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Abstract

Partial Least Squares Regression (PLSR) is a very popular multivariate modeling method used to model
multicollinear data as well as data sets where the number of explanatory variables exceed the number of
samples. Outliers are very common in multivariate data sets and may have a significant effect on the quality
of a PLSR model. Hence, their identification is a critical part of modeling process. The aim of this study
is to introduce a robust method to detect possible outliers and influential observations in a PLSR model.
We propose robust leverage values and robust Cook’s Distance statistic estimated from a robust weighted
PLSR (RWPLSR) method whose weights can also serve as a diagnostic tool to detect outliers in response and
explanatory variable spaces. We compare the proposed diagnostics with classical outlier detection techniques
from least squares based PLSR on a real data set.
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1. Introduction
Partial Least Squares Regression (PLSR) is a very popular multivariate technique. It is used to build a
regression model with multicollinear data or with data where number of explanatory variables exceeds the
number of samples. The idea of PLSR is to extract uncorrelated latent variables (components) iteratively us-
ing algorithms among which SIMPLS (DeJong (1993)) is one of the popular ones. Outliers are very common
in multivariate data sets and may have a significant effect on the quality of the model. They may be caused
by the instrument used to measure the sample, operation and sample preparation. Despite its popularity
SIMPLS is very sensitive against outlying observations since it uses least squares estimation and a nonrobust
covariance matrix. When the data set contains outliers, the estimates from SIMPLS differ from the estimates
that we would obtain without outliers. Furthermore, SIMPLS might not able to correctly detect outliers by
means of classical diagnostics tools based on residuals, leverage values, or leave-one-out diagnostics, since it
is sensitive to masking effects in presence of multiple outliers. In fact, a group of outliers would effect, the
mean, the covariance matrix and the regression parameter estimates and they would pull the regression line
in their direction so that they will exhibit small residuals and leverage values. To overcome this problem we
suggest to use a robust SIMPLS procedure in order to build a robust model that would also detect outliers;
based on this estimates, diagnostic tools using residuals, leverage values and Cook’s distances do not suffer
from masking effects. Our proposal is based on a Robust Iteratively Reweighted SIMPLS (RWSIMPLS)
introduced by Alin and Agostinelli (2017).

In Section 2, we give some details of the RWSIMPLS method and proposed diagnostics (For details on
SIMPLS refer DeJong (1993)). In Section 3, we compare the performance of proposed method with the
diagnostics from ordinary SIMPLS on a real data set. We finalize the paper with concluding remarks.

2. Robust Iteratively Reweighted SIMPLS (RWSIMPLS) Method
In a PLSR problem, our aim is to build the linear regression model (1) where X is n × k mean centered
explanatory variables matrix and Y is n×m mean centered response variable matrix.
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Y = Xβ + e (1)

We assume X and Y are modeled by the linear components as in Equation (2).

X = TP> +E Y = UQ> + F (2)

where T = XW = (t1, . . . , tA) and U = Y C = (u1, . . . ,uA) are the n × A component score matrices
for X and Y , respectively with A representing the number of components which is less than or equal k.
P = (p1, . . . ,pA) and Q = (q1, . . . , qA) are the k×A and m×A loading matrices for X and Y , respectively.
The k × A matrix W and the m × A matrix C are the weight matrices. The first score vectors t1 and u1

are the solutions to the following maximization problem. Under the constraints ‖t‖ = ‖u‖ = 1 we have

max
t,u

Cov(t,u) = max
w,c

Cov(Xw,Y c) = max
t,u

t>u = max
w,c

(Xw)>Y c = max
w,c

w>X>Y c. (3)

The weight vectors w and c can be found by the Singular Value Decomposition (SVD). According to that,
among all possible directions w and c, the maximum of Equation (3) is attained for the vectors w1 and
c1 corresponding to the largest singular value of X>Y (Varmuza and Filzmoser (2009)). An additional
constraint is needed for the subsequent score vectors. It is generally taken as the orthogonality of the
previous score vectors; i.e. tatj = 0 and uauj = 0 for 1 ≤ a < j ≤ A. The SIMPLS algorithm is based on
deflating the empirical covariance matrix of the mean centered data which is highly sensitive against outlying
data points, and the loads as the ordinary least squares regression coefficients of X and Y with respect
to their score vectors. Hence, the loading vector estimates are very sensitive to outliers and they might be
less efficient with the non-normal errors. As a solution Alin and Agostinelli (2017) proposed the Robust
Iteratively Reweighted SIMPLS (RWSIMPLS) which is a modified version of SIMPLS where the following
weights are used to reduce the influence of outlier observations as it is described below

ωri = ω(ri(β̂);m(·; σ̂), F̂n) = min{1,

[
A(δ(ri(β̂))) + 1

]+
δ(ri(β̂)) + 1

}. (4)

The ri(β̂) is the residual corresponding to the estimate β̂. δ(ri(β̂)) = f∗(ri(β̂))

m∗(ri(β̂);σ̂)
− 1 define the Pearson

residual which express the agreement between the residuals and their assumed probability model.f∗(ri(β̂)) =∫
k(ri(β̂); t, h) dF̂n(t) represent a kernel density estimator obtained with the observed values of the residuals

based on β̂ where F̂n is the empirical distribution of the residual vector ri(β̂), i = 1, · · · , n. m∗(ri(β̂); σ̂) =∫
k(ri(β̂); t, h) dM(t; σ̂) is the smoothed model density. In this study, we use normal kernel density k(r; t, h) =

exp(−(r− t)2/(2h2))/(
√

2πh) with h =
√
kσ2, where k is a constant independent of the scale of the data, so

that very small weight is assigned to an outlying observation. The function A(·) (Lindsay, 1994) is a Residual
Adjustment Function (RAF). A(δ) = δ leads the weight value of 1 corresponding the maximum likelihood
estimates (MLE) and A(δ) = 2(δ+1)1/2−1 corresponds to the Hellinger distance estimate that is more stable
than MLE when some assumptions fail. In this study the weights are calculated using the Hellinger RAF.
Unlike the SIMPLS method, the RWSIMPLS algorithm is based on deflating weighted covariance matrix
Sw = Xw>Y w where Xw and Y w are obtained by multiplying each ith row by the squared root of

ωri = median
s
{ωris} for s = 1, . . . ,m; i = 1, . . . , n. (5)

ωris is the weight of the ith residual corresponding to the sth response. Below are the steps of the RWSIMPLS
algorithm.

Step 1: Start with robustly centered X and Y as

x̃ij = xij −medL1
(X) j = 1, . . . , k

ỹis = yis −medL1
(Y ) s = 1, . . . ,m

(6)

where medL1(X) is the L1-median computed from the collection of the vectors (x1, . . . ,xk). It is a
robust estimator of the center of the data cloud of the h-dimensional vectors (Serrneels et al., 2005).
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Step 2: Scale the centered response variable(s) by the robust scale parameter obtained by the Median Absolute
Deviation (MAD)

y∗is =
yis

MAD(y1s, . . . , yns)
s = 1, . . . ,m (7)

where MAD(y1s, . . . , yns) =
median

i
|yis−medL1

(Y )|

0.6745 . Those scaled response values serve as the starting
residuals.

Step 3: Calculate the weights ωy∗i for each y∗i as given in (4) and (5) with ris replaced by y∗is.

Step 4: Calculate the weighted explanatory variables Xw and response variables Y w by multiplying each row
by the squared root of weights.

xwij = xij
√
ωy∗i for each j = 1, . . . , k

ywis = yis
√
ωy∗i for each s = 1, . . . ,m

(8)

Step 5: Select a small sample without replacement (say with the size of 5) Xw
z and Y w

z out of Xw and Y w,
then follow the steps of ordinary SIMPLS on Xw

z and Y w
z to find the starting coefficient estimates

β̂ = (β̂1, . . . , β̂m).

Step 6: Using β̂s = (β̂s0, . . . , β̂sk), calculate ris(β̂s) = yis − xwi β̂s with xwi = (xwi1, . . . , x
w
ik) for s = 1, . . . ,m

and i = 1, . . . , n.

Step 7: Calculate the robustly centralized and scaled residuals r∗is as

r∗is =
ris −medL1(r)

MAD(r1s, . . . , rns)
(9)

with MAD(r1s, . . . , rns) =
median

i
|ris−medL1

(r)|

0.6745 .

Step 8: Calculate the weights for each r∗i , then reweight the explanatory and response variables as in Equation

xwij = xij
√
ωr∗i for each j = 1, . . . , k

ywis = yis
√
ωr∗i for each s = 1, . . . ,m

(10)

Step 9: Calculate the reweighted covariance matrix Sw = Xw>Y w.

Step 10: Perform the ordinary SIMPLS on Sw to estimate the coefficients.

Step 11: With the new estimated coefficients, repeat the steps 6-10 until the specified threshold (say 1e−4)

is reached for the maximum of the absolute deviations for two consecutive β̂s. Once convergence is
reached store the final coefficients and final value of the absolute deviations.

Step 12: Repeat the steps 5-11 for few, say c = 5, times. Then, the coefficient set with the minimum of those c
absolute deviations will be the final β̂.

3. Outlier Diagnostics
Leverage points which are the diagonal elements of the hat matrix are useful to detect outliers in explanatory
variable space. However, leverage points based on ordinary least square estimates may suffer from masking
effect so that corresponding leverage values appear normal. In this paper, we propose a robust hat matrix
(11) leading robust leverage points. Those robust measures are based on the estimates from RWSIMPLS
algorithm.

Hw = Tw(Tw>Tw)−1Tw> (11)

where Tw is the n×A component matrix calculated as Tw = XWw where Ww is the robust weight matrix
of X from RWSIMPLS method and X is the explanatory variable matrix robustly centered as in (6). The
leverage value hrii is the ith diagonal element of Hw measuring the effect of ith response point on its own
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prediction when a linear regression model is fit on component matrix. Large leverage value means data point
has an unusually large influence on its predicted value. The trace of Hw equals to the number of components
A, and any leverage point greater that 2 times the average of leverage values may be considered as an outlier
in component space which is also an outlier in X. Leverage points do not consider the response variables.
To be able to detect unusual points in response space, we propose robust standardized residuals in (12)
to disclose outliers in response variable and robust Cook’s Distance (13) to disclose observations that are

influential on β̂.

rwis(β̂) =
r̃is
σ̂ws

(12)

Dw
is =

(
yis − ŷwis

σ̂ws
√

1− hii

)2
hii

A(1− hii)
(13)

where r̃is = ris(β̂)− r̄(β̂), ris(β̂) = yis − xiβ̂s and σ̂ws =

√∑n
i=1 ωris

r̃2is∑n
i=1 ωris

−A . Latter is the robust scale estimate

of the model for sth response. ŷwis is the fitted value at the ith row and sth column of the matrix TwCw>

where Cw is the robust weight matrix of Y from RWSIMPLS. Any observations such that Dw
is is greater

than 1 can be considered as a point having influence on β̂. The following section includes an example where
we compare the proposed robust diagnostics with their counterparts from ordinary SIMPLS based PLSR.

4. Example-Octane Data
This data set also studied by Hubert et al. (2005) consists of NIR absorbance spectra over k = 226 wavelengths
ranging from 1102nm to 1552nm with measurements every two nm. For each of the n = 39 production gasoline
samples the octane number y was measured, so m = 1. It is known that this data set contains six outliers
25, 26, 36, 37, 38, 39 to which alcohol was added. The robust diagnostics from RWSIMPLS method with A = 2
components are shown in Figure 1. The first plot is for robust leverage vs robust standardized residuals.
Spectrum points 23, 26, 34, 36 − 39 seem to be outliers in spectrum space with large leverage values. But,
they do not have large standardized residuals. Among those seven data points only points 38 and 26 seem
to be influential on the coefficient estimates.
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Figure 1: Diagnostics from RWSIMPLS for Octane Data

The weights of the RWSIMPLS method can also be used as diagnostics to detect data points deviating from
normal distribution. These points are illustrated with Figure 2. The data points with the final weights of y
equal to zero (ωyi = 0) are the points causing non-normality for response. There are 14 octane points with
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zero weights but only points 26 and 38 seem to be influential. The first plot in Figure 2 is for the weights on
explonatory variables (spectrums) calculated as in (14).

ωxi = median
j

(ωxij ) for j = 1, . . . , k; i = 1, . . . , n (14)

where ωxij is obtained as in (4). The points with zero ωxi cause non-normality for X space. There are 14
points with zero ωxi

but only spectrum points 23, 26, 34, 36−39 both cause non-normality and large effect on
response fits. Even though 25, 26, 36− 39 reported as outliers (Hubert et al. (2005)), only 26, 36− 39 seem to

be outliers in explanatory variable space with only two of them being influential on coefficient estimates β̂.
Point 25 seems to cause deviation from normality with no harm on coefficient estimates and fitted values. The
diagnostics from ordinary SIMPLS algorithm are presented with Figure 3. In the ordinary SIMPLS method,
we can only detect two spectrum points 26 and 38 as large leverage points with 26 being only influential
point. As mentioned above this data set has also been studied by Hubert et al. (2005) who only detect point
26 as being a bad leverage point but giving no information about if it is influential or if the point causes
non-normality for response or explanatory variable space.
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Figure 2: Weights from RWSIMPLS for Octane Data
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Figure 3: Diagnostics from SIMPLS for Octane Data

5. Conclusions
We proposed robust diagnostics to detect outliers and influential observations in a PLSR model. The pro-
posed diagnostic measures are calculated by robust weighted partial least squares algorithm (RWSIMPLS).
We compared the proposed measures with their classical counterparts on a data set which has also been
studied by various authors. Apart from the classical diagnostic measures such as residuals, leverage points
and Cook’s distances, the weights of the RWSIMPLS method also serve as diagnostic tool to detect points
deviating from normality.
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