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Abstract

We assess in this study the impacts of climate change adaptation of agriculture and forestry,
the mitigation of greenhouse gases from agriculture, and the resulting land use change for France.
We estimate a spatial econometric land use model where agricultural and forestry rents are ap-
proximated by the results from sector-speci�c models. The model represents four major land use
categories: (i) agriculture, (ii) forestry, (iii) urban, and (iv) other; at the scale of a homogeneous
grid with resolution of 8 km x 8 km covering metropolitan France. We simulate the impacts of
two IPCC climate change scenarios (A2 and B1, 2100 horizon), and di�erent tax levels for green-
house gas emissions (from 0 to 200 e/t CO2 equivalent) aiming at the reduction of greenhouse
gases from agriculture. Our results show that both climate change scenarios lead to an increase
in agricultural area at the expense of forests. The greenhouse gas mitigation policy allows to
curtail agricultural expansion and so could counteract the e�ects of climate change on land use.
Accounting for land use change results in reducing the abatement costs of the mitigation policy
in the agricultural sector.

Keywords: Spatial land use share model, greenhouse gas tax, climate change, mitigation, adap-
tation, land rent.

JEL Classi�cation: Q15, Q54, Q52, C31

1 Introduction

In March 2015, the European Union (EU) announced its intended contribution to the climate change
mitigation e�ort by promising a 40% cuts in its greenhouse gas (GHG) emissions by 2030 in compar-
ison to 1990 levels. Few months later, during the 2015 United Nations Climate Change Conference
(COP 21) held in Paris, France pledged a 75% emissions reduction by 2050. These ambitious commit-
ments have greatly contributed to the adoption of the �rst universal, legally-binding global climate
agreement. French government also adopted a national low-carbon strategy (Ministère de l'écologie,
du développement durable et de l'énergie, 2015) which establishes carbon budgets for the 2015-2018,
2019-2023, and 2024-2028 periods. In order to attain the national reduction goals, the strategy is
announcing carbon taxation for the energy sector, namely 22 e/tCO2 in 2016, 56 e/tCO2 in 2020,
and 100 e/tCO2 in 2030.

The energy use in France (production, transport, residence, etc.) represents about 70% of the
GHG emissions of the country. The other major source of GHG is agriculture representing some
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16 - 18 %1 of national emissions. The mitigation goal for this sector is a reduction of some 12%
for the third carbon budget (2024-2028) comparing to 2013 and cutting the GHG emissions in 2050
by half comparing to 1990. Nevertheless, no economic incentive policy is planned for agricultural
pollution. Grosjean et al. (2016) discuss the barriers to GHG pricing (through cap and trade schemes
or taxation) in agriculture, and sum them up into three classes of concerns: i) transaction costs; ii)
leakages; and iii) distributional e�ects. Their article proposes a framework for analyzing potential
solutions for these issues through policy design. Nevertheless, current policies still propose to reduce
sector's emissions by implementing agroecological measures such as the maintenance of meadows, the
development of agro-forestry and the optimization of input use. One of the emblematic measures
proposed during the COP 22 held in Marrakech in autumn 2016 is the "4 per 1000" increase in
carbon stock in soils. This measure is associated with gains in terms of soils fertility and of the
supply of other ecosystem services. In this paper, we argue that GHG taxation in agriculture can
have indirect e�ects that are in the direction of the proposed agroecological measures. Moreover,
such policies should incite farmers to explore and adopt new techniques for GHG mitigation.

In this study, we investigate the e�ects of climate change on land use in France at the 2100 horizon
in the context of a climate change mitigation policy based on a tax for agricultural GHG emissions.
We use the results of previous studies concerning the impact of climate change on the pro�tability of
agriculture and forestry, and introduce a spatial econometric land use share model that captures the
change in land rents for di�erent land use classes. Furthermore, we study the impact of a mitigation
policy (tax on GHG emissions) on land use and on overall agricultural emissions. We build on three
branches of the literature devoted to agriculture and climate change adaptation and mitigation: i)
impact of climate change on agricultural sector; ii) impact of climate change on land use; and iii)
abatement costs for greenhouse gases from agriculture.

First, numerous studies aim at assessing the direct e�ects of climate change on agriculture (Adams
et al., 1990; Rosenzweig and Parry, 1994). Scholars initially based their analysis on agronomic models
and neglected possible land use changes within the agricultural sector. Mendelsohn et al. (1994)
address this issue and propose a method that relies on the Ricardian theory of di�erential land rent.
The Ricardian method supposes that land price is the net present value of future land rents. However,
future land rents may be stemming from other than the agricultural use (Capozza and Helsley, 1990;
Plantinga et al., 2002). Schlenker et al. (2005) account for urban pressure on agricultural land price
in their assessment of climate change impact on U.S. agriculture. In response to the critics made by
Mendelsohn et al. (1994), the possibilities for adaptation by switching crops were introduced in the
analysis via economic modules combined with crop models (Easterling et al., 1993; Adams et al.,
1995; Leclère et al., 2013). Leclère et al. (2013) use a supply-side model of European agriculture and
a crop model to show that adaptation can have signi�cant impact on farmers' pro�ts. Their results
integrate di�erent adaptation options in terms of changes in sowing dates or crop varieties.

Second, some recent studies (Ay et al., 2014 and Haim et al., 2011, for instance) investigate the
e�ects of climate change on land use. The study by Ay et al. (2014) uses the same principle as
in Mendelsohn et al. (1994) in estimating future land rents for their land use model. While the
study by Mendelsohn et al. (1994) focuses solely on the adaptation of agriculture in terms of crops
and practices, the study by Ay et al. (2014) evaluates the impact of climate change in terms of
LUCs. Haim et al. (2011) approximate the future agricultural and forestry productivity by the net
primary productivity of ecosystems. In the present study, we use the results of the study by Leclère
et al. (2013) in order to evaluate the e�ects of climate change on agricultural pro�tability and the
resulting impact on land use. In the same manner, the future climate pro�ts for the forestry sector

1Cited �gures are from UNFCC data for France up to 2013. Emissions include LULUCF and indirect CO2.
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are employed in our econometric model. The estimates for the forestry sector are derived from the
FFSM++ model (Caurla et al., 2013; Lobianco et al., 2016). Thanks to our modeling strategy, we
can account for the crop or tree species switch within these two sectors as an adaptation measure
reducing the losses related to climate change.

Third, the marginal abatement costs of GHG for agriculture have been studied through di�erent
modeling techniques. In their meta-analysis on the subject, Vermont and De Cara (2010) classify
the di�erent approaches in three groups: i) supply-side models specialized in agriculture; ii) general
equilibrium models; and iii) engineering studies. The authors argue that the results from the �rst
type of models are generally closer to the microeconomic de�nition of marginal costs, while general
equilibrium models integrate the commodity price responses to pollution abatement. Nevertheless,
supply-side models represent better the heterogeneity in farming systems. The detail in the descrip-
tion of the production function is even higher in the engineering studies but at the expense of the
geographical extent to which these studies apply.2 Except general equilibrium models, the response
of farmers to GHG taxation in terms of land use has been ignored.

As in previous greenhouse mitigation studies (De Cara and Jayet, 2000; De Cara et al., 2005;
De Cara and Jayet, 2011) we use the supply-side agricultural model AROPAj (Jayet et al., 2015)
to evaluate the GHG abatement for di�erent levels of GHG taxation. Thanks to the inclusion of
crop-yield functions of the nitrogen input (Godard et al., 2008) in AROPAj, we account for a larger
portfolio of abatement strategies of the economic agents. Furthermore, as mentioned before, the
work by Leclère et al. (2013) introduces two climate change scenarios in the supply-side model. This
way, we can simulate the abatement rates under di�erent climates. Since, carbon budgets span
over multiple decade horizons, accounting for climate change when evaluating GHG mitigation is
necessary especially for climate sensitive sectors such as agriculture.

In the present study, we allow also for a reallocation of land among four land uses, namely: i)
agriculture (crops and pastures); ii) forest; iii) urban; and iv) other. In order to model land use,
we employ a spatial econometric land use share model where we explicitly model spatial autocor-
relation between land uses in neighboring grid cells. Most studies in the literature assume spatial
independence of land use choices between neighboring areas. Some recent exceptions include Ay
et al. (2017); Chakir and Le Gallo (2013); Li et al. (2013); Sidharthan and Bhat (2012); Ferdous
and Bhat (2013); Chakir and Parent (2009). Incorporating spatial autocorrelation into land use
models allows to have more precise estimations and improves the prediction accuracy (?). We can
thus account for the policy and climate change impact in terms of land use. Our results show that
when farmers adapt their land use the GHG abatement rates are higher because of the decrease in
agricultural land use share.

This article is organized as follows. In section 2, we �rst present the models that we use in our
assessment on GHG from agriculture. We then present the data employed in the study in section 3.
Finally, the results of our simulations are provided and discussed in section 4.

2 Methodology

The methodology used in this study is based on two mathematical programming models (AROPAj
for agriculture and FFSM++ for forestry), coupled to bio-ecological models, and a spatial econo-
metric land use model that allows us to combine the results of the sector-speci�c models. The
bio-ecological components of the sector speci�c models account for the direct impact of climate

2For more details on the methodologies and the results of these studies, please refer to Vermont and De Cara
(2010)
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change on agriculture and forestry in terms of crops' and forestry yields. These results are inte-
grated in the economic models where economic agents maximize their returns by modifying their
input (fertilizers for farmers) and/or land use (crops, tree species). The evaluated pro�ts are then
used in the econometric land use model which provides us with estimates of the land shares dedicated
to each of the four major land use classes.

Climate change scenarios (A2 and B1) are �rst simulated via bio-ecological models. For agricul-
ture, this model is the crop model STICS developed by the French National Institute for Agricultural
Research, INRA, in Avignon (Brisson et al., 2003, 2009). The model allows to capture the e�ects of
di�erent weather conditions and of CO2 fertilization. The model can also simulate change in sowing
and harvesting dates, new varieties and di�erent levels of nitrogen input.

The response of forests to climate change is captured through two indicators: tree growth and tree
probability of presence. These indicators are derived from data provided by the French National
Geographic Institute (IGN). The e�ects of current climate and soil conditions on the indicators
is estimated via generalized additive models (GAM) and future values under climate change are
projected. This work has been conducted by Pierre Mérian and Jean-Daniel Bontemps from INRA,
Nancy.

2.1 Sector speci�c models for agriculture and forestry

Agriculture supply-side model We study the agricultural sector via the economic supply-side
model AROPAj (for a detailed description see Jayet et al., 2015). It is a linear programming model
based on FADN data and accounting for the Common Agricultural Policy. The economic agents in
the model are representative farms grouped by farm types maximizing their gross margins (revenues
minus variable costs). For each farmer the only publicly available information concerning location is
the FADN region in which he/she operates. In order to maximize their pro�ts, farmers in the model
allocate their land to di�erent crops while respecting a total area constraint. We use the shadow
price (dual value) associated with this constraint to measure the land rent.3

Agricultural land shadow price
(quantiles in ke per ha)

Scenario 0% 25% 50% 75% 100%

Present 0.29 0.42 0.49 0.68 1.03
climate (CTL)
A2 0.36 0.58 0.79 1.01 1.84
B1 0.36 0.54 0.78 1.16 1.62

Figure 1: Simulated values for the agricultural
rent under present climate (CTL) and for cli-
mate change scenarios A2 and B1

The AROPAj model is combined with the crop
model STICS via dose-response functions represent-
ing crop yields as a function of the quantity of nitro-
gen applied on �eld (Godard et al., 2008). Thanks to
the crop model, AROPAj can also account for vari-
ations in crop yields under future climate scenarios
(Leclère et al., 2013). Another important advantage
of the dose-response functions is that it allows the
economic agents of the model to adjust the quantity
of nitrogen used in the production depending on the
economic conjuncture (input and output prices, poli-
cies, etc.). Previous studies allow for a crop switch
but consider a constant level of input per crop (De
Cara and Jayet, 2000; De Cara et al., 2005). In the
present study, we asses the e�ects of climate change

on agriculture and on land use in France for two IPCC scenarios, A2 and B1. The simulated agri-
cultural land shadow prices for the present climate scenario and the two climate change scenarios
(A2 and B1) are given in �gure 1. Although, land shadow price is increasing under future climate

3Fallowing the duality theorem, the shadow price provides us with an estimate of the marginal pro�tability of land
or, in other words, its rent (under the economic equilibrium hypothesis).
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scenarios, there are some regional disparities visible in the �gure.
AROPAj models farmers' choice between land uses in terms of crops and/or pastures. Farmers

can also choose between di�erent feeds for their animals4 which has an impact on their GHG emis-
sions. We simulate GHG tax levels from 0 to 200 e/tCO2 eq. Such policies reduce the pro�tability
of agriculture (ceteris paribus, no price feedback is considered). In this case, the land shadow price
estimated by the model decreases as well meaning that agricultural rent is lowered. We use these
values in the land use share model. The model captures the heterogeneity among farmers in terms
of production and response to the tested mitigation policies. This feature of the model is extremely
relevant since agriculture is one of the GHG emitting sectors characterized by important heterogene-
ity among polluters. We also use the estimated shares of pastures and crops chosen by the economic
agents.

Forest sector model The forestry land rents are approximated by the expected returns esti-
mated by the partial-equilibrium model FFSM++ (French Forest Sector Model, Caurla and Delacote,
2012; Caurla et al., 2013; Lobianco et al., 2016). The recursive structure of the model is based on
two modules � the �rst one is dedicated to the wood resource dynamics; and the second one focuses
on the sector's market dynamics. The output prices are endogenous for the national market and
exogenous when the international market is in consideration. Recent developments of the model
include a spatialization of wood resources (Lobianco et al., 2015) and the introduction of forestry
management module allowing for the introduction of new tree species depending on expected future
pro�ts (Lobianco et al., 2016). The expected returns are calculated for 2006 and 2100 at the scale
of the French administrative region (NUTS2) and for coniferous and broadleaved forests. We use
an average of these two values. FFSM++ is based on parameters (mortality and growth of trees)
derived from statistical data. These parameters are estimated through a generalized additive model
(GAM, Wood, 2006) under present climate conditions. The GAM model then allows the simulation
of the parameters under climate change. The results of these simulations in terms of expected re-
turns for forestry are summarized in �gure 2. As in the case of agriculture, the response of forestry
returns to climate change is not uniform through space.
2.2 Land use share model

Forestry returns
(quantiles in e per ha)

Scenario 0% 25% 50% 75% 100%

Present 29 91 133 192 308
climate (CTL)
A2 18 45 74 96 709
B1 19 58 85 121 277

Figure 2: Simulated values for the forestry
rent under present climate (CTL) and for cli-
mate change scenarios A2 and B1

In line with the literature on LUCs, we estimate
a land use share model. Such models have been
widely employed in the literature (Lichtenberg, 1989;
Stavins and Ja�e, 1990; Wu and Segerson, 1995;
Plantinga, 1996; Miller and Plantinga, 1999). The
�rst step in the modeling procedure assumes that
the landowner derives the optimal land allocation
from his/her pro�t-maximization problem. In this
paper we focus on the landowner's decision to al-
locate land among four possible uses: agriculture
(crops and pastures), forest, urban, and other. As
in Plantinga (1996) and Stavins and Ja�e (1990)
landowners allocate land to the use providing the
greatest net present value of future pro�ts. In the
second step, and following the literature, we aggre-

4For simplicity, we consider that the number of animals is invariant in our simulations. We have tested di�erent
levels of animal variation (±15 and ±30%) and the results are similar especially for GHG taxation between 50 and
100 e/t CO2 eq.
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gate the optimal allocations by individual landowners to derive the observed share of land in the
grid cell i in use k, denoted yki.

In this paper we use grid-level data, where shares are de�ned as the percentage of total grid area
devoted to given uses. The observed share of land use k (k = 1, ...,K) in grid cell i (i = 1, ..., I) is
expressed as:

yki = pki + εki ∀i = 1, . . . , I, ∀k = 1, . . . ,K, (1)

where pki is the expected share of land allocated to use k in grid cell i. The observed land
allocation yki may di�er from the optimal allocation due to random factors such as bad weather or
unanticipated price changes. These random events are assumed to have a zero mean.

As in Wu and Segerson (1995) and Plantinga et al. (1999), we assume a logistic5 speci�cation
for the share functions as follows:

pki =
eβkXi∑K
j=1 e

βjXi
(2)

where Xi are explanatory variables and β
′
k measure the e�ect of the explanatory variables on

the expected shares.
Following Zellner and Lee (1965), the natural logarithm of each observed share normalized on a

common share (here yKi) is approximately equal to:

ỹki = ln(yki/yKi) = βkXi + uki∀i = 1, . . . , I, ∀k = 1, . . . ,K, (3)

where uki is the transformed error term. The model in equation 3 is identi�ed if we constrain
βK = 0 which is a standard assumption for this type of land use models (Ahn et al., 2000).

In the context of aggregated land use share models, spatial autocorrelation could result from a
structural spatial relationship among the values of the dependent variable, or a spatial autocorre-
lation among the error terms. An econometric model that does not include spatial autocorrelation
when the data generating process is spatial, could be adversely a�ected by this omission: bias in
the regression coe�cients, inconsistency, ine�ciency, masking e�ects of spillovers, prediction bias
(Anselin, 1988).

Considering spatial autocorrelation in an econometric model can be achieved in di�erent ways by
including spatially lagged variables, that is, weighted averages of the observations of "neighbors" of
a given observation (Anselin, 1988). These spatially lagged variables can be the dependent variable
(spatial auto-regressive - SAR - model), explanatory variables (spatial cross regressive model), the
dependent and the explanatory variables (spatial Durbin model, SDM), or the error terms (spatial
error model, SEM), or any combination of these options, which results in a wide range of spatial
models (Elhorst, 2010).

We estimate a modi�ed spatial Durbin error model (SDEM) using the R package spdep (Bivand
et al., 2013; Bivand and Piras, 2015). We use two spatial neighborhood matrices, W1 and W2. The
former represents grid cell neighbors based on a Queen contiguity rule while the latter is build at
the administrative region level. The explanatory variables are lagged with one of these two matrices
depending on the variable's geographical scale. We have decided to use this model speci�cation
following the results found in ?.

5The logistic share models are mainly used for three reasons: (i) they ensure that the predicted share functions
(strictly) lie in the interior of the zero-one interval, (ii) they are parsimonious in parameters and (iii) they are
empirically tractable thanks to the so-called log-linear transformation.

Proceedings 61th ISI World Statistics Congress, 16-21 JULY 2017, Marrakech (Session STS060) P. 2434



The SDEM takes account of the interactions between non-observed factors that a�ect the agri-
cultural land use conversion decision (equation 4).

ỹ = Xβ +W1X
′β′ +W2X

′′β′′ + ε

ε = λW1ε+ u (4)

W1 is an n×n spatial weight matrix for grid cell neighbors, W2 is a m×m spatial weight matrix
for regional neighbors, X ′ are the �ne scale explanatory variables, X ′′ are regional variables, β′ and
β′′ are the associated parameters, and the parameter λ expresses the interaction between residuals
and u is an iid6 error term such that u ∼ iid(0, σ2I).

3 Data presentation

General information and descriptive statistics of the variables used in the study are summarized in
Table 1.

3.1 Land use data

Variable Description Mean St. dev. Min Max

Land use
sag Share of crops and

pastures
0.601 0.289 0 1

sfo Share of forest 0.264 0.225 0 1
sur Share of urban 0.049 0.093 0 1
sfo Share of forest 0.264 0.225 0 1
sur Share of urban 0.049 0.093 0 0.992
sot Share of other uses 0.086 0.173 0 1

Source: CLC 2000
Scale: aggregated at
8 km x 8 km

Shadow
price

Land shadow price
(ke/ha)

0.554 0.218 0 1.11

Source: AROPAj v.2
(2002)
Scale: NUTS 2 and
lower

For rev-
enue

Forestry revenues
(e/ha)

138 67 29 308

Source: FFSM++,
2006
Scale: NUTS 2 scale

Pop rev-
enues

Households' revenues
(ke/ year/ household)

12.31 3.239 0 41.80

Source: INSEE, 2000
Scale: French com-

mune

Pop den-
sity

Households density
(households/ ha)

5.432 2.274 2.75 59

Source: INSEE, 2000
Scale: 200 m x 200 m
grid

Slope Slope (%) 4.325 6.155 0 47.72
Source: GTOPO 30
Scale: 30 arc sec ∼ 1
km

Texture Soils' texture classes 1 2 3 4

Number of cells 1242 4820 3120 579
Source: JRC, Pana-
gos et al. (2012)
Scale: 1:1000000

Table 1: Summary statistics of land use shares and
the explanatory variables.

The land use data are from the CLC database
for France at the scale of 100 m x 100 m (1
ha) grids and for the year 2000. The land
cover classes are agriculture, forest, urban, and
other. Then, we calculate the share of each
land use class for each (8 km x 8 km) grid cell;
we know that each cell includes a maximum of
6,400 ha. Land use shares are expressed as the
sum of the same land use classes in hectares di-
vided by the surface of the grid cell. Although
these cells are generated as homogeneous, they
are changed by their intersection with French
borders. For instance, grid cells on the coast
are restricted to their parts on dry land.

3.2 Demography

Approximation of the urban rent is based on
population density (in terms of number of
households per ha) and household revenues.
Both indicators are provided by the French sta-
tistical institute (INSEE), revenues are avail-
able at the scale of the commune, and the num-
ber of households is available for a regular 200
m x 200 m grid7. We use projections on de-

6Independent and identically distributed random variable.
7INSEE, http://www.insee.fr/fr/themes/detail.asp?reg_id=0&ref_id=donnees-carroyees&page=

donnees-detaillees/donnees-carroyees/donnees_carroyees_diffusion.htm .

Proceedings 61th ISI World Statistics Congress, 16-21 JULY 2017, Marrakech (Session STS060) P. 2435

http://www.insee.fr/fr/themes/detail.asp?reg_id=0&ref_id=donnees-carroyees&page=donnees-detaillees/donnees-carroyees/donnees_carroyees_diffusion.htm
http://www.insee.fr/fr/themes/detail.asp?reg_id=0&ref_id=donnees-carroyees&page=donnees-detaillees/donnees-carroyees/donnees_carroyees_diffusion.htm


mographic evolution from the INSEE (at the
département level, 2040 horizon) and estimates
from Center for International Earth Science In-

formation Network (2002) for the simulation of climate induced land use change (section 4).

3.3 Physical data

We also use data on topography of land:
Soils are represented by the data provided by the Joint Research Centre (JRC, Panagos et al.,

2012) at the scale of 1:1,000,000 and further aggregated at grid cell level. The indicator we use
for soil quality is soil texture according to four levels. The lowest quality, level 1, is used as the
reference. Land quality is an important variable in land use models (Chakir and Le Gallo, 2013;
Ahn et al., 2000; Lubowski et al., 2008).

Topography (altitude and slope) is derived from the digital elevation model (DEM) GTOPO,
available at the scale of 30 arc seconds (approximately 1 km). In the model only slope is introduced
because of the high correlation between slope and altitude. Slope is also leading to better results in
terms of �t of the models.

4 Results

Dependent variable:

ln((agr+pst)/oth) ln(for/oth) ln(urb/oth)

(1) (2) (3)

Constant 2.827∗∗∗ 3.104∗∗∗ −6.269∗∗∗
(0.577) (0.559) (0.515)

Shadow price (spat) 0.757∗∗ −0.457 0.407
(0.297) (0.296) (0.297)

For. revenues 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.001)

Pop. density −0.131∗∗∗ −0.145∗∗∗ 0.168∗∗∗

(0.013) (0.014) (0.015)

Pop. Revenues 0.047∗∗∗ 0.062∗∗∗ 0.236∗∗∗

(0.014) (0.014) (0.016)

Slope −0.155∗∗∗ 0.027∗∗ −0.153∗∗∗
(0.012) (0.013) (0.014)

Texture (cl.2) 0.669∗∗∗ 0.315∗∗∗ 0.509∗∗∗

(0.098) (0.100) (0.111)

Texture (cl.3) 1.186∗∗∗ 0.675∗∗∗ 0.898∗∗∗

(0.115) (0.118) (0.129)

Texture (cl.4) 1.780∗∗∗ 0.982∗∗∗ 0.921∗∗∗

(0.159) (0.163) (0.180)

Shadow price (W2) 1.531∗∗ −0.594 0.932
(0.780) (0.762) (0.716)

For. revenues (W2) 0.011∗∗∗ 0.008∗∗∗ 0.011∗∗∗

(0.002) (0.002) (0.002)

Pop. density (W1) −0.240∗∗∗ −0.214∗∗∗ −0.166∗∗∗
(0.035) (0.036) (0.037)

Pop. Revenues (W1) −0.011 −0.028 0.096∗∗∗

(0.029) (0.029) (0.029)

Slope (W1) −0.140∗∗∗ −0.118∗∗∗ −0.099∗∗∗
(0.019) (0.019) (0.019)

Texture (cl.2, W1) 0.114 0.209∗∗ 0.344∗∗∗

(0.096) (0.098) (0.106)

Texture (cl.3, W1) 0.130 0.248∗∗∗ 0.202∗∗

(0.094) (0.095) (0.103)

Texture (cl.4, W1) 0.244∗∗ 0.083 0.193∗

(0.105) (0.107) (0.115)

N 9761
R2 0.634 0.443 0.558
Moran's I 0.438∗∗∗ 0.402∗∗∗ 0.343∗∗∗

λ 0.759∗∗∗ 0.738∗∗∗ 0.658∗∗∗

Log Lik. -22129.8 -22391.02 -23449.93
AIC 44297.6 44820.04 46937.86
(AIC for LM) 48529.63 48486.51 49561.97

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Spatialized dual value, 4 LU

Table 2 represents the estimated coe�cients
of the land use share models. The estimated
Moran's I statistics and the λ parameters
are proving the presence of a signi�cant spa-
tial autocorrelation in all three models. The
Akaike information criterion (AIC) under the
SDEM speci�cation are lower than those for
non-spatial models. Land shadow price has a
positive and signi�cant e�ect on agricultural
land use. Forestry revenues are in�uencing
positively agriculture, forestry and urban land
uses. Urban rent proxies (population density
and revenues) in�uence positively the urban vs.

other uses. Slope and its lagged value have
a negative impact on all alternatives to the
other uses (except forestry for the non-lagged
slope) while soil's quality has a positive im-
pact. As for the lagged values of land shadow
price, neighboring regions' shadow price in�u-
ences positively agriculture.

The results of the performed simulations
can be analyzed in terms of: i) the impact of
the GHG taxation; ii) the impact of climate
change; and iii) the combined impact on land
use. Figure 3 summarizes the results of the
simulations.

As expected, taxing GHG emissions from

Proceedings 61th ISI World Statistics Congress, 16-21 JULY 2017, Marrakech (Session STS060) P. 2436



agriculture is reducing agricultural land use
share as a consequence of the lower pro�tability
of the sector. Crops area is much more a�ected
than pastures. The loss in agricultural area is
pro�ting mainly forests. Thus, the tax has an

e�ect on the intensive margin of agriculture (lowering the input use per hectare) but also on the
extensive margin by reducing the share of agricultural land use. Furthermore, the increase in forests
can lead to further GHG mitigation through carbon stocking.

As �gure 3 shows, our land use model predicts an increase in the crops area under the two climate
change scenarios comparing to present climate (CTL scenario). The �gure also shows that under the
B1 scenario, the increase in crops area is more important than the increase under the A2 scenario.
This increase is at the expenses of forests and pastures. As for urban, the hypothesis behind the
SRES (IPCC Special rapport on emissions scenarios) climate change scenarios posit an increase in
French demography for the A2 scenario and a stabilization or even a decrease for the B1 scenario.
The re�ection of this hypothesis is visible in the results, as urban area is increasing more in the A2
case. We can also see that the greater increase in crops area for B1 is associated with the lower
increase in urban and other uses areas for this scenario.

The taxation of GHG emissions is restraining the decrease in forests and pastures under the two
climate change scenarios. Since the conversion of pastures and forests into crops is a source of GHG,
the emissions associated with this land use change are avoided thanks to the tax. Although total
agricultural area (crops and pastures) in the A2 scenario for a tax of 100 e/tCO2 eq. is lower than
in the CTL scenario (table 3), land devoted to crops is increasing.

Figure 3: Land use shares evolution depending for the three climate scenarios and four of the GHG
pricing levels.

Figure 4: National GHG emissions from agriculture when accounting for LUC.

Figure 4 traces the evolution of the GHG emissions for the three climate change scenarios and
the various GHG taxation levels. GHG emissions are would be increasing under both climate change
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scenarios, meaning that more nitrogen input is to be used by farmers and animals' gazing would be
restricted. The �gure shows also that when we account for the potential land use change due to
GHG taxes, the reduction in GHG can be greater than if we consider the agricultural area constant.
These di�erences are more important for GHG tax levels higher than 50 e/t CO2 eq. Comparing
to the results obtained in De Cara and Jayet (2011) and in Vermont and De Cara (2010), the
abatement rates for the same GHG taxes are higher in our study. For instance, for a price of 20 and
50 e/t CO2 eq. we obtain a reduction in emissions of about 10% and 25% while De Cara and Jayet
(2011) report 6% and 16% reductions for France (approximate �gures). The abatement rates in our
study are higher also when we compare them with the results of the meta-analysis by Vermont and
De Cara (2010).

Climate
change

GHG tax-
ation

All GHG GHG
emissions

Utilized
agricultural

scenario (e/tCO2
eq.)

evolution
(%)

per ha
(tCO2
eq.)

area evolu-
tion (%)

CTL 0 100.00 3.453 100.00

20 90.11 3.190 97.54

50 76.41 2.805 94.08

100 63.76 2.478 88.85

A2 0 127.04 4.008 109.47

20 115.18 3.716 107.05

50 98.36 3.277 103.65

100 81.49 2.864 98.26

B1 0 125.80 3.829 113.47

20 115.47 3.583 111.29

50 99.85 3.184 108.30

100 84.89 2.835 103.41

*Utilized agricultural area equals the sum of land devoted to crops

and to pastures.

Table 3: Emission abatement, change in agricul-
tural area, and abatement costs.

These results are summarized in table 3. This
table represents the double e�ect of GHG taxa-
tion on the two dimension mentioned before: the
extensive and the intensive margins of agriculture.
Results show that even for high levels of GHG tax,
there is an increase in agricultural area for the B1
scenario. Tax levels of 50 e/t CO2 eq. allow a
stabilization of GHG emissions to current levels.
We should note that these costs are not only asso-
ciated with a decrease in N2O and CH4 emissions,
but also with a reduction in nitrate emissions due
to the application of mineral fertilizers (Bourgeois
et al., 2014). In general, economic theory suggests
that each pollutant should be targeted individu-
ally depending on its respective environmental im-
pact. Nevertheless, there could be possible syner-
gies between di�erent environmental objectives.

In both present and future climate, the inter-
nalization of the negative externalities could potentially lead to an increase in forest area, or curtail
its reduction due to climate change. The reforestation or the non-deforestation is associated with
new carbon sinks or preserved existing ones. Through this process, the GHG abatement costs should
be further reduced. A logical extension of our current work is the integration of the GHG emissions
resulting from LUCs. A preliminary assessment of the organic carbon storage variation due to LUCs
indicated a relatively small level of CO2 emissions (about 1% of current levels).

5 Conclusion and perspectives

In the present paper, we explored the potential of a combined use of sector-speci�c bio-economic
models, AROPAj and FFSM++, and an econometric land use shares model for the study of climate
change adaptation and mitigation. The e�ects of climate on agriculture and forestry are captured
through a generic crop model and a statistical model of tree growth and mortality. The obtained
results are then used in economic models for the two sector-speci�c models. These two models allow
us to evaluate the economic pro�ts for agriculture and forestry. We estimate a spatial econometric
land use model where agricultural and forestry rents are approximated by the results from sector-
speci�c models. We studied four LU classes: i) agriculture; ii) forest; iii) urban; and iv) other uses.
Our land use shares model is accounting for spatial autocorrelation thanks to the spatial Durbin
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error model speci�cation. We simulate two climate change scenarios and GHG taxation levels (from
0 to 200 e/tCO2 eq.) that aim at reducing greenhouse gas emissions from agriculture.

The results of our study show that both climate change scenarios (A2 and B1) lead to an
increase in agricultural area at the expense of forests. The progression is lower for the A2 than it
is for the B1 climate change scenario. The simulated taxation schemes addressing GHG decrease
farmers' pro�ts and thus curtail some agricultural expansion. This process can reduce the abatement
costs associated with the public policy. When farmers are subject to GHG taxation, they reduce
their input use (intensive margin of agriculture) and convert smaller area of forests and pastures
to agriculture. This behavior is compatible with the agroecological measures supposed to cut the
sector's GHG emissions. Furthermore, some potentially "win-win" measures (such as the "4 per
1000" program) could increase the abatement rates, soils quality and thus agricultural productivity.
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