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Abstract 
 

A new approach to determining direction of effects in binary variables is presented. In cross-
tabulations of binary variables, the univariate probability distribution of variables is considered 
explained if omitting the univariate effects of this variable does not damage model fit. Log-linear models 
are proposed that allow statements concerning the direction of effect in binary data. The conceptual link 
between this log-linear approach and existing direction of effect methodology for metric variables is 
discussed. The new approach is applied to empirical data from research on the development of 
aggression in adolescence. 
Keywords: Direction of effects; binary data; non-uniformity; non-hierarchical log-linear models 
  
1. Introduction 

In this work, we propose directional log-linear models for binary variables. These are models 
to determine direction dependence. In the domain of continuous variables, the development of direction 
dependence models has made considerable progress since the publication of the work by Dodge and 
Rousson (2000, 2001). Specifically, suppose that a valid linear relation exists between the two variables 
𝑋𝑋 and 𝑌𝑌, that 𝑋𝑋 is skewed, that the error distribution is symmetric, and that 𝑋𝑋 is independent of the 
errors. Then, the equation 𝑌𝑌 = α𝑌𝑌𝑌𝑌 + 𝑋𝑋β𝑌𝑌𝑌𝑌 + ε𝑌𝑌𝑌𝑌 suggests that 𝑌𝑌 is a convolution of a symmetrically 
distributed error, ε𝑌𝑌𝑌𝑌, and a possibly asymmetrically distributed predictor variable. By implication, the 
skewness of the outcome variable will always be less than the skewness of the explanatory variable (for 
proofs, see Dodge, & Rousson, 2000, 2001; Wiedermann, Hagmann, & von Eye, 2015; Wiedermann & 
von Eye, 2015a, 2015b). In the following sections, we propose log-linear models for cases in which 
researchers model the relations between binary variables, specifically one putative predictor, 𝑋𝑋, and one 
putative outcome, 𝑌𝑌. 
 
2. Bivariate Direction of Effects in Binary Variables 

The models to be presented here are parallel to the models proposed by Dodge and Rousson 
(2000, 2001). Within the log-linear modeling framework, the distributional assumption of non-normality 
can be redefined as follows: Main effects in log-linear models reflect deviations from uniformity of 
marginal distributions. When a main effect is non-significant, one concludes that the marginal 
frequencies are uniformly distributed. It, thus, evinces a skewness of zero (for metric variables), the 
marginal distribution of the corresponding variable is symmetric. In contrast, when the main effect of a 
variable exists, the distribution of the marginal frequencies deviates from uniformity. In binary variables, 
non-uniformity implies asymmetry. 

A log-linear model of direction dependence in binary variables that is parallel to the regression 
model for metric variables includes 1) the main effect term for the putative explanatory variable, and 2) 
the interaction term for the predictor and the outcome. The main effect term is needed to capture non-
uniformity of the predictor categories. The interaction term is needed because the interaction between 
the two variables must exist. It establishes the relation between 𝑋𝑋 and 𝑌𝑌. The focus of the models 
discussed here is the univariate distribution of 𝑌𝑌 (focusing on interaction terms is discussed in a different 
context, see von Eye, & Wiedermann, 2016). If 𝑋𝑋  → 𝑌𝑌  holds, explicitly modeling the univariate 
distribution of 𝑌𝑌 is not needed to explain the variability of observed 𝑌𝑌 values. If the corresponding 
model fits, 𝑋𝑋 can be considered the explanatory variable. If the model fails, 𝑋𝑋 is not explanatory of the 
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univariate distribution of 𝑌𝑌. In this case, researchers may wish to re-specify the model to test the reverse-
direction hypothesis according to which 𝑌𝑌 is the predictor and 𝑋𝑋 the outcome variable. If the 𝑋𝑋 × 𝑌𝑌 
interaction is non-significant, neither variable is the explanatory one, because they are unrelated. 

The saturated log-linear model for 𝑋𝑋 and 𝑌𝑌 can be expressed as 𝑚𝑚 ~ Poisson(µ) with log(µ) =
λ + λ𝑖𝑖𝑋𝑋 + λ𝑗𝑗𝑌𝑌 + λ𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋 ; 𝑖𝑖  = 1, … 𝐼𝐼 ; 𝑗𝑗  = 1, …, 𝐽𝐽  (cf. Nelder, 1974) where 𝑚𝑚  are the observed cell 
frequencies, µ are the model frequencies, and the λs are the model parameters; the superscripts indicate 
the variables involved in an effect (single indexes denote main effects and the double index denotes the 
interaction effect). 

The log-linear models to test whether the univariate distribution of a putative outcome can be 
captured by the univariate distribution of the putative predictor and the predictor-outcome interaction 
are non-hierarchical (see Mair, & von Eye, 2007). Model selection is based on goodness of fit properties 
of competing non-hierarchical models. Let 𝑋𝑋 → 𝑌𝑌 describe the true data generating process. Then, the 
log-linear model that reflects the above characteristics is 

log(µ) = λ + λ𝑖𝑖𝑋𝑋 + λ𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋. 
In this model, no parameter for the main effect of 𝑌𝑌 is estimated because the hypothesis is tested that Y 
has no effect on the joint frequency distribution of 𝑋𝑋 and 𝑌𝑌 that cannot be explained by 𝑋𝑋. If this 
hypothesis can be retained, the parameter for this main effect, λ𝑗𝑗𝑌𝑌, is redundant. The raw residuals for 
this model are defined as 𝑟̂𝑟 = 𝑚𝑚 −𝑚𝑚�  where 𝑚𝑚� = exp�λ� + λ�𝑖𝑖𝑋𝑋 + λ�𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋�  and λ� , λ�𝑖𝑖𝑋𝑋 , and λ�𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋  are the 
parameter estimators of λ, λ𝑖𝑖𝑋𝑋, and λ𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋. Standardizing the raw residuals results in Pearson residuals, or  

𝑟̂𝑟𝑃𝑃 =
𝑟̂𝑟

�exp (λ� + λ�𝑖𝑖𝑋𝑋 + λ�𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋)
. 

The mis-specified log-linear model that erroneously treats 𝑋𝑋 as the outcome and 𝑌𝑌 as the predictor can 
be written as 

logµ = λ′ + λ𝑗𝑗𝑌𝑌 + λ𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋 
where λ′ describes the intercept, λ𝑗𝑗𝑌𝑌 denotes the main effect of 𝑌𝑌, and λ𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋 denotes the interaction term. 
The corresponding raw residuals are 𝑟̂𝑟′ = 𝑚𝑚−𝑚𝑚�′  with 𝑚𝑚�′ = exp�λ�′ + λ�𝑗𝑗𝑌𝑌 + λ�𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋� . Inserting the 
estimated (true) model, 𝑚𝑚 = 𝑚𝑚� + 𝑟̂𝑟, the raw residuals of the mis-specified model are  
𝑟̂𝑟′ = 𝑟̂𝑟 + exp�λ�𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋� �exp�λ� + λ�𝑖𝑖𝑋𝑋� − exp�λ�′ + λ�𝑗𝑗𝑌𝑌��, and the corresponding Pearson residuals are 

𝑟̂𝑟𝑃𝑃′ =
𝑟̂𝑟 + exp�λ�𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋� �exp�λ� + λ�𝑖𝑖𝑋𝑋� − exp�λ�′ + λ�𝑗𝑗𝑌𝑌��

�exp�λ�′ + λ�𝑗𝑗𝑌𝑌 + λ�𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋�
. 

In words, the numerator of 𝑟̂𝑟𝑃𝑃′  is the sum of the raw residuals of the true model and a term that increases 
with the main effect of the true predictor 𝑋𝑋. The portion of unexplained variability in the mis-specified 
model increases with λ𝑖𝑖𝑋𝑋  and can, thus, be expected to be larger than the portion of unexplained 
variability in the true model and model selection becomes possible based on model fit statistics of 
competing log-linear models. Thus, when λ𝑖𝑖𝑋𝑋 ≠ 0, the prerequisite of asymmetry is fulfilled. In contrast, 
when λ𝑖𝑖𝑋𝑋 → 0 (in addition to the assumption that λ𝑗𝑗𝑌𝑌 = 0), the term exp�λ�� − exp�λ�′� approximates zero, 
and the two models are no longer distinguishable. To establish model fit, we use, for example, the 
likelihood ratio (LR) statistic χ2 = 2∑𝑚𝑚 log (𝑚𝑚/𝑚𝑚�), with df = (# cells) – (# non-redundant parameters).  

 
Deciding about direction dependence. Based on the above considerations, the decision that 𝑋𝑋  is 
explanatory for 𝑌𝑌 can be defended if: 
1) the model of 𝑋𝑋 → 𝑌𝑌 explains the data well; 
2) the main effect 𝑋𝑋, represented by λ𝑖𝑖𝑋𝑋, exists; this result, parallel to Dodge and Rousson’s (2000, 

2001) assumption of non-normal metric variables, refers to the non-uniformity assumption 
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discussed above. It is important to realize that this result is not needed for a satisfactory model fit of 
the true model. However, this result increases the chance of rejecting the mis-specified model; 

3) the 𝑋𝑋 × 𝑌𝑌 interaction, represented by λ𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋, exists; this result is needed because it makes little sense 
to consider one variable explanatory for the other if they are unrelated; 

4) the model Y → X does not fit. The hypothesis is not supported when the model does not fit or 
parameters of interest (the main effect of the putative predictor) are non-significant (i.e., λ𝑗𝑗𝑌𝑌 = 0 but  
λ𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋 ≠ 0). 

When variables are binary, the model that tests the opposite direction of effect is the only 
alternative. In contrast, it can be just one of a possibly large number of models when variables are 
polytomous. In addition, when variables are binary and models are hierarchical or non-hierarchical, 
parameter interpretation based on the relation λ = (𝑊𝑊′𝑊𝑊)−1𝑊𝑊′ log𝑚𝑚 is always possible (von Eye & 
Mun, 2013), where λ is the vector of parameters, 𝑊𝑊 is the design matrix, and 𝑚𝑚 is the vector of observed 
cell frequencies (cf. Rindskopf, 1990). The rows of the matrix (𝑊𝑊′𝑊𝑊)−1𝑊𝑊′ specify the linear 
combinations of log𝑚𝑚 that lead to the model parameters. 

 
3. Data Example: Development of Aggression in Adolescence 

In a study on the development of aggressive behavior, Finkelstein, von Eye, and Preece (1994) 
asked 67 adolescent girls and 47 boys to self-rate their aggressive behavior at three points in time. For 
the following example, we use the responses given in 1987 on Verbal Aggression against Adults (𝑉𝑉). In 
addition, we use the Tanner scores (𝑇𝑇) of the same year. These are measures of physical pubertal 
development. On average, the adolescents were, in 1987, 15 years of age. 

We model the hypothesis that physical pubertal development is explanatory of self-rated verbal 
aggression against adults. Thus, 𝑇𝑇 → 𝑉𝑉 is the target model (Model 1) and 𝑉𝑉 → 𝑇𝑇 is the reverse-direction 
model (Model 2; we do not really consider this hypothesis; however, this model should fail to describe 
the data well). We dichotomized the standardized Tanner scores and the standardized ratings of Verbal 
Aggression against Adults at the mean, with 1 = ‘below average pubertal development’/ ‘below average 
verbal aggression’ and 2 = ‘above average pubertal development’/ ‘above average verbal aggression.’ 
Model 1 

logµ = λ + λ𝑇𝑇 + λ𝑇𝑇𝑇𝑇, 
posits that physical pubertal development (𝑇𝑇) is explanatory of 𝑉𝑉, where superscript 𝑇𝑇 indicates the 
Tanner score and 𝑉𝑉 indicates physical pubertal development and subscripts are implied. Model 2, that 
is, 𝑉𝑉 → 𝑇𝑇 posits that 𝑉𝑉 is explanatory of physical pubertal development, or 

 logµ = λ′ + λ𝑉𝑉 + λ𝑇𝑇𝑇𝑇. 
The 𝑇𝑇 × 𝑉𝑉 cross-classification is given in Table 1 along with the expected cell frequencies for these two 
models.  
 
Table 2. Cross-classification of Tanner scores (T) with Verbal Aggression against Adults (V) with 

expected cell frequencies from two competing log-linear models. 
 

 Estimated Cell Frequencies 

Cells (T V) Observed Cell 
Frequencies 

Model 1  
(T → V) 

Model 2  
(V → T) 

1 1 31 29.12 35.93 
2 1 27 25.12 22.07 
1 2 16 17.89 20.93 
2 2 39 40.89 34.07 
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The goodness of fit statistic, LR-χ² = 0.552 (df = 1; p = 0.458), suggests that Model 1, 𝑇𝑇 → 𝑉𝑉, 
describes the data well. We can, therefore, interpret the parameters. Wald statistics were used for testing 
the significance of individual model parameters. For the main effect of 𝑇𝑇, we obtain a standardized 
estimate of –1.779 (p = 0.075). We also obtain a significant parameter for the 𝑇𝑇  × 𝑉𝑉  interaction 
(standardized estimate of 2.515; p = 0.012). In contrast, we conclude that Model 2 fails to describe the 
data well (LR-χ² = 3.6821; df = 1; p = 0.054), and we refrain from interpreting the parameters. We are 
well aware that, for a nominal α of 5%, the main effect of T and the LR-test for Model 2, do not allow 
one to reject the null hypotheses in the strict sense. However, in the present context, we are in favor of 
interpreting 1) T as sufficiently non-uniform (= 0.584) and 2) the difference in LR-test statistics (3.68 
versus 0.54) as substantively meaningful. Therefore, we propose the following decision about the 
directionality of effects: 
1) The model 𝑇𝑇  → 𝑉𝑉 , it locates physical pubertal development on the explanatory and verbal 

aggression against adults on the outcome side describes the data well. The alternative but 
implausible model is 𝑉𝑉 → 𝑇𝑇, it places verbal aggression against adults on the explanatory and 
physical pubertal development on the outcome side, cannot be used to describe the data well.  

2) The main effect of 𝑇𝑇 suggest a deviation from uniformity of the marginal distribution of physical 
pubertal development (58.4% of the respondents showed a Tanner score above the sample average).  

3) The significance of the 𝑇𝑇 × 𝑉𝑉 interaction fulfills the requirement that the two variables in the model 
be related to each other. 

4) Finally, and based on the specification of the model, we conclude that the main effect of 𝑇𝑇 that is 
included in the model is sufficient to represent the marginal distribution of the outcome variable, 𝑉𝑉. 
Omitting λ𝑉𝑉 does not result in significantly worse model fit. In sum, for respondents who are 15 
years of age, physical pubertal development can be interpreted as explanatory of verbal aggression 
against adults. 

 
4. Discussion 

To study the effect of an explanatory variable on a putative dichotomous outcome variable, 
binary logistic regression models are routinely applied; polytomous outcomes are routinely analyzed 
using multinomial logistic regressions (Hosmer & Lemeshow, 2002). However, these methods have an 
important limitation in that they provide no information concerning direction of relations. This fact can 
easily be illustrated using log-linear models. Consider the dichotomous explanatory variable X and the 
dichotomous outcome variable Y. The logit-model has the form 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃[𝑌𝑌 = 1]) = α𝑌𝑌𝑌𝑌 + 𝑋𝑋β𝑌𝑌𝑌𝑌 , 
where α𝑌𝑌𝑌𝑌 is the intercept and β𝑌𝑌𝑌𝑌 is the slope parameter. The equivalent hierarchical log-linear model, 
log(µ) = λ + λ𝑖𝑖𝑋𝑋 + λ𝑗𝑗𝑌𝑌 + λ𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋, (Agresti 2013; von Eye & Mun, 2013) shows that main effects of both, 
predictor and outcome, are implied in the logit-model. Now, the reversed-path logit-model is 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃[𝑋𝑋 = 1]) = α𝑋𝑋𝑋𝑋 + 𝑌𝑌β𝑋𝑋𝑋𝑋. The equivalent log-linear equivalent remains, unchanged, log(µ) =
λ + λ𝑖𝑖𝑋𝑋 + λ𝑗𝑗𝑌𝑌 + λ𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋. Evidently, standard logit-models as well as hierarchical log-linear models are not 
suited to test directional hypotheses and to derive conclusions about the status of variables as 
explanatory and outcome variables. Using these type of models requires a priori decisions concerning 
the status of variables, decisions that are based on theory alone. In contrast, the directional log-linear 
models proposed here are non-hierarchical. Instead of explaining the observed relation between 
variables, the models explain the marginal distributions of outcome variables. 

Directional log-linear models restrict the parameter space of marginal effects and, thus, require 
strong statistical assumptions to establish directionality statements. Future work is needed to derive 
directional log-linear models in which λ𝑖𝑖𝑋𝑋 ≠ 0, λ𝑗𝑗𝑌𝑌 ≠ 0, λ𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋 ≠ 0, and λ𝑖𝑖𝑋𝑋 ≠  λ𝑗𝑗𝑌𝑌. This effort can be seen 
as parallel to the one in which models to test direction dependence hypotheses of the form Δ(γ) > 0 with 
Δ(γ) = |γ𝑋𝑋| − |γ𝑌𝑌| are developed in the metric case in which both skewnesses, γ𝑋𝑋 and γ𝑌𝑌, can deviate 
from zero.  
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Multivariate extensions. As in the bivariate case, direction dependence analysis requires the 
assumptions 1) that an a priori grouping of variables exists into the classes of putative explanatory and 
outcome variables, and 2) that, under certain conditions, the putative explanatory variables and the 
putative outcome variables change roles. Models for binary variables that allow one to test direction 
dependence hypotheses include the following terms: 
1) All main effects of all explanatory variables; 
2) All interactions among the explanatory variables; these terms are needed because the model does 

not make any assumptions about relations among the explanatory variables; therefore, an arbitrary 
interaction pattern for these variables is admissible (this can be viewed as parallel to log-linear 
models that are specified to be equivalent to logistic regression models; cf. Agresti, 2013; von Eye 
& Mun, 2013); the model is, thus, saturated in the explanatory variables; 

3) All possible interactions among the explanatory and the outcome variables; these terms are required 
because direction of effect hypotheses can be retained only if the explanatory variables are related 
to the outcome variables; note that at least one of these interactions must exist for a hypothesis about 
directional dependence to be retained; however, to be considered explanatory, every putative 
explanatory variable must interact with at least one outcome variable; similarly, every putative 
outcome variable must interact with at least one explanatory variable, at any interaction level; 

4) All possible interactions among the outcome variables; these terms are required for the same reasons 
as for the interactions among the explanatory variables; however, in contrast to 2), the model is not 
saturated in the outcome variables, because none of their main effects is part of the model. 

To illustrate, consider the 𝐼𝐼  putative explanatory variables 𝑋𝑋𝑖𝑖 , and the 𝐾𝐾  putative outcome 
variables 𝑌𝑌𝑘𝑘. The log-linear model that contains the four required elements listed above is 

 
logµ = λ +∑ λ𝑋𝑋𝑖𝑖𝑖𝑖 + ∑ λ𝑋𝑋𝑖𝑖,…× 𝑋𝑋𝑗𝑗,…×…

𝑖𝑖,𝑗𝑗,… + ∑ λ𝑋𝑋𝑖𝑖,𝑗𝑗,…× 𝑌𝑌𝑘𝑘,𝑙𝑙,…×… +∑ λ𝑌𝑌𝑘𝑘,…× 𝑌𝑌𝑙𝑙,…×…
𝑘𝑘,𝑙𝑙,…𝑖𝑖,𝑗𝑗,…,𝑘𝑘,𝑙𝑙,… , 

where λ is the model constant, the terms with one 𝑋𝑋 in the superscript are the main effects of 
the explanatory variables, the terms with more than one 𝑋𝑋 in the superscript are the interactions among 
the explanatory variables, the terms with both 𝑋𝑋 and 𝑌𝑌 in the superscript are the interactions among the 
explanatory and the outcome variables, and the terms with more than one 𝑌𝑌 in the superscript are the 
interactions among the outcome variables. The main effects of the outcome variables are omitted 
because the model is specified to test the hypothesis that the direction of effect goes from the 𝑋𝑋 to the 𝑌𝑌 
variables. If the model fits, the univariate distributions of the outcome variables can be considered 
explained by the explanatory variables. The following model can be used to test the hypothesis that the 
direction of effect is reversed: 

 
logµ = λ +∑ λ𝑋𝑋𝑖𝑖,…× 𝑋𝑋𝑗𝑗,…×…

𝑖𝑖,𝑗𝑗,… + ∑ λ𝑋𝑋𝑖𝑖,𝑗𝑗,…× 𝑌𝑌𝑘𝑘,𝑙𝑙,…×… + ∑ λ𝑌𝑌𝑘𝑘 +𝑘𝑘 ∑ λ𝑌𝑌𝑘𝑘,…× 𝑌𝑌𝑙𝑙,…×…
𝑘𝑘,𝑙𝑙,…𝑖𝑖,𝑗𝑗,…,𝑘𝑘,𝑙𝑙,… . 

Here, the main effects of 𝑋𝑋 are not part of the model. The interaction terms are the same in both models. 
When direction of research is the goal of analysis, the methods proposed here will help 

researchers make decisions about which variable can be considered explanatory and which can be 
considered as an outcome. Without a solid theoretical background, such decisions, however, can be 
futile. Still, they can, given the necessary caution, be used to establish first empirical evidence in the 
process of development of causal theories. 
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