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Abstract 
In August 2009, the Australian Bureau of Statistics (ABS) released Census TableBuilder, a flexible 

online tool that allows users to define and download tables of Census counts.  To prevent disclosure 
through differencing attacks and repeated requests for identical tables, the ABS developed a method for 
automatically and consistently confidentialising tables of counts. 

A key feature of the method is the perturbation look-up table, a fixed, two-dimensional array of 
perturbation values.  The amount of perturbation applied to each cell in the requested table is determined by 
accessing this array using the cell count and a cell key calculated from random numeric keys that have been 
permanently assigned to all records in the underlying microdata. 
 In this paper, we examine some of the statistical properties of the method.  We create three 
perturbation look-up tables that provide varying levels of protection and use them to perform a risk-utility 
analysis of the method.  The measures of risk considered include the probability that a cell calculated from 
the difference of two tables will equal the true differenced value.  We consider a range of utility measures, 
including the average absolute deviation. 
Keywords: tabular confidentiality, disclosure risk measures, data utility measures. 
 
1.  Introduction   
 In Australia, as in many other countries, there is a strong demand from users of official statistics for 
flexible access to microdata to enable their social and economic research and analysis.  However, like many 
national statistical institutes, the Australian Bureau of Statistics (ABS) is required by legislation, 
specifically the Australian Census and Statistics Act 1905, to ensure that the data it collects is not released 
in a manner that is likely to enable the identification of any individual person or organisation.  One way to 
meet the user need for flexible access to data and still meet legislative obligations to protect respondent 
confidentiality is through flexible table-building products that incorporate dynamic confidentiality routines. 
 Specific confidentiality risks arise in an environment where users can obtain many tables of their 
own design.  One risk is that users may be able to undo some of the confidentiality protections by making 
repeated requests for the same table.  If the confidentiality method uses a random process to confidentialise 
the data, then a user could obtain different versions of the same table.  Comparing the cell values across 
these different versions may reveal some information about the original, unconfidentialised table.  The 
second main risk is "differencing", which can occur if users are able to request tables for similar sub-
populations and then take the difference between the two tables to find the data for a much smaller sub-
population. 
 The ABS has developed a method to address these risks, and has implemented it in Census 
TableBuilder, an online tool that allows users to create customised tables of data from the Australian 
Census of Population and Housing.  The tables contain counts of people, families or dwellings within 
categories determined by the variables on the Census Output Record File, the underlying microdata feeding 
into Census TableBuilder.  To build a table, users can select combinations of any of the variables on the 
file, including a wide range of geographic areas.  The confidentiality method, originally proposed in Fraser 
and Wooton (2005), ensures all tables produced by users of Census TableBuilder are confidentialised.  
Leaver (2009) describes the implementation of the method in Census TableBuilder. 
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 The confidentiality method applies perturbation to every cell in the table.  For this reason, all cells 
in a table, not just the ones deemed sensitive, have a chance of being changed.  Risk of identification is thus 
reduced, but the utility of the data is also reduced to a certain extent.  This paper presents a summary of the 
Census TableBuilder method, examines some possible measures of risk and utility loss, and uses these 
measures to evaluate three variants of the method that provide different amounts of protection.  These 
variants use different parameters from those implemented in Census TableBuilder. 
 
2.  Summary of the Census TableBuilder method 

 In the underlying microdata, a permanent numeric value known as a "record key" is randomly 
generated and assigned to each unit record.  When a table is requested, the record keys of the units within 
each cell are combined using modular arithmetic to create a cell-level key.  The cell-level key is used to 
determine the amount of perturbation applied to that cell, via a perturbation look-up table.  A perturbation 
look-up table is a fixed, two-dimensional array of numeric values.  The numeric value located in the row 
dictated by the cell-level key and the column dictated by the original cell value is selected as the cell 
perturbation amount and then added to the original cell value to produce the perturbed cell count for output. 
 The record keys and perturbation look-up table used in Census TableBuilder were designed to 
ensure that the following criteria hold: 

1. the perturbations take integer values; 
2. the mean of the perturbation values is zero; 
3. the perturbations will not produce negative cell values or positive cell values below a 

specified threshold; 
4. the perturbations have a fixed variance; and 
5. the absolute value of any perturbation is less than a specified integer value. 

 Since the perturbations applied to the cells in a table (both internal and marginal cells) are 
determined independently, it is more than likely that the resulting perturbed table will no longer be additive.  
In the Census TableBuilder product, there is a subsequent algorithm that restores additivity to the table.  
However, this paper will not consider the effect of the additivity step on risk or utility. 
 There is more information about the online tool on the ABS website.  See: 

 http://www.abs.gov.au/TableBuilder and  
 http://www.abs.gov.au/CDATAOnline. 

 
3.  Creating Perturbation Look-Up Tables 

A perturbation look-up table is constructed by choosing a distribution of perturbation values which 
minimises disclosure risk subject to information loss constraints.  More specifically, entropy (a measure of 
uncertainty) is maximised subject to bias and variance constraints. 
 Let i  denote the set of integer perturbation values available in perturbation look-up table i, where 

 and iL iUP P  are the lower and upper bounds of the perturbation values in perturbation look-up table i, 
respectively. 
 Let u denote the original (unconfidentialised) cell count, c denote the consistently perturbed 
(confidentialised) cell count  and p denote the perturbation value as determined from the perturbation look-
up table so that .c u p     
 In creating a perturbation look-up table, the aim is to determine an appropriate distribution for p, 
that is ( | )iP p u  for perturbation look-up table i.  We do this by maximising entropy, which, for the ith 
perturbation look-up table, is defined as 

      

   | log | ,    ,
i

i i
p

P p u P p u u


   
   

…(1) 
 

subject to a set of constraints, namely: 

i. The set of available perturbation values,
 i  ; 

ii. The basic requirements for a probability distribution,  | 1 where
i

i
p

P p u


  

 | 0,  ;iP p u u    
iii. The confidentialised cell values cannot be negative, 0c  , nor less than some positive 

specified value l, c l ; 
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iv. The perturbation values cannot add bias to the cells in a generated table, 
 | 0,  ;E p u u   and 

v. The variance of the perturbation values cannot exceed a specified threshold pv , 

 | ,  .pVar p u v u    

The perturbation probability distributions can be found by applying the Lagrange multiplier method 
to the above maximisation problem and then numerically solving the resulting systems of non-linear 
equations.  Approximations to the solutions have to be made to convert the perturbation distributions into 
look-up table form.  That is, for each of the C columns (a column corresponds to a u value), the R rows 
need to be randomly populated with the appropriate p values so as to best approximate the distributions 
determined from our solution to the maximisation problem.  For some integer X C , if u C X  , then 
the perturbation value p that will be added to u will come from column ( 1) mod( , )C X u X   . 
 The amount of perturbation applied by the Census TableBuilder method can be adjusted by altering 
the perturbation look-up table.   
 
4.  Risk-Utility Analysis: Measuring Risk 
 To assess the risk of the Census TableBuilder confidentiality method, the following three measures 
of risk will be used: 

1) Inverse of the variance of the confidentialised counts 
 In the Census TableBuilder online tool, it is possible for a cell to appear in many different tables.  
Given the nature of the confidentiality method, no matter what table this particular cell appears in, the 
unconfidentialised cell count u will always be perturbed by the same perturbation value p as determined by 
the cell-level key and the perturbation look-up table.  Although our particular cell will be consistently 
confidentialised, the resulting confidentialised count c is random due to the properties of the method, and in 
particular, the random allocation of record keys to each unit record in the microdata.   
 Since our confidentialised count c is random, we can consider its variance, which can be expressed 
as 

 | ( | ) ( | ).Var c u Var u p u Var p u    

From a disclosure risk perspective, the greater the variance of c, the lower the risk of discovering u. Hence, 
a measure of risk could be the inverse of the variance of c, that is 

    
   

1 1
1( ) | | .R u Var c u Var p u

 

           
…(2)  

2) Percentage of cells that are unchanged 
 The percentage of cells that are unchanged is equivalent to the percentage of cells that are perturbed 
by 0p  . As this percentage increases, (a) the level of confidentiality protection decreases and (b) the risk 
of identification increases.  This measure of risk can be expressed as 

        
 2( ) 0 | .R u P p u 

    
…(3) 

3) Probability of an observed difference of 1 corresponding to a true difference of 1 
 As mentioned in Section 1, the Census TableBuilder confidentiality method was developed 
specifically to address the risk associated with differencing attacks.  The risk of differencing was mitigated 
in the method by designing the perturbation look-up table to ensure that the difference between two 
perturbed cells has a certain variance.  However, the method does not guarantee that the difference of two 
perturbed cells will be perturbed away from the difference of the original cells.  One measure of risk could 
be the probability that an observed difference of 1 corresponds to a true difference of 1.  If this probability 
is high, then the risk of identification due to differencing is high.   
 To perform a differencing attack, a user will request identical tables for two similar subpopulations 

 and b sU U  and then take the difference between the two tables to obtain the data for a much smaller 
subpopulation mU  where, 

,   ,
\ ,     .

b s s b
m

b s s b

U U U U
U

U U U U
 

 
  

Let ub, pb and cb be the original cell count, the perturbation value that will be added to this cell count, and 
the confidentialised cell count respectively, for a given cell in the table for bU .  Define us, ps and cs  
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similarly for sU .  Let u m b sd u u u    denote the true difference for our given cell, that is, the original 
cell count for mU .  A user will not be able to observe ud  but will be able to observe c m b sd c c c   , 
which is the confidentialised difference for our given cell or, in other words, the consistently perturbed 
(confidentialised) cell count for mU . 
 If an observed difference of 1 corresponds to a true difference of 1, then both cells must have 
received the same amount of perturbation.  That is: 

     
   1| 1 | 1 .u c b s cP d d P p p d    

   
…(4)

 
It can be shown that (4) can be expressed in terms of the perturbation probability distributions of the  
perturbation look-up table.  For a general perturbation look-up table where  and L UP P  denote the lower and 
upper bounds of the perturbation values, respectively, the third measure of risk can be expressed as: 

 
 

 

 

 
3

| |
( ) 1| 1 .

| |

U

U U
L

L L

P
b b b s s s

b u c P P
p P

b b b s s s
p P p P

P p p u c p P p p u c p
R c P d d

P p p u c p P p p u c p

  

 
 

      
     

         
  


 

  

…(5) 

 The probability of an observed difference of 1 corresponding to a true difference of 1 may not be 
the only event considered to be risky.  For example, it may be considered that an observed difference of, 
say, less than or equal to 5 which corresponds to a true difference of 1 or 2 is a risky event.  The expression 
in (5) can be generalised to accommodate such a situation.  Let  g bR c  be the general form of 3( )bR c  and 

   | ,g b u u c cR c P d D d D    

where uD  is the set of true difference that are of interest and cD  is the set of observed differences that are 

of interest.  In the given example,  1,2uD   and  0,1,2,3,4,5cD  . 
 

5.  Risk-Utility Analysis: Measuring Utility 
 The confidentiality method described in this paper introduces perturbation to protect respondents.  
This perturbation will alter the data and introduce information loss.  The impact of the information loss on 
the utility of the data depends on the type of analysis the user wishes to conduct.  In this section, we explore 
some ways of measuring information and utility loss for tables. 
 Many information loss measures for tables have been proposed in the literature.  The following four 
measures have been selected for use in this paper: 

1) Average percentage change 
 The Census TableBuilder confidentiality method perturbs cell values independently of each other, 
where the probability distribution of the perturbation value to be added is dependent on the 
unconfidentialised cell count.  At the cell level, we are interested in the expected or average percentage 
change of the unconfidentialised cell count.  That is, 

        1
| | | 100%

U

L

P

p P

pU u APC P p p u
u


   

  

…(6) 

2)  Average absolute difference 
The Absolute Average Difference (AAD) is the mean, across the table cells, of the absolute value of 

the difference between the original and the confidentialised cell values (Shlomo and Young 2005):
  

            
2

1 1

1 | |
I J

ij ij
i j

U AAD u c
IJ  

  
    

…(7) 

where I is the number of rows, J is the number of columns, iju  is the original cell value in the thi  row and 
thj  column, and ijc  is the corresponding confidentialised cell value. 

3) Mean variation 
The Mean Variation (MV) measure is described in Yancey, Winkler and Creecy (2002).  It was 

proposed as an information loss measure for confidentialised microdata, but it can be adapted to measure 
information loss in confidentialised tables. 
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3
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| |1
2
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I J
ij ij

i j c

u c
U MV

IJ S 


  

    

…(8) 

In (8), 2
ijcS  is used as a scaling factor.  Tables with larger cell values are likely to have larger standard 

deviations.  This scaling factor means that small perturbations applied to tables with large cell values will 
contribute less to the information loss measure than small perturbations applied to tables with small cell 
values. 

4) Relative difference in Cramer’s V 
The Relative difference in Cramer's V (RCV) is a measure of the impact of the confidentialisation 

on the association between the variables in the table (Shlomo and Young 2005).  Cramer‟s V is given by: 

     
2 /

min( 1, 1)
nCV

I J



 

    

…(9) 

where 2 is the standard Pearson Chi-squared statistic for the table and 
1 1

.
I J

ij
i j

n u
 

  The relative 

difference in Cramer‟s V is given by: 

             
4 100%,c u

c

CV CVU RCV
CV


  

    

…(10) 

where uCV  is the Cramer‟s V for the original, unconfidentialised table and cCV  is the Cramer‟s V for the 
confidentialised table. 
 
6.  Risk-Utility Analysis: Theoretical and Empirical Results 

 For the investigations in this paper, we have created three new look-up tables, which should 
provide varying amounts of protection.  They were created as outlined above in Section 3, where the 
specific constraints for maximising (1) for each look-up table are as follows: 
 

 
 

 
 

 The first look-up table assigns a maximum perturbation of 1 to the unconfidentialised cell counts.  
The second look-up table assigns a maximum perturbation of 5 to the unconfidentialised cell counts, and 
ensures that there are no cells with confidentialised values between 1 and 4 inclusive.  The third look-up 
table assigns a maximum perturbation of 20, and is designed to ensure that no cell values are unchanged, 
and that all confidentialised cell values are multiples of 5.  For perturbation look-up tables 2 and 3, the 
specific variance constraint may vary across different values of u.  All three perturbation look-up tables 
have 30C   columns, where the last 10X   columns are cycled through for 20u  .   
 Clearly, we would expect perturbation look-up table 1 to cause the least amount of information loss 
but not provide very much protection.  Perturbation look-up table 3, on the other hand, provides a great deal 
of confidentiality protection but will cause quite a substantial amount of information loss since most values 
are perturbed by at least 5 and at most 20 to a value that is a multiple of 5.  We would expect perturbation 
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look-up table 2 to fall somewhere between the other two in terms of the confidentiality protection it 
provides and the information loss it causes. 
 For the three look-up tables, theoretical values for all three risk measures and the utility loss 
measure 1( )U u  were simply calculated using the formulae given in (2), (3), (5) and (6), respectively.  
Notice that all of these measures are calculated at the cell level.  The remaining utility loss measures are 
calculated at the table level and are dependent on the table; theoretical values were not calculated for these 
measures. 
 Empirical values were calculated for all three risk measures and all four utility loss measures. For 

1( )R u and 2 ( )R u , the empirical values were calculated from 1000 confidentialised cells for each original 

cell count  1,2,...,30u  which were simulated by randomly generating record keys and following the 

confidentiality method outlined in Section 2.  For 3( )bR c  and the four utility loss measures, the empirical 
values were calculated from a set of ten test tables, some with a broad level of detail and some with a fine 
level of detail, which were created from a synthetic dataset. 
 
Measures of risk 

 Inverse of the variance of the confidentialised counts 
 The graphs in Figure 1 show the theoretical and empirical values of 1( )R u for unconfidentialised 

cell values  1,2,...,30u for each perturbation look-up table.  The open circles are the theoretical values 
while the filled-in circles are the empirical values based on the 1000 simulated cells. 

 
Figure 1 – Theoretical and empirical values of R1(u) for each perturbation look-up table. 

 
 For perturbation look-up table 1, we expect the inverse of the variance of the confidentialised cell 
values to be constant over all values of u but the empirical values appear to be rather variable and appear to 
deviate more from the theoretical values than those for perturbation look-up tables 2 and 3.   The empirical 
values for perturbation look-up table 3 appear to follow the pattern of the theoretical values very closely.  
Relative to the theoretical values, however, the empirical values of 1( )R u are within 5%, 12% and 7%  of 
the theoretical values for perturbation table 1, 2 and 3 respectively.  As expected, the values of 1( )R u for 
perturbation look-up table 3 are clearly less than the equivalent values for perturbation look-up table 2 
which are clearly less than the equivalent values for perturbation look-up table 1, indicating their order in 
terms of the amount of confidentiality protection they provide. 
 

 Percentage of cells that are unchanged 
 The graphs in Figure 2 show the theoretical and empirical values of 2 ( )R u for unconfidentialised 

cell values  1,2,...,30u for perturbation look-up tables 1 and 2.  Perturbation look-up table 3 was 
designed to perturb all cell values away from the original cell value and thus contains no zeros.  
Consequently, a graph for perturbation look-up table 3 was not included since the probability of any cell 
remaining unchanged after the perturbation process is zero.  Again, the open circles are the theoretical 
values while the filled-in circles are the empirical values based on the 1000 simulated cells. 
 Since the probability distribution of the perturbation values is the same for all values of u in 
perturbation look-up table 1, we expect the proportion of cells to be unchanged after the perturbation 
process to be constant at 33.6% for all values of u.  The empirical values in the first graph in Figure 2 
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follow this constant pattern closely.  The empirical values for perturbation look-up table 2 also follow 
closely the pattern of the corresponding theoretical values in the second graph.  Note that original cell 
values of 1, 2, 3 and 4 are never unchanged after the confidentiality method has been applied; this property 
was designed for in the creation of perturbation look-up table 2.  Again, as expected, the values of this risk 
measure are always greater for perturbation look-up table 1 than perturbation look-up table 2 for all values 
of u, indicating that the former provides less confidentiality protection than the latter. 

 
Figure 2 – Theoretical and empirical values of R2(u) for perturbation look-up tables 1 and 2 . 

 
 Probability of an observed difference of 1 corresponding to a true difference of 1 

 The graphs in Figure 3 show the theoretical and empirical values of 3( )bR c for confidentialised cell 

values  1,2,...,30bc  for perturbation look-up tables 1 and 2.  For perturbation look-up table 3, the value 

of 3( )bR c  for all values of bc  is zero since it was designed to ensure that all confidentialised cell values are 
multiples of 5, meaning the smallest observable non-zero difference between two cells is 5.  Therefore, the 
graph in Figure 3 corresponding to perturbation look-up table 3 shows the theoretical and empirical values 
of a variant of 3( )bR c , namely, 

 4( ) 1| 5 ,b u cR c P d d    

for confidentialised cell values  1,2,...,30bc  .  The open circles are the theoretical values while the 
filled-in circles are the empirical values based on the cells in the test tables that had a confidentialised value 
of bc .   
 All of the empirical values in Figure 3 were calculated from far fewer cells than those calculated for 
the two previous risk measures.  For most values of bc , the number of cells from which the empirical 
values of 3( )bR c were calculated was 100, which explains some of the deviation from the theoretical 
values that we see in the graphs.  In particular, the empirical values for 18bc  for perturbation look-up 
table 1 and 20bc   for perturbation look-up table 2 were calculated from 40  cells.  For corresponding 
values of bc , both the theoretical and empirical values of 3( )bR c  for perturbation look-up table 1 are  

 
Figure 3 – Theoretical and empirical values of R3(cb) for each perturbation look-up table. 
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greater than those for perturbation look-up table 2.  Although the risk measure, 4 ( )bR c , used for 
perturbation look-up table 3 is not the same as the risk measure 3( )bR c , used for perturbation look-up 
tables 1 and 2, they are still comparable in the sense that they are both the probability of the smallest 
observable positive difference corresponding to a small true difference.  As expected, for corresponding 
values of bc , the values of 4 ( )bR c for perturbation look-up table 3 are less than the values of 3( )bR c for 
perturbation look-up tables 1 and 2. 
 
Measures of utility 

 Average percentage change 
 The graphs in Figure 4 show the theoretical and empirical values of 1( )U u for unconfidentialised 

cell values  1,2,...,30u for each perturbation look-up table.  The open circles are the theoretical values 
while the filled-in circles are the empirical values based on the cells in the 10 test tables that had an 
unconfidentialised value of u.   
 For some values of u, the number of cells from which the empirical value of 1( )U u was calculated 
was 40 but this hasn‟t caused any major deviations between the empirical and theoretical values.  All 
three graphs in Figure 4 follow the same pattern of the percentage change due to perturbation decreasing as 
the unconfidentialised cell count increases.  We expect perturbation look-up table 3 to do the most damage 
to the utility of the data and this is reflected in the values of 1( )U u corresponding to look-up table 3 being 
greater than those for perturbation look-up tables 1 and 2. 

 
Figure 4 – Theoretical and empirical values of U1(u) for each perturbation look-up table. 

 
 Average Absolute Difference 

 The AAD provides a simple measure of the amount of change introduced into a table by the 
perturbation.  It is a useful measure for this situation, because it can be applied to tables with more than one 
dimension, and to tables containing cells with an original count of zero.  This measure could be applied to 
all of the test tables.  The graphs in Figure 5 show the AAD measure against the number of cells in the 
table, for each test table and each perturbation look-up table. 

 
Figure 5 – Empirical values of U2  for each perturbation look-up table. 
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 The first look-up table would be expected to introduce the smallest amount of perturbation, and the 
third look-up table would be expected to introduce the largest amount of perturbation.  The AAD measure 
reflects this.  For all of the 10 test tables, the perturbation given by the first look-up table has the smallest 
value for the AAD, and the perturbation given by the third look-up table has the largest value for the AAD. 
 The AAD tends to be larger for tables that contain larger cell values.  The next information loss 
measure introduces a scaling factor to adjust for the size of the cell values. 
 

 Mean Variation 
 The graphs in Figure 6 show the MV measure against the number of cells in the table, for the set of 
test tables and for each perturbation look-up table. 
 As with the AAD, the MV measure reflects the amount of perturbation applied by the different 
look-up tables.  Across all the test tables, the perturbation given by the first look-up table takes the smallest 
value for the MV, and the perturbation given by the third look-up table takes the largest value for the MV.  
However, the MV takes lower values for the tables with the large cell values.  This measure is less affected 
by the size of the cell values. 

 
Figure 6 – Empirical values of U3  for each perturbation look-up table. 

 
 Relative Difference in Cramer’s V 

 The RCV measure is only meaningful for two-dimensional tables.  For our test tables, the RCV was 
applied to sub-tables created by taking the first two dimensions of each table.  Some tables were excluded 
from this analysis because their structure was not appropriate for this test.  The graphs in Figure 7 show the 
RCV measure against the number of cells in the table, for the test tables where this measure was 
appropriate. 
 For most of the tables, the RCV is largest for the perturbation given by the third look-up table.  
Generally, the added perturbation increases the association in the tables.  However, this may have occurred 
because the test tables were generated from a synthetic data file, and the original tables did not contain 
strong associations. 

 
Figure 7 – Empirical values of U4  for each perturbation look-up table. 
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Risk-Utility Curve 
 Some of these risk and utility measures can be combined to create a “risk-utility curve”.  For 
example, the first graph in Figure 8 shows the empirical values of 1( )U u  against the empirical values of

1( )R u for all values of  1,2,...,30u , for the three look-up tables.  The three look-up tables are clearly 
divided, with look-up table 1 in the area of the graph indicating little utility loss but a great amount of 
identification risk, look-up table 3 in the area of the graph indicating a great amount of utility loss but little 
identification risk, and look-up table 2 in the area between look-up tables 1 and 2.  It is interesting to see 
that for most values of u (i.e. 6u  ), the amount of utility loss that perturbation look-up table 2 causes is 
similar to that caused by perturbation look-up table 1 but identification risk is considerably decreased when 
look-up table 2 is used rather than look-up table 1.  The second graph in Figure 8 shows, for the ten test 
tables, the MV measure against 2 ( )R u  (the number of unchanged non-zero cells, as a proportion of the 
number of cells whose original value was non-zero) for perturbation look-up tables 1 and 2.  There is, 
again, a clear division between the two look-up tables: the points on the graph corresponding to 
perturbation look-up table 2 are in the area of the graph indicating less risk of identification but more utility 
loss.   

 
Figure 8 – Empirical risk-utility curves for the perturbation look-up tables. 

 
7.  Summary 

 The Census TableBuilder method can be adapted to provide different levels of perturbation, by 
altering the perturbation look-up table.  The effect of varying the look-up table can be assessed using 
various measures of risk and utility.  Although these measures tend to capture only certain aspects of risk 
and utility, their results are generally consistent given the properties of the different look-up tables.  The 
measures may be useful when determining suitable parameters for the look-up table in different situations. 
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