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Background

In this application, we are interested in obtaining predictions of the daily distributions of the departures

of recreational anglers along the coasts of the United States, as a function of the type of fishing trip,

its location and time of year. In order to reflect the circular nature of the departure times, we model

them as projected bivariate normal random variables. We propose a new latent hierarchical Bayesian

regression model that makes it possible to incorporate covariates and allows for spatial prediction

and inference. We investigate a number of issues related to model specification, model selection and

computational efficiency. The approach is applied to a large dataset collected by the US National

Oceanic and Atmospheric Administration (NOAA).

The data of interest are collected through the Marine Recreational Fisheries Statistics Survey (MRFSS),

which is a national survey of recreational fishing activities in saltwater. Such activities constitute a

multi-billion dollar industry in the United States. The survey is conducted by an agency within

NOAA. Its major goal is to estimate recreational fish catch by species and size class. These estimates

are also broken down by region, by mode of fishing (shore, charter boat, private boat, party boat) and

by season:

(17 coastal states)× (4 modes)× (6 two-month waves) = 408 domains

(NOAA overseas all US coastal fishing, but only 17 Atlantic coast and Gulf coast states are included

because the Pacific coast states and Texas have their own surveys.) The estimates are used in fisheries

stock assessments and in fisheries regulations, such as setting quotas on species, start and end dates

for the fishing season, etc.

MRFSS actually consists of two separate and complementary surveys. The Access Point Angler

Intercept Survey (APAIS) collects data on catch at the fishing site. An on-site interviewer “intercepts”

anglers as they leave the site. Data from this survey are used to estimate average catch per angler

trip. Data are also used to make coverage adjustments to the Coastal Household Telephone Survey

(CHTS), which collects fishing activity data from a telephone survey of coastal households. The

CHTS uses random digit dialing (RDD) to find saltwater recreational anglers, which is expensive and
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time-consuming. It focuses on coastal households to increase the “hit rate” of anglers, then makes

adjustments for the obvious undercoverage problem by using the APAIS data on intercepted anglers

from non-coastal households. CHTS data are then used to estimate total angler trips. Finally, the

estimated total catch is obtained as the product:

(estimated average catch per trip)× (estimated total trips).

APAIS consists of two or more stages of sampling. The first stage consists of stratified unequal-

probability selection of site-days in each fishing mode, with probabilities proportional to a known

index of expected fishing pressure. Subsequent stages depend on the mode. For boat modes, interme-

diate stages consist of selection of fishing boats and groups of anglers within boats, with each stage

approximated by simple random sampling without replacement. The final stage of sampling in any

mode consists of equal-probability selection of anglers observed leaving the site during the interviewer’s

on-site assignment within the selected day.

A serious problem with estimation in the original MRFSS was that it ignored essentially all aspects

of this design in the estimation, as noted by a US National Academy of Sciences panel [8]. Valid

design-based estimation requires sampling weights accounting for the survey design. Consider two

stages of selection. Let UI denote the set of all site-days in a domain of interest, and Ud denote the

set of all anglers departing the site during that day. A sample sI ⊂ UI of site-days is selected via a

probability sampling design, with first-order inclusion probabilities πId > 0 for d ∈ UI . Within each

selected site-day, a sample sd ⊂ Ud of anglers is intercepted by the interviewer as they leave the site.

Let πa|d > 0 denote the probability that angler a ∈ Ud is intercepted by the interviewer. Then an

unbiased estimator of the total ty =
∑
d∈UI

∑
a∈Ud

yda for yda = catch characteristic of angler a on

site-day d is given by

t̂y =
∑
d∈sI

∑
a∈sd

yda
πId πa|d

.

The site-day inclusion probability, πId, is based on known fishing pressure and can be readily cal-

culated. The angler inclusion probability πa|d, on the other hand, is unknown. Let ∆ represent the

“slice” of time during which the interviewer visited the site on a given day. Let F∆d denote the fraction

of anglers who departed the site during that time slice. The inverse of the angler inclusion probability

is interpreted as a weight: the nd anglers intercepted while departing the site during a ∆d represent

all Nd anglers departing the site during ∆d, and those Nd anglers in turn represent (1/F∆d) anglers

departing the site during the entire day. The weight is then

π−1
a|d = (N∆d/n∆d)(1/F∆d).

A problem with this weight is that it is unknown because F∆d is unknown.

Small area estimation of time slice distributions

In our work we have created estimated sampling weights for the APAIS by estimating the “time

slice distribution,” F∆d. Our approach is to use CHTS to create estimated within-site-day weights

by estimating the fraction of total daily departures F∆d from site-day d for a given time interval ∆.

CHTS data are available for 980,000 trips by 215,000 households between 1990 and 2008. Each trip

record available for this project contains:

• departure time

• fishing mode (shore, charter boat, private boat, party boat)

• fishing date, coarsened to: wave (2-month interval)
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• fishing site, coarsened to: state (17 states).

To estimate the time slice distribution, we consider as our target of estimation the finite population

quantity

FN,ijk (t0,∆) =

∑
t∈Uijk

I[t0,t0+∆) (Tijkt)

Nijk

with

Uijk = population of fishing trips in state i, wave j, mode k

Nijk = total number of trips in state i, wave j, mode k

Tijkt = departure time for trip t

I[t1,t2) (T ) =

{
1 if T is in the interval [t1, t2)

0 otherwise

This quantity FN,ijk (t0,∆) can be estimated directly from the CHTS data:

F̂ijk (t0,∆) =

∑
sijk

I[t0,t0+∆) (Tijkt)

nijk
.

This direct estimator is unbiased but will be highly variable in many (i, j, k) domains with low sample

size. We thus consider the use of small area estimation methods to borrow strength across domains.

The small area estimation method should allow for:

• circular nature of time-of-day data (24-hour clock)

• spatial and temporal distribution of fishing behavior

• correlated observations (multiple trips per respondent)

• “design consistency”: when the sample size is large within a cell, the estimator should be close

to F̂ijk (t0,∆).

In what follows, we begin by describing the Bayesian hierarchical model we have fitted to the CHTS

data. We then describe two different approaches to create small area estimates. The first is based on

composite estimation, and is the one currently implemented by NOAA. The second “internalizes” the

small area predictions into the hierarchical model itself, using a Dirichlet process specification.

Hierarchical modeling with projected normal distributions

Our approach to this problem is to build a hierarchical regression model for the departure

times using a spherically projected multivariate linear model (see [6]). This model is an immediate

generalization of the projected normal distribution. We conduct Bayesian inference for the model

using Markov chain Monte Carlo (MCMC). We have used an “optimal” composite estimation (e.g.

[4]) to combine observed and model-predicted distributions, and in ongoing work, are building the

compositing into the hierarchical model structure.

Let I2 denote the 2× 2 identity matrix. A random angle θ has a projected normal distribution

PN (µ, I2) if X = (X1, X2)T ∼ N2(µ, I2), with

X1 = ‖X‖ cos θ, X2 = ‖X‖ sin θ.

In other words, the random angle θ can be generated by drawing (X1, X2)T ∼ N2(µ, I2), converting

to polar coordinates, and discarding the length ‖X‖. Explicit expressions for the probability density

function and the moments of θ are available. In this distribution, the parameter µ plays the role of both
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the “mean” and the “variance” (in the somewhat loose sense of measures of center and spread). To

see this, consider that as µ→ 0, the distribution of θ becomes uniform on the unit circle. Conversely,

letting µ = (µ1, µ2) = (‖µ‖ cosψ, ‖µ‖ sinψ), if ‖µ‖ → ∞ with ψ held fixed, then the distribution of

θ becomes a point mass at ψ.

The key advantage of the projected normal distribution vs. other circular distributions (such as

von Mises) is normality. This structure makes it conceptually easy to construct regression models.

For hierarchical model building and Bayesian inference, conjugate priors are available and are easy

to sample. The main disadvantage is the latent structure: each random angle has a corresponding

latent random variable corresponding to the “discarded length” of the bivariate normal random vector.

Estimation methods therefore need to account for a number of latent variables equal to the number

of observations.

We use Bayesian inferential techniques built upon [5], which discusses Bayesian inference for

PN (µ, I2). To handle the latent variables, they augment the observed angle data, denoted Tijkt,

with the latent lengths, denoted Rijkt:

Xijkt = Rijkt

[
cosTijkt
sinTijkt

]
.

In this formulation, the joint distribution of (Rijkt, Tijkt) and the conditional distributions are easily

obtained. Given the latent lengths, the problem becomes inference for a hierarchical model for normal

random variables. Additional steps are then needed to account for the distribution of Rijkt.

We extended this formulation to allow for a regression model in the mean structure, start-

ing with conjugate normal and inverse gamma as prior distributions. We then applied a sweeping

reparametrization [9] to deal with the issue of correlated random effects (e.g., [3]), so that we end up

with the following hierarchical model specification:

µ′ ∼ N2

(
µ0, σ

′
0

2
)

m′−K,c ∼ NK−1

(
0, σ2

m

(
IK−1 −

1

K
JK−1

))
c = 1, 2

s′−I,c | σ2
s ∼ NI−1

(
0, σ2

s

(
II−1 −

1

I
JI−1

))
c = 1, 2

w′−J,c | σ2
w ∼ NJ−1

(
0, σ2

w

(
IJ−1 −

1

J
JJ−1

))
c = 1, 2

σ2
s ∼ Inverse Gamma (αs, βs)

σ2
w ∼ Inverse Gamma (αw, βw) ,

where the −K,−I,−J indicate vectors with the last element deleted. The last element m′K was

obtained as m′K = −
∑K−1
k=1 m

′
k, with s′I ,w

′
J defined similarly. After this reparameterization, we

obtained the full conditional distributions and used the Gibbs sampler.

Included among these conditionals are the latent bivariate normal lengths. The conditional

distribution of Rijkt given the observed data and parameters is

pR (r | ·) ∝ r exp

[
− 1

2
r2 + bijkt r

]
with bijkt = (cosTijkt, sinTijkt)µijk. Further, expressions for the cumulative distribution function

(cdf) FR(r | ·) and the mode rm are readily available. The density pR is log-concave, so it would be

possible to use an adaptive rejection scheme to select R, but for computational efficiency we developed

a sampling method using the inverse cdf technique: if u ∼ U(0, 1), r = F−1
R (u | ·) is a random draw

from pR(r | ·). We numerically solved for the inverse as follows:
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• define g(r, u) = FR(r)− u

• for given u, find r that solves g(r, u) = 0 by Newton-Raphson:

– initialize by setting r0 = rm, the known mode

– do

rs+1 = rs −
g(rs, u)

pR(rs | ·)
for a small, fixed number of iterations.

This inverse cdf technique allowed for rapid implementation in R.

Using this Bayesian methodology, we explored a number of model specifications that included

state, wave, and mode effects along with various interactions. We considered both fixed and random

specifications for the various effects. We also allowed for correlated observations within households

by introducing a factor hl for respondent household l (unlike the other factors, the household effect

did not require centering because of the very large number of levels). Finally, we conducted model

selection by comparing models using the Deviance Information Criterion (DIC). The final model we

selected is as follows:

µijklt = µ+ mk + swij ,

where mode mk is fixed and centered and the state-wave interaction swij is random and centered.

We return now to estimation of the time-slice departure distribution. Given the posterior dis-

tribution for µijk estimated as described above, the posterior distribution of

Fijk(t0,∆) =

∫ t0+∆

t0
fT (t | µijk) dt

is in principle obtainable directly from the Gibbs sampler, since it is a function of only µijk. But

computing this directly would require integration at each iteration of the sampler, which would be

extremely time-consuming. Instead, we streamlined the calculations by first restricting attention to

∆ = 1 hour and estimating 24 time slices (setting Fijk(t0) ≡ Fijk(t0, 1) from now on). Next, we used

trigonometric identities and analytic calculations to take advantage of the circular nature of model.

In particular, it can be shown that∫ θ+π/2

θ
fT (θ | µ) dθ = Φ (−ρ sin (θ − ω)) Φ (ρ cos (θ − ω)) ,

where Φ(·) is the standard normal cdf and µT = ρ (cosω, sinω), so that 24 integrals are replaced by

5 integrals plus successive differencing. Posterior distributions for the fractions of daily departures

by hour are shown in Figure 1 by wave and mode, for one state. These distributions are depicted as

boxplots within each hour-long increment. The boxplots are superimposed on the original departure

distribution data from the CHTS, shown as histograms.

Small area estimation via estimated optimal compositing

The estimates obtained from the Bayesian hierarchical model just described are fully model-

based. If we consider the main target of estimation to be the finite population quantity

FN,ijk (t0) =

∑
Uijk

I[t0,t0+1) (Tijkt)

Nijk

for t0 = 1, . . . , 24, we do not necessarily want to fully trust the model to be a completely correct

representation of the population. Figure 1 shows that we have two possible estimators: the direct
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Figure 1, left: departure distribution data (histograms) by wave and mode for the state

of Alabama; right: posterior distributions (boxplots) for proportion of daily departures

for wave 1 in Alabama.

estimator from CHTS corresponding to the left plot,

F̂Dijk (t0) =

∑
sijk

I[t0,t0+1) (Tijkt)

nijk
,

and the model-based estimator (posterior mean from the hierarchical model) corresponding to the

right plot,

F̂Mijk (t0) = E
[
Pr(t0 ≤ T < t0 + 1 | µijk) | data

]
.

The former is unbiased but highly variable when nijk is small, while the latter is very precise but

subject to model misspecification bias. We therefore consider combining the strengths of the two

estimators using composite estimation (e.g., [4]), which is of the form

F̂Cijk (t0) = wijkF̂
D
ijk (t0) + (1− wijk) F̂Mijk (t0) .

Finding a good choice of wijk is critical in composite estimation. We make a number of simpli-

fying assumptions in order to select wijk for the departure distribution data. First, assume that

Cov
(
F̂Dijk (t0) , F̂Mijk (t0)

)
= 0 (or small enough to be ignorable), which is reasonable since Var(F̂Mijk(t0))

is vanishingly small compared to Var(F̂Dijk(t0)). Second, we assume that the bias of F̂Mijk (t0) does not

depend on (i, j, k). Under those assumptions, we have

E
(
F̂Mijk(t0)− F̂Dijk(t0)

)2
= MSE(F̂Mijk(t0)) + Var(F̂Dijk(t0))

and the optimal value for wijk is given by

wopt
ijk (t0) =

MSE
(
F̂Mijk(t0)

)
MSE

(
F̂Mijk(t0)

)
+ Var

(
F̂Dijk(t0)

) .
We are interested in estimating wopt

ijk (t0) by replacing the unknown quantities on the right-hand side

by sample quantities. However, in order to maintain the fact that we require
∑24
t=1 F̂

C
ijk (t) = 1, we

will keep wijk fixed with respect to t0.
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Figure 2: Estimators of the fraction of daily departures in the state of Connecticut.

Histogram is the direct estimator. Dashed line is the posterior mean from the model.

Piecewise linear blue curve is the composite estimator.

We estimate the t0-averaged MSE
(
F̂Mijk(t0)

)
in wopt

ijk by

M̂SE(FM ) =
1

n

∑
i

∑
j

∑
k

∑
t

(F̂Mijk(t)− F̂Dijk(t))2
−
F̂Dijk(t)

(
1− F̂Dijk(t)

)
nijk

 .
Replacing Var

(
F̂Dijk(t0)

)
in wopt

ijk by the upper bound 0.25/nijk, we obtain the “adaptive weights”

ŵijk =
M̂SE(FM )

M̂SE(FM ) + 0.25/nijk
.

Finally, we plug these in to obtain the composite estimator

F̂Cijk (t0) = ŵijkF̂
D
ijk (t0) + (1− ŵijk) F̂Mijk (t0) .

Figure 2 shows examples of the direct, model-based, and composite estimators for both a small sample

(nijk = 9) and large sample (nijk = 4271) case. As in the top plot, when the sample size is small,

our procedure selects a small value for wijk and the composite estimator is close to the model. In

contrast, when the sample size is large, wijk is very close to 1 and the composite estimator is very close

to the direct estimator (see bottom plot). In particular, it allows large deviations from the unimodal

and symmetric shape imposed by the projected normal distribution. Hence, the composite estimator

appears successful in responding to the relative precision of the direct and the model-based estimators.

Hierarchical modeling with Dirichlet mixtures

While the compositing methodology described above is relatively simple and quite effective, it

would be nice to allow the model machinery to construct the composite estimator automatically, as
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the appropriate posterior mean under the model. One method that we are currently exploring uses

mixtures of projected normal distributions for circular density estimation. The number of mixture

components is unknown a priori and is to be inferred from the data. The clustering property of Dirichlet

processes provides a nonparametric prior for the number of mixture components. Density estimation

is then done by modeling the data as a sample from mixtures of projected normal distributions.

This allows for direct inference on uncertainty about density estimates, assessment of modality, and

inference on the number of components. Finally, groups of data will be used to model the parameters

of the base measure of the Dirichlet processes.

Suppose the departure times come from the following mixture model:

Tijkt | µijkt ∼ PN 2

(
µijkt, I2

)
,

which implies that Xijkt | µijkt ∼ N2

(
µijkt, I2

)
as before. If the normal means µijkt come from some

uncertain prior distribution G (·) on IR × IR and G (·) is modeled as a Dirichlet process, then the X

come from a Dirichlet mixture of normals (see [1]) and hence the T come from a Dirichlet mixture of

projected normals.

The Dirichlet process DP (α0, G0) (see [2]) is a distribution over distributions. It has two

parameters, a scaling parameter α > 0 and a base distribution G0. An explicit representation of

a draw from a Dirichlet process was given by [7], who showed that if G ∼ DP(α0, G0), then with

probability one:

G =
∞∑
k=1

βkδµk
,

where the µk are independent random variables distributed according to G0 and δµk
is an atom at µk,

and where the “stick-breaking” weights βk are also random and depend on the parameter α0. This

representation of the Dirichlet process shows that draws from it are discrete. The discreteness of the

Dirichlet process makes it suitable for the problem of placing priors on mixture components.

We consider the following extended hierarchical model:

Tijkt | µijkt ∼ PN 2

(
µijkt, I2

)
µijkt | Gijk ∼ Gijk

Gijk ∼ DP (α0, G0 (mijk))

G0 = N2 (mijk, I2)

mijk = m0 + si + wj + mk

α0 ∼ Gamma (a, b)

where the effects si,wj ,mk and the overall mean m0 are all distributed as bivariate normals with

their own means and variances.

While our experimentation with this model structure is ongoing, preliminary results are encour-

aging. Figure 3 shows results for the estimated mode effect in the simplified model

mijk = m0 + mk,

for a given state (state 33, New Hampshire) and Figure 4 shows composite estimators by wave and

mode for various waves and modes in the same state. The composite estimators seem to do an

exceptionally good job of approximating the direct estimates when data are rich, and reverting to the

overall mode effect when data are sparse. The only disadvantage of the Dirichlet mixture approach at

this point is its computational expense, making it currently unfeasible for implementation by NOAA.

We are currently investigating approaches to reduce the computational burden of this approach.
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Figure 3: Results from the Dirichlet mixture model for mode effects. The blue curve in

each panel is the posterior mean estimate of the mode effect, computed by averaging all

Gibbs iterates. Orange curves are 20 Gibbs iterates sampled at random from all iterates,

to show variability in the posterior distribution. Departures by anglers fishing from shore

(mode = 1) are more diffuse across time than departures by anglers fishing from boats

(modes 2, 3, 4).

Figure 4: Results from the Dirichlet mixture model for various waves and modes in

the state of New Hampshire. Histogram is the direct estimator. The blue curve is the

composite estimator for the given domain (posterior mean computed as the sample mean

of all Gibbs iterates). Orange curves are 20 Gibbs iterates sampled at random from all

iterates, to show variability in the posterior distribution. Green curves show the overall

(non-state-specific) mode effects (as in Figure 3).
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