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1 Introduction

Variance estimation for non-linear functions of interest under a complex sampling framework can be
conducted by different methods. We propose here some new results in bootstrap and linearization
techniques for variance estimation of non-linear statistics. Different inequality measures are studied,
with emphasis put on the well-known Gini index. A simulation study using a Poisson sampling
design is conducted in order to compare the performance of the different methods when estimating
the sampling variance of the Gini index.

In survey sampling, we are interested in a finite population U = {1,...,k,..., N} of size N from
which a random sample S of size n is selected by means of a sampling design p(s) = Pr(S = s), for all
s € U. Define the inclusion probabilities 7 = Pr(k € S), k € U, and the joint inclusion probabilities
e = Pr(k € Sand ¢ € S),k,¢ € U. The sampling weights wy can be equal to the Horvitz and
Thompson (1952) weights d, = 1/ or can have been improved by a calibration technique (Deville
and Sarndal, 1992) or a non-response adjustment. Let yi,...,yk,...,yn denote the characteristic of
interest (here, the income) of the units in the population and Y(1)s - - Yk - - - » Yy the same incomes
ordered in increasing order. In order to estimate totals

Y:ZykandN:ZI,

keU keU

one can use weighted estimators

?:Zwk?/k and ]/\}:Zwk.

kesS kesS

We now focus on performing finite population inference on a non-linear function of interest 6 esti-
mated by means of a complex sample. Specific variance estimation methods, such as bootstrap or
linearization, are thus required.

In the next section, various approaches to linearization are presented. Section 3 introduces three
inequality measures : the Gini index, the Quintile Share Ratio and the Zenga index. A finite population
estimator and a linearized variable are proposed for each measure. The bootstrap approach is then
presented in Section 4, while a new bootstrap method for a Poisson sampling design is suggested in
Section 5. The paper ends with a comparative simulation study on the Gini index and final discussions.
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2 Linearization techniques for variance estimation

Linearization combines a range of techniques for calculating an approximation of the variance of a
non-linear statistic. It consists in approximating 6 by a sum of terms, i.e. finding a linearized variable

g—eszkvk—ka.

keS keU

v such that

Next, the variance of 0 is simply approximated by the variance of the estimated total », g wyvy.
Nevertheless, the v;’s often depend on parameters of the population that must be estimated. By
estimating these parameters, one can obtain 7 an estimator of vy and thus construct an estimator
of the variance by plugging 7y in the expression of the variance of a total corresponding to the given
sampling design. For instance, for a Poisson sampling design, we have the estimator

W @@ = Y (7‘?)2 (- m).

T
kes Nk

For details on the asymptotic framework validating linearization, one can relate to Isaki and Fuller
(1982), Deville and Sarndal (1992) and Deville (1999). If the function of interest is a smooth function
of totals, the most straightforward way of deriving a linearized variable is by performing a Taylor
series expansion with respect to these totals (Woodruff, 1971). However, most inequality measures
are not smooth functions of totals and require other approaches. Three interesting approaches are
presented hereafter.

2.1 Deville approach

The influence function proposed initially by Hampel (1974) and Hampel et al. (1985) is a tool first
proposed to study the robustness of an estimator but can also be used to approximate the variance.
Deville (1999) proposes a modified version of the influence function in order to compute a linearized
variable for sampling from a finite population. In order to define the influence function, Deville uses
a measure M with unit mass for each point of the population. According to Deville’s definition, the
measure M is positive, discrete, with a total mass N while the total mass is equal to 1 for the influence
function proposed by Hampel (1974). A function of interest 6 can be presented as a functional T'(M)
that associates for each measure a real number or a vector. For instance, a total Y can be written

Y:/ydM:Zyk.

Besides, we also suppose that the considered functionals are linear and homogeneous in the sense that
there always exists a real number « such that T(tM) = t*T(M), for all t € R. Coefficient « is called
the degree of the functional T'(M). The measure M is estimated by a measure M that has a mass
equal to wy for each point xj of sample S. The plug-in estimator of a functional T'(M) is simply
T(]\//_T ). For instance, the estimator of a total is given by

/ydﬁ: Zwkyk-

kesS

Deville’s influence function is defined by

PP, ) — iy T 182) = (M)
t—0 t

)

when this limit exists, where §, is the Dirac measure at point x. This influence function is the
Gateaux differential in the direction of the Dirac mass at point z. Deville (1999) shows that this
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influence function vy, = IT(M, xy) is a linearized variable of T(]\/i ) in the sense that it allows for the
approximation of the interest function:

T(M)—T(M) _ 1
—NO‘ ~ m (I;S WV — ’%[:]Uk> .

Computation of influence functions follows the rules of differential calculus (Deville, 1999). We
propose hereafter an additional result that enables us to compute directly the linearized variable of a

double sum S = >, i > e @ (Yrs Ye)-
Result 1. If
san = [ [ o piraan)

where ¢(.,.) is a function from R? in R, then
15019 = [ 6. dM (@) + [ o6 nad(y)

If ¢(x,y) = ¢(y, x) for all =,y then the influence function can simply be written as
S(M.€) =2 [ 6(r.d ().

2.2 Demnati and Rao approach

A fast technique to obtain a direct linearized variable consists in computing the Deville influence
function, not on the measure M but on the estimated measure M. We then obtain

T(M + t5,) — T(M)
; .

Hﬂ@mwzg%

Measure M has a mass equal to wy, for each point x; of the sample. If we refer to the definition
of the derivative, we can notice that a simple way for obtaining the linearized variable is to simply
differentiate the estimate with respect to wy

—

o7 (3)
owy,

IT(M,y;) =

The computation of a simple derivative with respect to the weights is advocated by Demnati and Rao
(2004) in order to compute the linearized variable of a function of totals. This method also allows for
the computation of a linearized variable for any function of interest whose observations are weighted
by wy.

2.3 Graf approach

In a recent paper, Graf (2010) proposes another way of computing the linearized variable by applying
a Taylor expansion with respect to the indicator variables I, where for all k € U

-1 itk es,
Yo ifkes,

determines the presence of unit k in the sample. The Graf method is coherent because the expansion
is done with respect to the only source of randomness in the estimator.
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3 Inequality measures

Three inequality measures are studied here, the Gini index, the Quintile Share Ratio and the Zenga
index. All these measures can be defined in the continuous case by means of the Lorenz (1905) curve

. Wy e Ndu
Lio) = I uf(y)dy _M/o F (wdu,

where f(y) is a probability density function of a positive continuous random variable Y that represents

given by

the income, F(y) is its cumulative distribution function, F~!(.), the inverse function of F(.) and

p= /OOO yf(y)dy.

Thus the Gini index, Quintile Share Ratio and Zenga index are respectively defined by

1
G=1 —2/ L(a)da,
0

~ 1-L(08)

QSR = L(0.2)
. [TLa) 1-a N
Z=1 / .

In the following a finite population estimator for each measure is presented as well as an estimated
linearized variable, allowing for variance estimation.

3.1 Notation and Definition

The total income of the alN poorest units is defined by }N/(oz) = > pev Ykllyr < Qo) where @, is the
a-quantile and 1[A] is an indicator function equal to 1 if A is true and 0 otherwise. This definition
is however not very accurate because the quantiles can be defined in several different ways when the
cumulative distribution function is a step function (see Hyndman and Fan, 1996). We thus prefer to
use the less ambiguous definition of the total income of the a/N poorest units proposed in Langel and
Tillé (2011b) and given by
Y(a) = 3y H [aN — (k- 1)),
keU
where H(.) is the cumulative distribution function of a uniform [0,1] random variable

0 ifz<O,
Hz)=<9 z if0<z<l,
1 ifxz>1.

The function of interest Y () is then strictly increasing in a in (0,1), which is not the case of Y (a).
In order to estimate Y («), we can use

EgS OZN — Nk_
Y(a)=> wwygH (w 1) ;
kes k

where ]/\\7;c are the cumulative weights according to the y; ordered non-decreasingly in the sample, i.e.

Ne = willlye < i,
LesS
and Ny = 0. In a finite population, the Lorenz curve can then be defined by L(a) = Y(«)/Y and
estimated by L(a) = Y(«)/Y. Accordingly, functions L(«) and L(«) are also strictly increasing in
0,1).
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3.2 The Gini index

A finite population estimator of the Gini index is

NY kesS NY keS
An estimated linearized variable for the Gini index is
1 ~ =~ ~ ~ ~ o~ ~
(3) U= == [QNk(yk—Yk)+Y_Nyk_G(Y+ykN)]-
NY
where
?k _ des weyeL(ye < yi)

N
This result is not new (Monti, 1991; Cowell and Victoria-Feser, 1996, 2003; Deville, 1999; Binder and
Kovacevic, 1995) and can be obtained using, among others, any of the three methods proposed above.
Note also that Result 1 allows for a very fast derivation of (3).

3.3 Quintile Share Ratio

The QSR is defined as the ratio of the total income earned by the richest 20% of the population
relative to that earned by the poorest 20%. It can be estimated from a sample by

QSR = Y V(08
Y(0.2)

An estimated linearized variable for the QSR is (Langel and Tillé, 2011b)

Yk — {ka (%) + 50.8 [0-8 -1 (yk < 50.8)} }

i}\QSR
k Y(0.2)
(V-7 (09) {ka (“257) + Qo [0'2 ! (yk - 50'2)} }
- Y (0.2)2 |

)

where @a =1y;, with Ni_l < aN <N;.

3.4 Zenga index

Let Y = > res weyel[l < k] and A = Nk_lyk — Yy for k = 2,...,n. A finite population estimator
for the Zenga index can then be written Z = ), ¢ Z, where

. ~ ~
Y Y
— —1 lOg = = s lfk‘zl,
Ny Y -7

~ A N, Y Y g
Zr=4 —F Jog| |+ - flog | ) ifk=2,...,n—1,
Y + Ag N1 Ny Y + Ag - Y

Y N
1—=—)log| = ) if kK =n.
Ny, Np_q

The Demnati and Rao approach has been applied by Langel and Tillé (2011a) to derive an
estimated linearized variable @EZ for the Zenga Index:

., 0Z 07k
Uy _(M_%awe’

p.1040



Int. Statistical Inst.: Proc. 58th World Satistical Congress, 2011, Dublin (Session |PS056) p.1041

with
( Ny -V Y v 111
e e e (| [A—fi)], it k=1,
N2y Y-V N Yy Y-%
?(yk_yé)ﬂ(€<k‘)—;{kyglog Np, (Y—qu)
~ ~\ 2 ~ ~ ~
<Y + Ak) Ni—1 (Y - Y
92k _ n Ay 1((<k) 1(<k) +]Vyg—17log @
Owy Y + A, Ny Ny N2y, v 1,
Y 1 1
+= yf [ﬂ(ﬁk)_AykwA]l(£>k)} <A—A A>, ifhk=2..n—1,
Y =Y Y =Y, Nyy Y + A
Y- N N % 1
LTS (LB DY FE ) L, CLS O if k= n.
L N2yn Nn—l Nyn N Nn—l

4 Bootstrap

A bootstrap sample is a random sample with replacement selected from S. Let S} be the number of
times unit k is repeated in the bootstrap sample. For a general estimator 0 the bootstrap estimator
is given by f*. TFor the case of the total Y, which is unbiasedly estimated by the Horvitz-Thompson
estimator (HT) (Horvitz and Thompson, 1952), Y, = Y kes i—’;, the bootstrap estimator can be written
as Y* =3 o 257
Let Pr*(.) = Pr(.|9), E*(.) = E(.|S) and var*(.) = var(.|S) respectively denote the probability,
the expectation and the variance of the bootstrap sample conditionally to the original sample. This
gives us "
* * *
B(7*) = kzg E(S{).
and
var (V%) = 3057 H eou (55, 5719).
kes tes kT
To calculate the variance of the estimator of the total and its estimator let define Ayy = 7y —
TETy, k 75 l e U, and AM == Akg/ﬂ'kg. When k = E, we obtain Akk == Wk(l—ﬂk), ke U, and Akk == 1—7Tk.
With this notation, the variance of the Horvitz-Thomson estimator is given by
> YrYe
var(Yr) = Z Z %Akh

keU LcU

and can be unbiasedly estimated by using the Horvitz-Thompson (HT) variance estimator:

Var g (Ve) = Z Z IRV .

T,
kes tes ke

Thus a necessary and sufficient condition for the bootstrap estimator of the total to be unbiased
is given by

(4) E*(S;)=1,keS.
Moreover, in order to have an unbiased variance estimator of the total, a first condition is that

(5) var*(Sf) = Agp = 1 — g, k € S.
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Ideally, another condition for a bootstrap method to unbiasedly estimate the variance of the HT-
estimator is that

(6) cov(S}. Si19) = Ay k £ L€ S.

These conditions on the covariances are however difficult to meet when the sample is selected with
fixed sample size and unequal inclusion probabilities. In this particular case, it is difficult to exactly
satisfy more than conditions (4) and (5). Condition (6) can however be approximately satisfied.

The bootstrap estimator of the variance of a statistic of interest @boot(é) is computed by
generating a set of bootstrap samples and then computing the var(@*), the variance of the outcomes of
0. Moreover, if a bootstrap method provides an approximately unbiased estimator for the variance of
totals, it will also provide approximately unbiased variance estimators for smooth functions of totals.

5 Bootstrap for Poisson design

In a Poisson design with inclusion probabilities 7,
p(s) = W;]i(kes)(l - Wk)]l(kgs) for all s C U,

where 1(A) = 1is equal to 1 if A is true and 0 otherwise. The inclusion probability is Pr(k € S) = .
Moreover, iy = mpmy when k # £ € U and mp, = mp. Thus Agy = 0, when k # £ € U and
Ay = (1 — 7). We thus have, Ap =0, when k # £ € U and Ay, = 1 — 7. With Poisson sampling
design the sample size n is random thus the estimator of variance is calculated by @HT(?ﬂ—).

Patak and Beaumont (2009) have proposed a bootstrap method for Poisson design that uses

normal independent variables with expectation equal to 1 and variances equal to 1 — 7 thus
Sp=N(1,1—m).

Unfortunately, this method requires the use of non-integer weights that can be negative. Instead we
recommend the use of a discrete random variable for S .

Antal and Tillé (2011) have proposed a simple bootstrap method that uses n independent
Bernoulli random variables X, with parameter 7 and n independent Poisson random variables Z
with parameter A = 1. For this method, the bootstrap sample is given by

SZ = Xi + (1 — Xk)Zk,kJ €Ss.
Thus, the probability mass function of S} is given by:

(1 —mg)

Pr*(S; =r) =mllr =1] + e

,r=0,1,2,...

where e =~ 2.71 is the Euler constant. The bootstrap variable S} satisfies conditions (4), (5), and (6).
An even simpler method is to consider n independent Bernoulli random variables X,k € S
with parameter 73 and n independent Bernoulli random variables Y, with parameter 1/2. Define the
bootstrap sample by
SZ =X+ 2(1 — Xk)Yk, kes.

The probability distribution of S} is thus
0 with a probability (1 —mg)/2

Sip=4¢ 1 with a probability my
2 with a probability (1 — m)/2.

Again, the bootstrap variable S meets conditions (4), (5), and (6). Here, the bootstrap sample does
not contain more than twice the same unit.
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6 Simulation study

In order to compare the performance of different variance estimation methods for a nonlinear function
of interest like the Gini index, we run simulations. The variance under the simulations, say the Monte
Carlo variance, was considered as the true variance of the estimator. We generated a population of
N = 1500 units from the model yx = (8o + f1zp? + 0ek)? + ¢, with z = |ig| and i, ~ N(0,7),
er ~ N(0,1) and o = 15 with regression parameters Sy = 12.5, /1 = 3 and ¢ = 4000. The model
and its parameters were chosen intentionally to have a distribution for y similar to a lognormal - as
it is often used for income distributions - with a correlated and positive explanatory variable z in
the regression model. From this population, sim = 1000 samples were drawn using Poisson sampling
design. Concerning the inclusion probabilities, they were calculated proportional to the values of a
variable z, which was generated from equation z = y%2p where p ~ InN(0,0.25). In this manner, the
correlation between y and z is about 0.5. We knowingly used a large sample rate 1/3 in expectation
and a skewed population in order to better illustrate the performance of the tested methods. From
each of these samples, we calculated the estimator of the Gini index as in Expression (2), and its
variance estimator by linearization by plugging Expression (3) in (1).

From each of the 1000 initial samples, 1000 bootstrap samples were selected using four different
bootstrap methods. Besides the new bootstrap method proposed (Method NEW), three other resam-
pling methods were tested. The first one was the method proposed by Antal and Tillé (2011) (Method
AT), the second one was the method of Patak and Beaumont (2009) (Method Patak-Beaumont) and
the third one was the generalization of the bootstrap method without replacement proposed by Booth
et al. (1994) for unequal inclusion probabilities (Method WOR). This last method is a variant of the
initial bootstrap with replacement method (Gross, 1980; Chao and Lo, 1985) that consists of creating
an artificial population from the sample and then drawing bootstrap samples from it with the same
design as the initial one. After drawing the bootstrap samples, the bootstrap estimators and their
variance were computed for each of the initial samples. The means of these variances were then com-
pared with the approximations of the true variance. As the Gini index is not a smooth function of
the total, estimating its variance can be difficult, but the simulations show that the methods perform
well.

In order to measure the performance of the different methods, the following four indicators were

used:

e Lower error rate (L) in %

100 sim N —
L=—— ﬂ[9—1.96>< var(9)>¢9].
sim <
e Upper error rate (U) in %
10 sim N —
U=—— Il[9+1.96>< @(0)<0}
sim
e Relative Bias R R
RB = 100 x “20) =vartsm®) _ 50 B

vargim (0) Vargim (0)

where B is the Bias of var().

Relative Root Mean Squared Error

~

VB + var 3 (6)]

vargim (6)

RRMSE = 100 x
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The RB gives a measure of the bias of the estimator of variance. The RRMSE measures its accuracy
and in the case of unbiasedness of the variance estimator it is equal to the variation coefficients. The
Error Rates which is the sum of the Lower error rate and the Upper error rate allows us to evaluate
the capacity of the methods to provide a valid inference. The lower and the upper error rates give us
an idea of how skewed the distribution of the estimator 8 is.

Table 1: Performance of different methods to estimate the variance of the estimator of the Gini index in Poisson

sampling

POISSON L U Relative bias(%) RRMSE(%)
GINI index

Method AT 1.5 4.0 -1.8751 12.3487
Method NEW 1.5 3.6 -1.2133 12.3172
Method Patak-Beaumont 1.6 3.7 -1.1179 12.5330
Method WOR 1.6 3.1 -0.9928 12.5137
Linearization 1.5 3.8 -1.4180 11.4409

Table 1 presents the outcomes achieved using the Poisson sampling design with inclusion prob-
abilities proportional to variable z. As the relative biases show, each method slightly underestimate
the variance of the estimator of Gini, but these biases are really negligible, around 1%. The error rates
show a slightly positively skewed distribution, with coverage rates around 95% and the RRMSE have
also the same order for each of these methods. We can conclude that the methods provide essentially
the same results, their performance are equivalent. An advantage of the linearization approach is
that it is not computationally intensive. The differences between the bootstrap methods are in their
applicabilities, their implementations and the after-treatments, as the calibration or the imputation
for nonresponse. The bootstrap with replacement method uses artificial populations whose creation
can be cumbersome because of the rounding problems. The Patak and Beaumont (2009) method
apply non-integer weight that can even be negative. The method of Antal and Tillé (2011) and the
method proposed uses non-integer positive weights, thus the bootstrap samples can be directly used
to compute the variance of the functions of interest. Moreover with the new method, extreme samples
are also avoided because the units can be repeated at most twice.
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