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Abstract 
 

In observational studies, at least three possible explanations exist for the association of two variables x 
and y: 1) x is the cause of y, 2) y is the cause of x, or 3) an unmeasured confounder is present. Statistical 
tests which identify which of the three explanatory models fits best would be a useful adjunct to use of 
theory alone. The present paper introduces one such statistical method, Direction Dependence Analysis 
(DDA), which assesses the relative plausibility of the three explanatory models based on higher moment 
information of the variables (i.e., skewness and kurtosis). DDA involves the evaluation of three 
properties of the data: 1) The observed distributions of the variables, 2) the residual distributions of 
competing models, and 3) the independence properties of predictors and residuals of competing models. 
When observed variables are non-normally distributed, it is shown that DDA components can be used 
to uniquely identify each explanatory model. 
Keywords: direction of dependence; direction of effect; non-normality; linear model  
 
1. Introduction 

 
This paper introduces a unified statistical framework to discern the direction of dependence in 

linear models using observational data. Existing regression-type methods allow researchers to quantify 
the magnitude of hypothesized effects but are of limited use when establishing the direction of effects 
between variables, that is, whether x → y or y → x correctly describes the causal flow between two 
variables x and y. When an association between x and y exists, at least three possible explanations can 
be entertained: 1) x causes y (x → y), 2) y causes x (y → x), and 3) neither relation exists due to a spurious 
association of both variables with a third variable (sometimes termed a “confounder”). The Pearson 
product-moment correlation and ordinary least square (OLS) estimates do not adjudicate regarding the 
model which best represents the data-generating mechanism. Researchers who use regression models 
must therefore make their decision as to the direction of effect on the basis of a priori theory and 
substantive arguments. However, statistical tools often are desirable to empirically demonstrate the 
explanatory superiority of one theory over plausible alternatives. The present contribution introduces 
such a tool – Direction Dependence Analysis (DDA; Wiedermann & von Eye, 2015a). While standard 
regression models use only estimates of first- and second order moments (i.e., means, variances, and 
covariances) to assess the magnitude and statistical significance of regression weights, DDA, by 
contrast, uses estimates of higher order moments (i.e., skewness and kurtosis) to assess the relative 
plausibility to directional alternatives. 
 
2. Model Definitions 

 
We start by defining the statistical models considered. Assume that a construct 𝒳𝒳  causes 

construct 𝒴𝒴  through mechanism ℱ , i.e., 𝒴𝒴 = ℱ(𝒳𝒳) . Further, let x and y be continuous 
operationalizations of 𝒳𝒳 and 𝒴𝒴 and define f as the statistical model to approximate ℱ, i.e., )(xfy = . 
The direction dependence framework provides a set of statistical tools to evaluate the directionality 
assumption of )(xfy =  implied by the causal theory 𝒳𝒳→ 𝒴𝒴. DDA assumes that the “true” predictor 
of the data-generating mechanism is a non-normal external influence. Further, we assume and that the 
data-generating mechanism relating the two continuous variables is recursive in nature and can be 
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approximated by the linear model, i.e., given that 𝒳𝒳→ 𝒴𝒴 constitutes the “true” mechanism, )(xfy =  
can be written as (without loss of generality the intercept is fixed at zero) 
 yxyx exby +=  (1) 

where the error term is assumed to be normally distributed (with zero mean and variance 2
yxeσ ), serially 

independent, and independent of 𝑥𝑥. When 𝒴𝒴 → 𝒳𝒳 describes the causal mechanism, the corresponding 
linear model is 
   xyxy eybx +=  (2) 

where xye  denotes a normally-distributed error term with zero mean and variance 2
xyeσ which is serially 

independent and independent of y. As a third possible explanation, we consider an unconsidered 
confounding construct 𝒰𝒰 (and its continuous operationalization u) which has a causal effect on both, 𝒳𝒳 
and 𝒴𝒴. The model in (1) then changes to 

 xuxu eubx +=  

yxyuyx eubxby ++= . 
(3) 

where “pure” confounding is included as a special case when 0=yxb . In model (3), u is assumed to be 

a non-normally distributed external influence and xue  and yxe are normally distributed error terms 

(exhibiting zero means and variances 2
xueσ  and 2

yxeσ ) which are independent of u and of each other. In 
all three models, additional covariates must be known to be on the explanatory side of the statistical 
model. In addition, one must ensure that a recursive causal ordering of the covariates themselves is 
theoretically possible and that all covariates can be expressed as linear combinations of mutually 
independent external influences. 
 
3. The Direction Dependence Principle 

 
DDA consists of three components: 1) distributional properties of observed variables, 2) 

distributional properties of error terms of competing models, and 3) independence properties of error 
terms and predictors in competing models. Unique patterns of DDA component outcomes exist for each 
of the three models described in Section 2 when the “true” predictor deviates from normality. 
 
3.1 DDA Component I: Distributional Properties of Observed Variables 
 
Absence of Confounders. Asymmetry properties in terms of observed variable distributions emerge 
from the additive nature of the linear model. Adding a normal error term to a non-normal predictor will 
necessarily cause the response to be more normally distributed than the predictor. Dodge and Rousson 
(2000, 2001) as well as Dodge and Yadegari (2010) presented algebraic proofs for this relation and 
showed that the Pearson correlation xyρ  has asymmetric properties when considering higher moments 
of x and y. Specifically, one obtains  

   
x

y
xy γ

γ
=ρ3    and   

x

y
xy κ

κ
=ρ4  (4) 

with skewness 33 /]])[[( xx xExE σ−=γ ) and excess-kurtosis 3/]])[[( 44 −σ−=κ xx xExE  ( yγ  

and yκ are defined in a similar fashion). Because xyρ  is bounded on the interval [–1, 1], absolute values 
of skewness and excess-kurtosis of y will always be smaller than absolute skewness and excess-kurtosis 
values of x. One obtains |||| xy γ<γ  and/or |||| xy κ<κ under the model x → y and |||| xy γ>γ and/or 
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|||| xy κ>κ  under y → x. An auxiliary regression approach can be used to adjust for covariates jz  in 

which x and y are regressed on jz  and directional decisions are based on the estimated regression 
residuals of the two models reflecting the (unexplained) portion of variation after adjusting for the 
covariates jz . 
 
Presence of Confounders. Any continuous non-normal confounder can affect the distributions of x and 
y. Directional decisions are influenced by 1) the magnitude of non-normality of u, 2) the connection 
strength of u and x, and 3) the connection strength of u and y which follows from uxux γρ=γ 3 , 

uxux κρ=κ 4 , uyuy γρ=γ 3 , and uyuy κρ=κ 4 . The influence of the confounder on direction 
dependence decisions is given through    

  
3









ρ
ρ
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γ
γ

xu

yu
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y    and   
4









ρ
ρ
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κ
κ

xu

yu

x

y . (5) 

No biases (in terms of descriptively selecting the correct model) are expected when |||| xuyu ρ<ρ

because |||| xy γ<γ  and |||| xy κ<κ still hold, which suggests the model x → y. In contrast, model 

selection biases are likely to occur when |||| xuyu ρ>ρ  because |||| xy γ>γ and |||| xy κ>κ  increase 
the risk of erroneously selecting the mis-specified model y → x. 
 
Statistical Inference. von Eye and DeShon (2012) proposed using normality tests, such as, 
D’Agostino’s skewness and/or Anscombe and Glynn’s  kurtosis test, to evaluate hypotheses compatible 
with observed-variable based direction dependence. Directional decisions are based on separately 
evaluating non-normality of predictor and response. In addition, Pornprasertmanit and Little (2012) 
suggested nonparametric bootstrap CIs for higher order moment differences, ||||)( yx γ−γ=γ∆ and 

||||)( yx κ−κ=κ∆ . 
 
3.2 DDA Component II: Distributional Properties of Error Terms 
 
Absence of Confounders. The second DDA component focuses on the distributional shape of the error 
terms, yxe and xye . Wiedermann, Hagmann, and von Eye (2015) and Wiedermann (2015) showed that 

higher moments of the error term obtained from the mis-specified model ( xye ) can be expressed as 
functions of the third and fourth moments of the “true” predictor (x), i.e., 

   xxyexy
γρ−=γ 2/32 )1(    and   xxyexy

κρ−=κ 22 )1( . (6) 

Because normality of the error term is assumed in the “true” model (i.e., 0=κ=γ
yxyx ee ), differences 

in higher moments of yxe  and xye  provide, again, information about the directional plausibility of a 
linear model. This DDA component can straightforwardly be extended to multiple linear regression 
models when adjusting for possible covariates (Wiedermann & von Eye, 2015b). The model x → y is 
preferred when ||||

yxxy ee γ>γ  and/or ||||
yxxy ee κ>κ . Conversely, y → x is more likely to hold when 

||||
yxxy ee γ<γ  and/or ||||

yxxy ee κ<κ .  
 
Presence of Confounders. When an unmeasured confounder is present, the two competing models can 
be written as yxyx exby ′+′=  and xyxy eybx ′+′=  where yxb′  and xyb′  are biased estimates of yxb  and 
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xyb . Higher moments of yxe′  and xye′  depend on the magnitude of non-normality of u and the 

magnitudes of xub  and yub . Specifically, higher moments can be written as functions of semi-partial 
correlations and higher moments of u. That is, for yxe′  and xye′ one obtains  

 uxuyeyx
γρ=γ ′

3
)|(    and   uxuyeyx

κρ=κ ′
4

)|( ,  (7) 

 uyuxexy
γρ=γ ′

3
)|(     and   uyuxexy

κρ=κ ′
4

)|( , 
 

(8) 

with 2
)|( 1/)( xyxuxyyuxuy ρ−ρρ−ρ=ρ  being the semi-partial correlation coefficient for y and u given x 

and 2
)|( 1/)( xyyuxyxuyux ρ−ρρ−ρ=ρ  being the semi-partial correlation between x and u given y. The 

distribution of both error terms will be close to normality and no distinctive decision is possible when u 
is close to normality and/or semi-partial correlations are close to zero. If the confounder is sufficiently 
non-normal, distributional properties of error terms and, thus, directional decisions depend on the 
magnitude of the semi-partial correlations. Unbiased directional decisions are possible when 

|||| )|()|( yuxxuy ρ<ρ  because ||||
yxxy ee ′′ γ>γ  and ||||

yxxy ee ′′ κ>κ  which implies x → y. In contrast, if 

|||| )|()|( yuxxuy ρ>ρ  then erroneously selecting y → x is likely to occur because ||||
yxxy ee ′′ γ<γ  and 

||||
yxxy ee ′′ κ<κ . 

 
Statistical Inference. Again, non-normality tests can be used to separately evaluate distributional 
properties of model residuals (Wiedermann et al., 2015). An asymptotic significance test and bootstrap 
CIs for the skewness difference of residuals, ||||)(

yxxy eee γ−γ=γ∆ , have been proposed by 
Wiedermann et al. (2015) and Wiedermann and von Eye (2015b). The asymptotic test requires normality 
of the “true” error term. Only error symmetry is required for the bootstrap approach. Analogous 
procedures for the difference in excess-kurtosis values were discussed by Wiedermann (2015).    
 
3.3 DDA Component III: Independence Properties of Predictor and Error Term 

Absence of Confounders. The independence assumption in the linear model implies that the magnitude 
of the error made when fitting the response is not related in any form to the predictor(s). In OLS 
regression, estimated residuals will be linearly uncorrelated with the predictor(s) by definition. 
However, when the “true” predictor x is non-normal, the error term and the predictor of the mis-specified 
model, y and xye , will be stochastically non-independent. The error term of the mis-specified model in 

(2) can be expressed as yxxyxyxyxy ebxybxe −ρ−=−= )1( 2  from which follows that the “true” 
predictor x and the “true” error term yxe  contribute to xye and y in (1). Thus, stochastic non-
independence will hold when x deviates from normality according to the Darmois-Skitovich theorem 
(Darmois, 1953; Skitovich, 1953). Because independence is assumed in the correctly specified model, 
direction dependence statements are possible through separately evaluating independence in competing 
models (Entner et al., 2012; Shimizu et al., 2011; Wiedermann & von Eye, 2015a). If yxexH ⊥:0  is 
retained and, at the same time, xyeyH ⊥:0 is rejected, then it is more likely that the observed effect 
transmits from x to y. Conversely, if yxexH ⊥:0  is rejected and xyeyH ⊥:0 is retained, then the 
model y → x should be preferred. Covariates can straightforwardly be included in the models (1) and 
(2) provided that covariates fulfill the requirements described above. 
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Presence of Confounders. When confounding affects the relation between x and y, predictor(s) and 
errors of both models contain information of the confounder, i.e.,  

  yuxuyxyxxuyxyxyuyx eebbubbbbe +′−+′−+=′ )(])([  (9) 

 yuxyxuyxxyxuyxyuxyxuxy ebebbubbbbbe ′+′−++′−=′ )1()]([ . (10) 

Thus, through re-considering the “true” model given in (3) and, again, making use of the Darmois-
Skitovich theorem, one concludes that the independence assumption is likely to be violated in both 
candidate models whenever a non-normal confounder is present. 
 
Statistical Inference. Significance tests to evaluate non-independence of (linearly uncorrelated) 
variables have extensively been discussed in signal processing (Hyvärinen, Karhunen & Oja, 2001). 
One possible class of tests uses the basic definition of stochastic independence, 

0)]([)]([)]()([ 22112211 =υυ−υυ gEgEggE  for any continuous unbounded functions 1g  and 2g . 
Independence tests can be constructed using correlation tests of the form )](),([ 21 yxegxgcor  and 

)](),([ 21 xyegygcor  where at least one function is non-linear. Two non-linear functions may be of 
particular value in the present context: the square function, 2)( υ=υg , and the hyperbolic tangent 
function, )tanh()( υ=υg . The square function constitutes a powerful candidate because covariances of 
predictor and error in the mis-specified model contain information of higher moments of the “true” 
predictor (Wiedermann & von Eye, 2015, 2016). )tanh(υ  is the derivative of the log-density of an 
inverse hyperbolic cosine distribution which provides an approximation of the likelihood ratio of 
directionally competing models in the bivariate case. Alternatively, the Hilbert-Schmidt Independence 
Criterion (HSIC; Gretton et al., 2008) can be used. The HSIC evaluates the independence of functions 
of random variables and is provably omnibus in detecting any dependence between two random 
variables in the large sample limit (for a discussion of the HSIC in the context of the linear regression 
model see Sen & Sen 2014).  
 
4. Model Selection  

Reconsidering possible outcomes of the three DDA components, it becomes evident that each 
model in Section 2 can be uniquely identified through specific DDA-component patterns. In general, 
DDA model selection requires the specification of a target and an alternative model. While the selection 
of whether x → y or y → x serves as the target model is arbitrary in terms of model comparison, we 
suggest that the target model reflects the substantive causal theory of interest and that the alternative 
model reflects the contradicting theory. The target model, e.g., x → y, finds support when 1) the 
distribution of the response y is closer to normality than the distribution of x, 2) the residual distribution 
of x → y is closer to normality than the residuals of y → x, and 3) the independence assumption of 
residuals and predictor(s) holds for x → y and is, at the same time, violated for model y → x. 
Independence must hold for x → y and the independence assumption must be violated for y → x to 
conclude that an effect is transmitted from x to y. Otherwise, one has to conclude that unmeasured 
confounders are present whenever the independence assumption is either violated or satisfied in both 
models (the latter emerges from the fact that confounders can decrease skewness/excess-kurtosis of x 
and y to a degree that renders non-independence no longer detectable).    
 
5. Conclusions  

DDA allows to test hypotheses compatible with the directional relation between pairs of 
variables while adjusting for covariates that possibly contribute to the causal process. This empirical 
falsification approach is based on the translation of a substantive causal theory into a linear target model 
which is then compared with the corresponding alternative model. DDA component patterns can then 
be used to either retain the target model, retain the directionally competing model, or conclude that 
unmeasured confounders are present. Here, it is important to re-iterate that directional conclusions 
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derived from DDA component patterns are based on the operationalization of latent constructs 𝒳𝒳 and 
𝒴𝒴  using the linear model as an approximation of an unknown “true” functional relation ℱ . 
Trustworthiness of DDA, thus, ultimately depends on both, the quality of operationalization and the 
validity of the linear model for the description of the causal mechanism. Although both requirements 
essentially apply to any linear modeling approach, they deserve particular attention in the context of 
DDA. 
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