[G1(yt−2)] + εt

where: G1(yt−2) =

{
1 + exp

[
− 100(yt−2 − 0.02)

]}−1
and εt ∼ i.i.d. N(0, 0.022).

(4)

Bayesian estimation of the underlying LSTAR(2) model is conducted using BLASSO and BHS priors. To
match the regularization paths of the common LASSO, posterior medians are used parameter estimates in
BLASSO (Park & Casella, 2008). For BHS, Carvalho et. al. (2009) recommend using posterior means. After
a burn-in period of 15,000 with a thinning of 10, to reduce autocorrelation and control computer memory us-
age, the sampler is updated a maximum of 20 times until both convergence across three chains is met and the
effective sample size for each parameter exceeds 150. All prior parameters are chosen to be non-informative
and starting values are randomly chosen. A non-informative log normal prior LN(3, 1) is used for γ∗. For
BLASSO, 91% of the replications converged; for these replications, the mean and median number of samples
required were 11,615 and 2,000 respectively. All replications converged for BHS with a mean and median
number of samples required of 1,600 and 1,000, respectively.

Table 1 provides summary statistics of the posterior estimates using BLASSO and BHS. Medians and means
of all posterior estimates are given for replications that converged. Rather than reporting the standard de-

viation of the estimates, RMSE(θ) =

√∑
(θ̂ − θ)2/n is reported for each parameter to measure estimation

error. Consistent overestimation and large uncertainty for γ is commonly reported in literature. Although
significant model parameters are shrunk closer to 0, accurate signal detection is observed for both BLASSO
and BHS. Figure 1 plots all 100 posterior estimates of the autoregressive parameters α̂ and β̂. BLASSO per-
forms better in identifying parameters that are truly zero but also tends to over shrink non-zero parameters
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in the high regime. Examination of RMSE in Table 1 highlights this.

Table 1: Results Summarizing Posterior Results from BLASSO and BHS

Bayesian Lasso Bayesian Horseshoe
Parameter Actual Mean Median RMSE Mean Median RMSE

α0 0 0.0012 0.0014 0.0024 0.0007 0.0006 0.002
α1 1.8 1.7638 1.7662 0.0726 1.768 1.7689 0.0746
α2 -1.06 -1.0037 -1.0087 0.1002 -1.0104 -1.011 0.1159
α3 0 -0.0042 -0.0033 0.0102 -0.0125 -0.0107 0.0434
α4 0 -0.0035 -0.0012 0.0138 -0.0028 -0.0011 0.031
β0 0.02 0.0198 0.0192 0.0038 0.0202 0.0197 0.0035
β1 0.9 0.8763 0.8856 0.0742 0.8899 0.8949 0.0528
β2 -0.265 -0.2294 -0.2357 0.0706 -0.2496 -0.2538 0.053
β3 0 -0.0067 -0.0042 0.0134 -0.0081 -0.004 0.0296
β4 0 0 -0.0004 0.0148 0.0019 0.0011 0.0253
σ 0.02 0.0201 0.0202 0.0004 0.0201 0.0201 0.0004
γ 100 134.5089 111.5546 85.2702 174.15 128.7485 148.8093
δ 0.02 0.0216 0.0211 0.0047 0.0208 0.0201 0.0038

Figure 1: Posterior Estimates from BLASSO and BHS

4. Application to Annual Sunspot Numbers
Daily international sunspot numbers are gathered and updated by the World Data Center SILSO, Royal Ob-
servatory of Belgium, Brussels. Since 1957 (Granger, 1957), the annually aggregated time series xt =Annual
Average Sunspot Number at year t has served as classical illustration of a nonlinear process. As proposed
by Ghaddar and Tong (1981), nonlinear time series analysis is applied to the square root transformed time
series yt = 2[

√
1 + xt − 1]. Annual average sunspot numbers from 1700 to 1979 are used to fit the models,

while years 1980 to 2006 are held out to examine forecasting performance for horizons h ∈ {1, 2, · · · , 5}.

A textbook example by Terasvirta (2010) compares three nonlinear time series models, namely STAR, TAR,
and Artificial Neural Nets (AR-NN), to the baseline linear AR model. Nonlinear least squares and hypothesis
tests were used to fit and select the best model under each of these model types. The LSTAR model in
Equation 5 outperformed all other models based on RMSFE(h) for forecast horizons h ∈ {1, 2, · · · , 5}. This
model exhibits different autoregressive orders between the low and high regimes and also exhibits gaps.
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yt = (1.46yt−1 − 0.76yt−2 + 0.17yt−7 + 0.11yt−9)[1−G1(yt−2, 5.5, 7.9)]

+ (2.7 + 0.92yt−1 − 0.01yt−2 − 0.47yt−3 + 0.32yt−4 − 0.26yt−5

+ 0.17yt−7 − 0.24yt−8 + 0.11yt−9 + 0.17yt−10)G1(yt−2, 5.5, 7.9) + ε̂t

where: ε̂t ∼ N(0, 1.8982).

(5)

The fully saturated LSTAR(10) model estimated via nonlinear least squares is presented as a baseline. Under
prior assumptions that d = 2 and the maximum model order p ≤ 10, models estimated through BLASSO
and BHS are compared to the aforementioned models. BLASSO required 4000 posterior samples to converge
while Bayesian horseshoe required 11,000 posterior samples. This finding regarding efficiency is contrary to
the results from the simulation experiment.

Out-of-sample forecasts are obtained using bootstrapped samples from the empirical error distribution and a
rolling window. Evaluation of RMSFE(h) for horizons 1 to 5 is presented in Table 2. The LSTAR(10) model
was estimated by nonlinear least squares and the poor results indicate the necessity for a more parsimonious
specification. It is important to note that Bayesian estimation of the saturated LSTAR(10) model failed to
converge after 200,000 iterations. The Bayesian shrinkage methods not only converged but achieved fore-
casting performance at least as good as the best model estimated by Terasvirta. In this example, the results
from Bayesian horseshoe are impressive especially at long horizons when compared to the other three methods.

Table 2: RMSFE(h) for Horizons h ∈ {1, 2, · · · , 5}

h Terasvirta LSTAR(10) Bayesian Lasso Bayesian Horseshoe

1 1.51 1.86 1.66 1.42
2 2.24 3.21 2.28 1.96
3 2.65 3.72 2.64 2.28
4 2.58 3.6 2.55 2.18
5 2.67 3.25 2.41 2.08

6. Conclusions
Bayesian shrinkage methods can be applied to nonlinear regime-switching models with different transition
functions to the one presented here. Future work involves applying and evaluating these methods to the
estimation of multiple regime smooth transition models (MR-STAR) and nonlinear models with exogenous
regressors. When exogenous regressors are lags of another time series, the autoregressive order representing
the maximum significant lag of the exogenous time series becomes a new parameter of interest. In both cases,
the dimension of the model matrix increases dramatically; Bayesian shrinkage estimation in these more com-
plex situations appears as a viable alternative to multiple nested RJMCMC routines.
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