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Abstract The column selection problem lies at the crossroad of many applications in mathematics,
statistics and machine learning. In this paper, we survey some of the key results in this field. We also
provide a new perturbation result which leads to a simple and efficient greedy column selection method.
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1. Introduction Let X in R™*P be a matrix such that all columns of X have unit euclidean />-norm and
for any index subset T' C {1,...,p}, let X1 denote the submatrix of X obtained by extracting the columns
of X indexed by T. The problem of extracting a subset of columns of X such that the resulting matrix is well
conditioned has been studied for quite some time both in the pure and in the applied mathematics litera-
ture. In statistics, this problem is usually addressed in the context where more variables are available than
observations and a relevant set of covariates has to be chosen to stably represent all the variables at hand. In
numerical analysis, one usually speaks of Rank Revealing QR factorization methods. In Computational Ge-
ometry the problem of finding the j-simplex of maximal volume has been investigated using column selection.
In functional analysis, one of the most famous problems of this type is the Restricted Invertibility Problem
of Bourgain and Tzafriri. Several selection criteria have been investigated depending on the application. In
the Restricted Invertibility Problem, one is concerned with finding the largest number of columns such that
the resulting submatrix has its smallest singular value larger than or equal to a given constant. In Rank
Revealing QR Factorization, much interest usually goes into controlling the extreme singular values as well
as the spacings between them. In Computational Geometry, one is interested in selecting a subset of columns
from X with largest possible determinant. From a computational viewpoint, choosing the columns so as
to optimize certain criteria associated with well conditioning of the resulting submatrix is often NP-hard.
Greedy algorithm with good approximation guaranties are available. Various clever other techniques have
been used for the practical solution of the column selection problems. Among them, randomized algorithms
have been very popular. A deterministic algorithm was proposed by Spielmann and Srivastava for the Re-
stricted Invertibility Problem. This method was then further extended to the problem of controlling the
smallest and the largest singular values at the same time by Youssef. In the numerical analysis community
several authors have come up with very interesting methods as well.

The goal of this paper is to give an overview of the columns selection problem and its various applications
in high dimensional statistics. We will also present a very simple deterministic method which controls the
extreme singular values when the matrix has some intrinsic incoherence. Applications to feature extraction
will be described. In particular, we will show that our method can be successfully used in practice on some
difficult machine learning problems.

2. Previous results.
2.1 The restricted invertibility problem. For the Restricted Invertibility problem, Bourgain and Tzafriri
obtained the following result for square matrices:



Theorem (A) [Bourgain-Tzafriri, ’87] Given a p X p matriz X whose columns have unit la-norm, there
exists T C {1,...,p} with |T| > dﬁ such that C' < Amin (X5 X7), where d and C are absolute constants.

See also (Tropp, '08) for a simpler proof. Vershynin (Vershynin 01) generalized Bourgain and Tzafriri’s result
to the case of rectangular matrices and the estimate of |T'| was improved as follows.

Theorem (B) [Vershynin, '01] Given a n X p matriz X and letting X be the matriz obtained from X by
ly-normalizing its columns. Then, for any e € (0,1), there exists T C {1,...,p} with
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such that Cy(g) < )\min(f(%f(;r) < )\max()z%)?;p) < Co(e).

Recently, Spielman and Srivastava proposed in (Spielman and Srivastava, ’12) a deterministic construction
of T" which allows them to obtain the following result.

Theorem (C) [Spielman-Srivastava, '12] Let X be a p X p matriz and ¢ € (0,1). Then there exists T C

X||? X|?
{1,...,p} with |T| > (1 —¢)? ”lerr;S such that €2u < Amin (X5 X7).

The technique of proof relies on new constructions and inequalities which are thoroughly explained in the
Bourbaki seminar of Naor (Naor, '12). Using these techniques, Youssef (Youssef, '13) improved Vershynin’s
result as:

Theorem (D) [Youssef, 13] Given a n X p matriz X and letting X be the matriz obtained from X by
e IXEs

Ly-normalizing its columns. Then, for any € € (0,1), there exists T C {1,...,p} with |T| > 9 x|

that 1 —& < Amin(X5X7) < Amax (X0 X7) < 14¢.

2.2 Other criteria for column selection. Other techniques for columns extraction are available using
different criteria. In what follows, we list some of the existing results in this direction.

The paper (deHoog-Mattheij, '07) studies the problem of selecting a subset of & columns from X such that
the pseudo-inverse of the sampled matrix has as small a norm as possible. Their approach is greedy and
deterministic. The idea is to proceed by removing one column at a time from X. In the first iteration of the
algorithm, they remove the column with index i;, where

i1 = argmin trace ((X — xixf)_l) .
Then, the column 4; is removed from X and the resulting matrix is denoted by X;. Then, i5 is chosen as

iy = argmin trace ((X1 — xixﬁ)_1> ,
and so on and so forth in the same way for i3, i4, etc. The following theorem holds for this procedure when
the number of extracted columns is larger than n.

Theorem (E) [deHoog-Mattheij, '07] If X is such that the removal of a single column does not result in a
rank deficient matriz, we have
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The work of Gu and Eisenstat (Gu-Eisenstat, 95) about rank revealing factorisation is also widely cited in
this area of research. Without entering into the details, their algorithm provides a numerically stable way to
compute a subset T of cardinality |T| < n with bounds on all the nonzero singular values of the type
1
o} (X)) > ————— o7

t=1,...,n and a certain parameter f.

A greedy approach was also proposed in (Boutsidis-Drineas-Magdon-Ismail, '11) which was proved to be
nearly optimal. In (Avron-Boutsidis, ’13), a new random sampling based method is proposed for this problem
with many possible norms. They are able to devise a clever method which gives the same results as (deHoog-
Mattheij, '07) but systematically avoids selecting a submatrix which lowers the rank. They also establish
the remarkable fact that the combinatorial problem of finding a low-stretch spanning tree in an undirected
graph corresponds to this same kind of subset selection problem although the column selection approach is
not optimal for this problem from a computational complexity perspective.

Convex optimisation was also put at work for the columns selection problem as in (Joshi-Boyd, '09) using
a clever relaxation and a D-optimality type criterion. Tropp (Tropp, '09) also addressed the problem using
convex optimisation and in particular Semi-Definite Programming solution to the Pietch and Grothendieck
factorisations. In the same spirit, column selection based on maximum volume type criteria have also been
extensively studied, such as in (Nikolov, ’15) where an efficient randomised algorithm is described.

3 Results based on the coherence and application to Compressed Sensing. Incoherent subset
selection is also a very interesting class of problems of paramount interest in Compressed Sensing and high
dimensional regression.

3.1 Random sampling. In these problems, one usually want to know whether most submatrices with s
columus extracted from a given X are rg-quasi isometry when 7' is a random index subset of size s of {1,...,p}
drawn uniformly at random and X7 is the matrix obtained by extracting the columns of X indexed by T.
By an rg-quasi isometry, we simply mean || X% X7 —Id|| < ro. In the sequel, we assume that the columns of
X have unit norm.

The uniform version of the quasi-isometry property, i.e. satisfied for all possible T”s, is called the Restricted
Isometry Property (RIP) and has been widely studied for random i.i.d. subgaussian matrices. Recent works
such as (Candés-Plan, '09) proved that the quasi isometry property holds with high probability for matrices
satisfying an certain incoherence assumption. Checking that a matrix is sufficiently incoherent is easy to
check in practice. Such types of result are therefore of great potential interest for a wide class of problems
involving high dimensional linear or nonlinear regression models.

In a recent work based on the landmark paper (Rudelson, '99), Tropp proved the following theorem.

Theorem (F) [Tropp, '08] Let A be an n x n Hermitian matriz, decomposed into diagonal and off-diagonal
parts: A= D+ H. Fizp in [2,4+00), and set ¢ = max{p,2log(n)}. Then

Ey | RAR| < C [qB, |RHR| 0+ V/34E, | HRI, , + 6 || +E, |RDR] .

Here, R denotes the square diagonal "selector" matrix whose j" diagonal entry is §;, where {§;} denotes
a sequence of independent Bernoulli 0-1 random variables with common expectation J, and the symbol E,
denotes the L, norm (E| - |P)}/?. The proof heavily relies on the Non-Commutative Kintchin inequality.
Using this result and Markov’s inequality, Candés and Plan proved that the 1/2-quasi isometry property holds
with probability greater than 1 — p~21°8(2) when s < p/(4] X ||?) and the coherence of X, i.e. max|X}X;|,
k # 1, is sufficiently small. The ry-quasi isometry property then holds with high probability under easily
checkable assumptions on X. Using refined tail decoupling techniques, we recently improved this last result
in the following way.

Theorem (G) [Chrétien-Darses, 13] Let r € (0,1), a > 1. Let us be given a full rank matriz X € R**P
and a positive integer s, such that
r
(14 a)logp
72 D
T+ e [X2logp

pX) < (0.3)

(0.4)



Let T C {1,...,p} be a random support with uniform distribution on index sets with cardinal s. Then the

following bound holds:

1944

P (| X5 Xy —1d]| > 7) < e

(0.5)

3.2 Gittens’ result on Nystrom extensions. Nystrom extensions are a class of algorithms whose objective
is to find a low-rank approximations to positive semidefinite (PSD) matrices by sampling from their columns.
(Gittens, ’11) considers a special case denoted the "naive Nystrom extension" in which the columns are
sampled uniformly without replacement.

Theorem (H) /Gittens, '11] Let A be a PSD matriz of size p (think of XX ). Given an integer k < n,
partition the eigenvalue decomposition of A as follows

P Ut

R (0.6)
with Uy € RP** Uy € RP*(P=F) Let 7 denote the coherence of Uy. For any € € (0,1), if T is chosen

uniformly at random among subsets of {1,...,p} with cardinality s with

27klog(k/9)
> 0.7
> T 07)
then the approximation error satisfies

|4~ AST(S5+AST) SEAlr < Aaa(4) (1+ 2, (0.8)

with probability larger than 1 — 6.

3. A new result on column subset selection for incoherent matrices

3.1 New perturbation results

Using the coherence as a way to choose the next column to select may be a natural way in a greedy approach.
In order to study this type of procedure, we proved an instrumental general perturbation theorem. More
precisely, if we consider a subset Ty of {1,...,p} and a submatrix Xz, of X, the problem of studying the
eigenvalue perturbations resulting from appending a column X; to Xg,, with j &€ T can be studied using
Cauchy’s Interlacing Lemma. Based on this approach, we obtained the following result.

Theorem (I) [Chretien-Ho, 17| Let Ty C {1,...,p} with |Ty| = so and X1, a submatriz of X. Let \; >
2 As, be the eigenvalues of X1, X{, . Assume that for some o € (0,1),

X7, 0115 < o sop®. (0.9)
We have
2
o S
Aot (Xn, Xb, + X5X)) 2 Ay = 7 _OA” . (0.10)
S0

If we append s; columns successively to the matrix Xr;,, we obtain the following result.

Theorem (J) [Chretien-Ho, ’17] Let Ty C {1,...,p} with [To| = so and Xg, o submatric of X. Let
AL 2= ... = A, be the eigenvalues ofXTOXtTO. Let Ty C{1,...,p} with |T1| =s1 and ToNTy = 0. Let

S 1—1
0 i=sg+1

_ 280+sl Caplsy . 2(1—Ay,) O
Eman = MIN | \/ Z \[z, 11— )\so + Z .

i:SO
Then

)‘So+81 (X%QUTlXTOUTl) > )‘So — Emin (011)
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Figure 1: Time series (left) and 20 first times series discovered by the greedy approach (right)
Graph of minimum eigenvalue, mu=0.57542
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Figure 2: Extracting a submatrix sequentially by greedy column selection

3.2 Computer experiments

In this section, we show a particular computer experiment with a set of 10000 time series. The time series
are shown in Figure 1. Our goal is to find a subset set of times series which represent the whole data set
accurately. For this purpose, we use the bound in Theorem (I) in order to choose the next time series in a
greedy fashion by minimising || X% X2, j & T at each step.

As Figure 2 shows that our bound significantly improves on the Gershgorin bound. Moreover, the graphs
show that one could stop after 7 steps which implies that the times series could be clustered efficiently using
7 clusters.

4. Conclusions. In this paper, we surveyed the current results on the problem of column selection, an
important problem in machine leaning and statistics for feature extraction, analysis of compressed sensing
and the LASSO, numerical stabilisation, etc. We also showed that our bounds could lead to a very simple
greedy method for clustering or feature extraction.
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