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Abstract

Heavy-tailed inter-arrival times are a signature of “bursty” dynamics, and have been observed in financial
time series, earthquakes, solar flares, neuron spike trains and many social, technological and economic phe-
nomena. The study of extremes in bursty time series is important for risk assessment, resource management
and service allocation. “Standard” Extreme Value Statistics assumes evenly spaced or Poisson process ar-
rivals, and hence cannot model bursty dynamics. We propose a renewal process with power-law, infinite
mean inter-arrival times as a model for bursty dynamics, and assume i.i.d. event magnitudes at the renewal
times. This results in a so-called “Max-Renewal process” or “Continuous Time Random Maxima process”.
The renewal process assumption is rarely satisfied on the scale of individual observations, but often so for
the times between events larger than a given (high) threshold. These threshold exceedance times are, due to
geometric sum-stability, attracted to a Mittag-Leffler distribution. We show that as the threshold height is
increased, the Mittag-Leffler shape parameter stays constant, while the scale parameter grows like a power-
law. This theoretical result is confirmed by observing the same behaviour on datasets for earthquakes, solar
flares and financial losses. We discuss approaches to fit model parameters and uncertainty due to threshold
selection.
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1. Introduction

Time series displaying inhomogeneous behaviour have received strong interest in the recent statistical physics
literature, [Bar05], and have been observed in the context of earthquakes, sunspots, neuronal activity and
human communication, see [KKBK12, VTK13] for a list of references. Such time series exhibit high activity
in some ‘bursty’ intervals, which alternate with other, quiet intervals. Although several mechanisms are
plausible explanations for bursty behaviour (most prominently self-exciting point processes [Haw71]), there
seems to be one salient feature which very typically indicates the departure from temporal homogeneity: a
heavy-tailed distribution of waiting times. A simple renewal process with heavy-tailed waiting times captures
these dynamics. For many systems, the renewal property is appropriate, as the dynamics do not change visibly
if the waiting times are randomly reshuffled [KKBK12].

When a magnitude can be assigned to each event in the renewal process, such as for earthquakes, sun flares,
neuron voltages or the impact of an email, it is natural to consider the consequences of extreme events.
Thus two questions that arise are: When will the next extreme event occur? And, how large will it be? A
probabilistic extreme value model which assumes the renewal property can be used to answer these questions.
One such model has been studied under the names “Continuous Time Random Maxima process” (CTRM),
see e.g. [MSO08], “Max-Renewal process”, see e.g. [ST04], and “Shock process”, e.g. [SS83]. In this work, we
discuss ideas for methods of inference for this type of model, a problem which has seemingly received little
attention by the statistical community.

2. CTRMs

The Continuous Time Random Walk (CTRW) has been a highly successful model for anomalous diffusion
in the past two decades [MKO00, HTSL10], likely due to its tractable and flexible scaling properties. The
stochastic process we study here is conceptually very close to the CTRW, since essentially the jumps Jj
are reinterpreted as magnitudes, and instead of the cumulative sum, one tracks the cumulative maximum.



Similarly tractable scaling properties apply to the CTRM, and many of the results we present for the CTRM
have been derived as extensions to similar results for the CTRW [BS14, MS08, HS17].

Definition 1. Assume i.i.d. inter-arrival times Wy, > 0 and event magnitudes Jy, € [z, xR], where x, g €
[—00,00]. Define the renewal process associated with the Wy, as

N(t) =max{n € N: S(n) < t}, (2)
and let M(n) := \/}_, Ji denote the running mazimum. Then the process

N(t)
V(t)=M(N@t) =\ Ji, t>0 (3)
k=1

is called a CTRM (Continuous Time Random Mazima) process. For convenience, we set M(0) = xr, and
max{} = 0.

It is clear from the definition that the sample paths of N(¢) and V(¢) are right-continuous with left-hand
limits. If W}, is interpreted as the time leading up to the event with magnitude Jy, then V' (¢) is the largest
magnitude observed until time ¢. The alternative case where W} represents the inter-arrival time following
Ji. is termed “second type” (in the shock model literature, [SS83]) or OCTRM (overshooting CTRM) [HS17],
and the largest magnitude up to time ¢ is then given by

N(t)+1
viy="\/ Jr t=0 (4)
k=1

Finally, the CTRM model is called coupled when Wy, and Jj, are not independent. We focus on the uncoupled
case, for which it can be shown that the processes V() and V(t) have the same limiting distributions at
large times [HS16]. When drawing inference on V(¢) it is natural to be concerned with both the timing and
magnitude of extreme events. By definition extreme events are those of large magnitude and therefore must
exceed a high threshold . Thus we seek the distribution of the following quantities:

Definition 5. The exceedance time resp. exceedance of level ¢ € [xy,, x| are the random variables
T, = inf{t : V(t) > E}, Xy = V(Tg) — 4.

With a few towards statistics, Ty and X, are both directly observable in a dataset: Figure 1 shows magnitudes
Ji at their arrival times Wi +. ..+ Wj. Given a threshold (dashed line), this defines a sequence of exceedances
{Xek}ren (lengths of red lines) and exceedance times {7} }ren (distances between adjacent blue circles),
which will be used for inference later.

Lemma 6. Let V(t) be an uncoupled CTRM process, and let £ € [xy,,xR].
1. The exceedances { Xy }ren and exceedance times {Ty i }ren are both i.i.d.

2. For each k € N, Xy}, and Ty are independent.
Proof. This is a direct consequence of the i.i.d. property of Wy and Jj. O

A standard result from extreme value theory provides the (asymptotic) distribution of X,; see Theorem 7
below, which we include for completeness. We can hence devote the remainder of this text to the estimation
of the distribution of Tj.
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Figure 1: A thresholded CTRM process.

Theorem 7 (e.g. [BGST06]). Suppose the distribution of Jy is continuous. Then there exist non-decreasing
norming functions a(n) and d(n) such that as n — oo, the running maximum M (n) converges weakly to a
Generalized Extreme Value Distribution with shape parameter £ € R:

(M (n) —d(n)]/a(n) 3 A, P(A < 2) = G(2) = exp (_[1 n M_uf) ’

defined for z such that 1 + £z > 0, and defined for & = 0 via continuity. We write GEV (&, u,0) for the
probability distribution of the random variable o A + p. Moreover, asymptotically for large £ 1 x g,

P(Xy>y)=P(J — >yl >0 ~ (1+£&y/6)" Y =1 - H(y)

where & == o+ &l — ), y > 0 and 1 + &y/6 > 0. A distribution with CDF H(y) is said to be from the
Generalised Pareto family GP(&,5).

3. Scaling limits

Waiting times. In this text, we assume that the waiting times W}, have a tail parameter g € (0, 1), i.e.
P(W; >t) ~ L(t)t~# as t 1 oo for some slowly varying function L(t). (We write f(t) ~ g(t) if their quotient
converges to 1.) The law of the Wy, then lies in the domain of attraction of a stable law, in the sense that
the limit

Wi+ ...+ Wo)/b(n) -5 D, n— oo (8)
exists, for a regularly varying scaling function b(n) = n*/#L(n) € RV (1/8), where L(n) is slowly vary-

ing. The limit is then a positively skewed stable distribution, whose scale parameter is 1 is b(n) is chosen
accordingly; that is, Efexp(—sD)] = exp(—s®). Moreover, the following functional limit theorem holds:

(Wi + .+ Wie))/ble) 5 D(t), ¢— oo (9)

with convergence in the Skorokhod J; topology. The limit D(¢) is a stable subordinator, i.e. an increasing
Lévy process with Laplace transform exp(—ts?).
It is well known (see e.g. [MSO04]) that the renewal process then satisfies the functional limit

N{(ct)/b(c) LN E(t) =inf{r: D(r) >t}, ¢— (10)



for a scaling function b(¢) which is asymptotically inverse to b(c), in the sense of [Sen76, p.20]:
b(b(e)) ~ ¢~ b(b(c))- (11)
Note that b € RV (8) [MS04]. The limit process E(t) is called the inverse stable subordinator [MS13].

Event magnitudes. The extremal limit theorem allows for an extension to a functional limit: assume
that the norming sequences a(n) and d(n) are as in Theorem 7. Then

[M(|ct]) —d(c)]/a(c) 4 A(t), c¢— oc.

Convergence is in Skorokhod’s J; topology, and the limit process A(t) is an extremal process, with finite-
dimensional distributions given by

]P)(A(tl) <z;,1 <1 < d) = FA(/\?:lxi)tlFA</\?:2:L‘i)t2_t1 . FA(l‘d)td_td’l,
with F4(z) being a GEV distribution.

CTRM limit. A CTRM is running-maximum process M (n), time-changed by the renewal process n =
N(t). Accordingly, its scaling limit results from the time-change of its corresponding limit processes:

Theorem 12. [MS08] The CTRM process V(t) = M(N(t)) satisfies the following functional scaling limit in
the Skorokhod Ji topology:

[V (ct) = d(b(c))]/a(b(e) > A(E(®)), ¢ — o0,
The distribution of the hitting time of a level £ by the limit process A(F(t)) has been found as well:

Theorem 13. Let Fy be the CDF of a GEV distribution, and let A(t) be the corresponding extremal process.
For a given threshold £* in the support of Fa, the hitting time B(¢*) = inf{t : A(E(t)) > £*} follows a
Mittag-Leffler distribution:

B(€*) ~ ML (B, (= log Fa (") "/*)
Recall that for g € (0,1), a standard Mittag-Leffler random variable Y is positive with Laplace transform
Elexp(—sY)] = 1/(1 + s?). For o > 0, we then write ML(3, o) for the distribution of oY

4. Inference on Exceedance Times

Distribution of exceedance times. We now proceed to the main result of this paper, which is to

derive a statistical inference procedure for the exceedance times Ty based on Theorem 13. Using ¢ ~ b(b(c)),
writing n = b(c¢), and substituting ¢ — ¢/b(n), Theorem 12 implies

V(t) ~ a(n)A(E(t/b(n))) + d(n).
Hence
£—d(n)
a(n)

where ¢* = (¢ — d(n))/a(n). This shows that, approximately, T 4 b(n)&e, or, using Theorem 13,
T ~ ML (8, b(n)(~ log Fa (€))7

T, >t V) <ls AE(t/b(n))) < & & > t/b(n)

By extremal limit theory,
~log Fa(¢*) ~ —log Fy(¢)" = —nlog(1 - p) ~ np
where p=1— F;({) =1 —P(J, < {), and hence we may write
Ty ~ ML(8,p~ P L(n), (14)
recalling from above that b(n) = n'/#L(n).



Estimation algorithm. A natural estimator for p is |{k : Jx > £}|/n, i.e. the fraction of magnitudes
which exceed ¢. We note that the tail parameter S does not depend on the threshold level ¢. Inspired by
the POT (points over threshold) method and using Equation (14), we hence suggest the following estimation
procedure for the distribution of Tj:

1. For varying thresholds ¢ 1 zg, extract datasets of exceedance times {7} j } .

2. For each ¢, fit a Mittag-Leffler distribution to {T} %, yielding the estimates {3(£)}, and {5(£)}.

3. Plot £ vs. B((), and look for regions where the plot looks stable. Choose B from the high-¢ end of this
region.

4. Approximating p ~ |{k : Ji > £}|/n, plot £ vs. pl/B[T(E), and look for regions where the plot looks
stable. Choose &g from the high-¢ end of this region.

One can then estimate the distribution of the exceedance times for the threshold ¢ via a ML(B,p‘l/ B60).
Figure 2 shows the diagnostic plots from Steps 3 & 4, for a dataset of magnitudes and occurrence times
of earthquakes in the Coral Sea, obtained from http://www.seismicportal.eu. Estimates of the Mittag-
Leffler parameters were calculated using the log-moments method [Cah13]. We suggest the estimates B ~ 0.5,
& ~ 1.5 x 107 seconds, approximately 0.48 years.
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Figure 2: Stability Plots for an earthquake dataset. The x-axis k denotes the number of obervations
above the threshold /.

5. Conclusion

Standard extreme value theory [BGSTO06] provides classical methods for the statistical fitting of extreme
value distributions. If the times between events are light-tailed, this theory entails that the times between
large events are exponentially distributed. We have extended this theory, in particular the POT (points over
threshold) method, to apply to heavy-tailed inter-event times, generalizing the exponential distribution to
a Mittag-Leffler distribution (note that the exponential distribution is a special case of Mittag-Leffler, for
g=1).

For brevity, we have omitted plots of the autocorrelation function for the sequence of waiting times, which
shows that the renewal assumption is not grossly disobeyed, and Q-Q plots for the quality of the fit of the
Mittag-Leffler distribution.

Finally, there are multiple avenues for a refinement of this method: How can the uncertainty of the parameters
be quantified, and how does it propagate to the uncertainty of predictions? How can uncertainty in the choice
of threshold be quantified, again with a view towards predictions and the estimation of risk? And finally, we



deem it possible to extend the above theory to semi-heavy-tails, where waiting times have infinite variance
but finite mean.
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