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1. Introduction 

Monthly retail sales and new car sales, among other things, often demonstrate seasonality, that is, a 
pattern that repeats to some degree on a regular basis with monthly reporting being typical of the two cases just 
mentioned.  Often new car sales are reported along with differences Yt−Yt−12 from the same month of the 
previous year.  Seasonal data may also show an upward trend over time in a healthy growing economy. There 
are two common kinds of basic model that can be applied to such seasonal data.  One approach is a model 
consisting of a linear time trend and seasonal indicator variables (seasonal dummy variables).  This model then 
assumes that the seasonal effect is the same for all years and equally weights, for example, every January in the 
computation of the January effect.  Another simple model is Yt = αYt−12 +et with et being white noise (an 
independent, constant variance sequence).  With this approach, the January effect is predicted each year from its 
predecessor and every January before that one is ignored.   When α=1 we have a seasonal random walk in which 
case it is the differences Yt−Yt−12 rather than the levels that are stationary. 
Tables of critical values given for seasonal lags s=2,4, and 12 in Dickey, Hasza, and Fuller (1984, henceforth 
DHF) can be used with the model Yt = αYt−12 +et to test the hypothesis that α=1, that is, the hypothesis that the 
series is a seasonal random walk and hence must be differenced at a span of 12 to achieve stationarity.  When 
this happens we will say that the series has a seasonal “unit root,” a reference to the characteristic polynomial 
m12−α which has a root 1 when α=1.  There are approaches, namely Hylleberg, Engle, Granger, and Yoo (1990, 
often referred to as HEGY) for s=4 and Beaulieau and Miron (1993) for s=12 that consider all 4(12) of the roots 
separately.  We will not address these approaches herein.  The DHF article addresses realistic models with 
additional terms such as linear trend and seasonal dummy variables, however the practical limitation of that 
article is the small number of s values with available critical values. Other points of note from that article are that 
the studentized test statistics used for testing have nonnormal distributions even in the limit.  As well, the 
addition of commonly used deterministic terms causes differences even in the limit for the test distributions.  
Note that reference to the limit here refers to an increasing number of years each having 4 quarters or 12 months.  
This stands in contrast to what will be done in this article, namely looking at what happens as s is increased.  
While in reality seasonal periods are fixed, note that for most statistical analyses limit results are used when the 
sample size is large.  In other words, it may be that the asymptotic (s increasing) results will provide good 
approximations for s values that are not extremely large. Most of the results reported here are worked out in 
detail in Dickey and Zhang (2010).  
 
2. The Basic Model. 

Our model will involve deviations yt = Yt –f(t) from some deterministic trend f(t) that would typically 
contain a seasonal component, like trigonometric functions.  The model we have in mind is yt= αyt−s + et where 
the e’s are independent N(0, 2σ )  error terms, that is, white noise. If  α=1 then any periodic component of  f(t) 
will cancel out.  Further, if f(t) consists of periodic functions and polynomials, the same predictor variables can 
be use to produce yt and yt−s from  Yt and Yt−s using regression.  Our analysis will assume two steps: first regress 
Yt and Yt−s on the predictors then regress residuals on residuals. Regressing Yt on these predictors and Yt−s gives 
exactly the same estimate of α and the same test statistics.  

We can write time t as t=(j−1)s+i where t is the ith month of year j and s=12 for monthly data.  For 
convenience, we use the terms “year” and “season” here but we can do this for any combination like m days of 
s=24 hours etc.  The variables Yij and Yik are seen to be independent for different months j and k in the simple 
lag s model since, for example, January values depend on only lagged January values and errors as can easily be 
seen in the upcoming Table 1. Let the eij and Yij denote the error and observation at t=(j−1)s+i.  If f(t) is periodic 
of period s then when α=1, Yt−Yt−s = et and our model can be conveniently written as  Yt−Yt−s = (α−1)Yt−s + et 
when no deterministic regressors are present, and as  
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yt−yt−s = (α−1)yt−s + et when deterministic regressors are used.   Let the vector Δ be the vector of dependent 
variables Yt−Yt−s, and let Y(−s) denote the vector of lagged observations.  Regress the vector Δ on the matrix X of 
regressors and a vector Y(−s). The resulting estimator of α−1 has numerator  1

( )[ ( ) ] sI X X X X Y−
−′ ′ ′Δ − and 

denominator 1
( ) ( )[ ( ) ]s sY I X X X X Y−
− −′ ′ ′− . Later reference to the “numerator” and “denominator” will refer to 

these terms, possibly normalized. The terms involving 1( )X X X X−′ ′   are “correction terms” for the deterministic 
predictor variables. These do not appear in the simplest model. 
 
3. The Simplest Estimator  

Without any deterministic terms f(t) our estimate of α−1, multiplied by (m(m−1))−1/2  is the ratio of a 
numerator term  
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where we have used the double subscript notation. Because these are both sums of s independent terms, a central 
limit theorem will apply as s gets large. Note also that the ratio in question is independent of σ2. The 
denominator divided by s converges to its expected value by the weak law of large numbers, and the numerator 
divided by s1/2 converges to a normal random variable. We need only the moments to describe the limit 
distribution.  If the denominator term is multiplied by the regression error mean square and the square root of 
that product replaces the denominator, that is the studentized test statistic (the regression t statistic) for this 
simple model and similarly for models with deterministic regressors.  

In the text of Fuller (1996) it is shown that the bivariate random variable  (Ni,Di) = 
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Wiener process on [0,1] and thus when s=1 the regression statistic ˆ( 1)( 1)m m α− − = ( 1)m m − N1/D1 converges 

weakly to 21 ( (1) 1) /
2

W −
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( )W t dt∫ , the error mean square, 2ˆ ,σ  converges in probability to σ2,  and the studentized 

test statistic, symbolized τ to emphasize its nonstandard distribution, converges to 21 ( (1) 1) /
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Note that these are limits with respect to m with s held fixed at 1.  
 
Table 1.  Data display with doubly subscripted (t=12(j−1)+i) equivalents. 
 

 
January (i=1) February (i=2) March (i=3) 

(9 more months follow ) 
Y1 = e1 

(Y1,1=e1,1) 
Y2=e2 

(Y2,1=e2,1) 
Y3=e3 

(Y3.1=e3,1) 
Y13=Y1+e13=e1+e13 

(Y1,2= e1,2 + e1,1) 
Y14=Y2 + e14 =e2 + e14 

(Y2,2=e2,2 + e2,1) 
Y15=Y3 + e15 =e3 + e15 

(Y3,2=e3,2 + e3,1) 
Y25 = e1+e13+e25 

(Y1,3= e1,3 + e1,2  + e1,1  ) 
Y26 = e2+e14+e26 

(Y2,3= e2,3 + e2,2  + e2,1  ) 
(m−3 more rows follow 

below) 

Y27 = e3+e15+e27 
(Y3,3= e3,3 + e3,2  + e3,1  ) 
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The January through March data for three years of monthly data are described in Table 1.  We assume 
initial values 0. Note the alternative double subscript notation and the independence of the columns. Were we to 
observe the full 12 columns and read them read left to right as in a book, the data would be encountered in time 
order. When read down the columns the data show their monthly random walk nature.  

The numerator of ˆ( 1) ( 1)m m s α− − for general s can be normalized and written as 
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independent identically distributed numerator components Ni have mean { }iE N =0 and variance 2{ }iE N = ½ so 
the limit of the normalized numerator as the seasonality s increases is N(0,1/2).  The normalized denominator of 
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components has mean { }iE D =  1/2 and finite higher order moments. The denominator thus converges in 

probability to 1/2 and the normalized bias satisfies ˆ( 1) ( 1) (0,2)Lm m s Nα− − ⎯⎯→ .  As s increases, the mean 

squared error, 2ˆ ,σ converges to (m−1)σ2/(m−2) so as s and m increase we have 
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This suggests that if the seasonality s increases and m is not too small, the t test in the regression of 
Yt−Yt−s on Yt−s (no intercept) could be compared to N(0,1) percentiles whereas it is well known that this is not 
the case when s=1 (the nonseasonal case).  Multiplying τ by ((m−1)/(m−2))−1/2 would allow use of the standard 
normal, regardless of m, whenever s is large.  

Simulation shows a somewhat bell shaped histogram for τ, though the percentile tables of DHF clearly 
show τ does not converge to a standard normal when s is fixed at 2, 4, or 12 and m increases. The bell shape 
may be close enough to that of a normal to let the normal distribution be used as a reasonably accurate 
approximation. This motivates an attempt to center and scale the studentized statistic.  To compute the mean and 
variance needed for the standardization, Taylor’s series will be used. The usefulness of the moments thus 
derived is determined by their performance in simulated series.    
 
4. Adjusting the mean using Taylor’s Series. 

The DHF paper gives τ statistic percentiles for  s=2, 4, 12. In the monthly case, for example, the spread 
between the  5th and 95th percentiles is 3.32 for large sample sizes and is close to that for all their reported sample 
sizes.  The spread between these two percentiles in a standard normal distribution is 3.29 which is close enough 
to the corresponding standard normal spread 3.32 to suggest that no scale adjustment is necessary. Throughout 
the DHF tables, the 50th percentiles are close enough to the average of the 5th and 95th to suggest the distribution 
is close to symmetric about the median, which would imply the mean and median are the same.   

A plot of these medians against s−1/2 shows points lying very close to a line with slope −1/2 and intercept 
0, the median and mean of a standard normal.  It appears then that the mean of a Taylor Series approximation to 
the studentized statistic out through order s−1/2 will be close to −0.5s−1/2, an observation that we will support 
analytically.  The subtraction of that mean from the studentized statistic without any adjustment for the variance 
should produce a centered statistic with approximately a N(0,1) distribution, thus allowing tests that involve 
values of s not tabulated in DHF.   

The mean and variance of each numerator term Ni and each denominator term Di have been discussed 
earlier but it will also be important to note that these numerator and denominator terms have a covariance 
approximately 1/3 as given in Dickey (1976), namely  

Cov(
1

2
, 1

1

/ ( 1)
m

i j ij
j

e Y m mσ
−

−
+

=

−∑ ,
1

2 2

1

/ ( ( 1))
m

ij
j

Y m mσ
−

−

=

−∑ )  = ( 2) / (3 ( 1))m m m− −    

The studentized statistic with the error mean square replaced by the true error variance is 
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where N0 = 0 and D0 = ½ are the means of Ni and Di.  The leading term thus drops out and we become interested 
in the (1/ )pO s term which will be the key to finding the limit distribution.  
 Note that if seasonal means are removed from the data or equivalently seasonal dummy variables used in 
the regression, the expectation of the numerator quadratic form will no longer be 0 thus introducing a nonzero 
leading term of order s1/2 in the expression for τ.  The following development thus does not pertain to that case. 

Apart from the first, all higher order partial derivatives with respect to N are 0. All partial derivatives 
purely with respect to D evaluated at (N0,D0) are multiples of N0=0 so they are 0.  We thus have  
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The order 1 term 2s N  is N(0,1) in the limit because s N  has variance ½. Thus (0,1)Nτ →
L

 as s increases, 
however the DHF tables suggest that s must be rather large for the standard normal distribution to be a good 
approximation.  Further adjustments are needed. The expected value of the term 3/2(1/ 2) ( 1/ 2) / 2s N D−− − is 

1/2 ( 2) 2 1(2 / ) 0.4714 /
3 ( 1) 3 2

ms s
m m s s
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Centering by subtraction of this from the studentized statistic should bring the expected value to 0 through order 
s−1/2.  Figure 1 shows that this approximation is in fact excellent.  
 
Figure 1:  Distribution of studentized statistics, adjusted by adding 0.4714 / s , versus 1/s. The circles 
mark empirical percentiles typically used in hypothesis testing and the horizontal lines mark the 
corresponding N(0,1) percentiles.  Percentiles are based on two sets of 40,000 simulated series with 
m=5, making each circle approximately 5 Monte Carlo standard errors in diameter .  

 
 
5.  Adding Periodic Functions of Time.  

In the unit root literature it is well known that the addition of deterministic terms, like polynomial trends 
and/or seasonal means or sinusoids, changes even the limit distribution of the studentized statistic when s=1 or s 
is any of the values studied in the current literature.  When s is allowed to increase some of the problems seen 
before disappear.  The inclusion of seasonal means produces numerator terms Ni that no longer have mean 0 and 
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this case will thus not be dealt with here.  If, on the other hand, an overall trend function such as a linear trend is 
added, simulations in Dickey and Zhang (2010) show that has very little effect when s is large and they show it 
has no effect in the limit.  If a period s function is added (note that the intercept, a column of 1s in regression, 
repeats at every period and thus is technically periodic) the effect still goes away in large s cases but as with the 
covariance term earlier, an order s−1/2 adjustment helps when s is not extremely large. Interestingly, this 
adjustment is the same for all period s functions. This section reviews the main ideas behind these statements.  

A periodic function f(t) is any function with f(t) = f(t−s) and thus if we regress the seasonal span 
differences on lagged levels adjusted for the periodic function, the dependent variable will not involve f and for 
the simplest model  Yt−f(t) = α(Yt−s−f(t−s)) + et we will estimate the parameters by first regressing Yt−Yt−s=et on 
f(t) and Yt−s on f(t) then regressing residuals on residuals which gives exactly the same estimate and test statistic 
as regressing Yt−Yt−s on f(t) and Yt−s. We have used the fact that f(t) = f(t−s) and since a collection of periodic 
predictors, when orthogonalized by the Gramm-Schmidt method, becomes a set of orthogonal periodic 
functions, we see that if f(t) consists of a linear combination of periodic functions the regressors can be viewed 
as orthogonal without loss of generality. Looking, then, at a single periodic function for f(t) is sufficient.  

A caveat here is that the number k of such deterministic regressors must be fixed or at least satisfy 
k/s 0.  For example, if s sines and cosines are used as in Fourier analysis, then the fit is the same as that when 
s−1 seasonal dummy variables are used and we have noted that the effect of that on the Taylor’s series 
approximation is large enough to invalidate our results here.  

Recall from section 2 that the numerator correction term, including normalization, is 
1 2

( )( ) / ( ( 1) )sX X X X Y m m sσ−
−′ ′ ′Δ − . Any periodic regressor, including the intercept, is a column X of n=sm 

numbers taking on only s values ci, i=1,2,…,s. The sum of squares for such a column is X’X= 2
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i
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=
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Assuming 2 /ic s∑ converges to a positive constant, as for example would be the case with the intercept 
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the associated subscript.  The numerator correction term is   
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The correction term can be ignored if s is very large but as happened before, the inclusion of the expectation of 
this term may add a helpful mean adjustment that allows the normal approximation to work well at less extreme 
s values.   
 The normalized denominator has correction term  
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which is Op(1/s) and thus converges to 0 even faster than the numerator correction term as s increases.  These 
facts suggest computing the numerator correction term’s expected value then dividing it by the square root of D0. 
The expectation in question is  
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This does not depend on the values ci and since the normalized denominator converges to ½ as it did without 
adjustments, we divide by its square root to get a suggested order s−1/2 mean adjustment for the studentized 
statistic. The suggested adjustment is 

3

( 1)( 2) 1( 2) 1 12
2 ( 1) 2 2

m m m m
m m m s s sm

⎛ ⎞ ⎛ ⎞− − − − ⎛ ⎞ ⎛ ⎞= ≈⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
, 

 
the last approximation of which holds when m is large. Simulations reported in Dickey and Zhang (2010) show 
that this adjustment is quite helpful in practice when the number of deterministic regressors k is small relative to 
s.  See that paper for further details, including a proof that the inclusion of any finite number of deterministic 
regressors has no effect on the limit (s increasing) normal distribution of τ, though as we have seen, s may have 
to be quite large if further adjustments such as those above are not made.  
 The following development is taken from Dickey and Zhang (2010) and shows that deterministic 
polynomial terms added to the model have little effect on the distributions when s and m are fairly large.  That 
paper corroborates the theory with rather large simulations. The basic idea is to separate the year-to-year trend 
and within year trend.  For example a linear trend can be represented as a centered yearly step function with 
constant increase of the steps plus a within year linear function such that the sum of these two is just the linear 
function t.  By separating the parts, the effect of this variable can be nicely associated with the doubly 
subscripted variables and the associated sum of squares in the regression correction terms similarly broken down 
into two components involving variables V and W.  The development, taken from Appendix B of that paper, is 
as follows with some minor modifications to match the syntax of this paper.  

For polynomials we will center and scale the entries xij of the regressor column X obtaining a numerator 
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The expectation of the numerator correction term is this quantity divided by 
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at rate m2s3/2 so the expectation of the correction term is 1 1/2( )O m s− − . With Wj being equally spaced within the  
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[−1.1] interval, a Rieman sum argument shows that  
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studentized statistic’s mean further involves division by the denominator, thus eliminating the dependence on the 
error variance. The contribution from the Vi terms is of even lower order. We thus have large sample 

approximation 
sm6

2
−  to the mean shift in τ. The coefficient  

m6
2

− of the O(s−1/2) mean shift is decreasing at 

rate m and quite small even for reasonably small m. 
For a quadratic polynomial, we will use xij = [(2j−m)/(m−1) + (2i−s−1)/(s(m−1))]2 – M where M is the 

mean of the squared values appearing before it.  This makes the xij sum to 0.  The sum of squares of xij is 
increasing at rate md. Now [(2j−m)/(m−1) + (2i−s−1)/(s(m−1))]2 =[Wj+Vi/(m−1)]2 consists of two pure squared 
terms, one in W and one in V/(m−1), and a crossproduct which sums to 0 over j.  The mean M is therefore the 
sum of means of the W2 and [V/(m−1)]2 terms. The effect of centering xij is the same as that of centering W2 and 
[V/(m−1)]2  which then sum to 0 on j and on i respectively.  Applying the arguments for the linear trend to this 
centered quadratic polynomial, the only difference in results is that now the dominant term is 
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and the approximate mean shift is 
sm10

2
− , an even smaller shift 

than in the linear case.  It is rare to see polynomials of degree greater than 2 in time series, but the proof extends 
easily to centered polynomials of any degree. Centering makes this column orthogonal to the intercept which 
technically is periodic.  In practice the added polynomials do not have to be centered or scaled so long as the 
regression has an intercept. The effect will be the same either way.  

 
6. Example 
 This study was motivated by a question from a researcher studying hospital admissions for asthma 
related symptoms. Those data are proprietary so for an example we can look at some generated weekly seasonal 
data to mimic what might be admissions.  Figure 2 is a graph of these hypothetical admissions data with a 
locally smoothed version overlaid to visualize the seasonal pattern.  The seasonality is quite regular so a sine-
cosine pair of period 52 is added to the data.  The correction needed here for these 3 (including the intercept) 
deterministic regressors is 

2 3 1 2 3 0.36
33 2 52 2s s

⎛ ⎞
+ = + =⎜ ⎟⎜ ⎟

⎝ ⎠
 

Figure 2: Hospital Admissions (hypothetical) 

 
Regressing the differences D on the lag 52 level L, a sine S and cosine C of period 52, we obtain a calculated t 
statistic t=−1.79 with one-tail P-value 0.0366, obtained by halving the two-tailed P-value from the printed 
regression output below. With the adjustment we get −1.79 + 0.36 = −1.63>−1.645 which thus has associated 
one-tail P-value slightly exceeding 0.05. In close calls the adjustment can move the P-value to the other side of 
the test’s level. From the output the estimate of α−1 is −0.02195. 
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Parameter Estimates 

 
Parameter       Standard 

Variable     DF       Estimate          Error    t Value    Pr > |t| 
 

Intercept     1        2.91778        1.45348       2.01      0.0453 
L             1       ‐0.02195        0.01223      ‐1.79      0.0733 
S             1        0.29552        0.63671       0.46      0.6428 
C             1       ‐0.71018        0.81049      ‐0.88      0.3814 

 
7. Higher Order Models 
 A model with yt = αyt−s + et is of somewhat limited use, despite the fact that yt = Yt−f(t) which allows 
for deterministic predictors.  Rewriting this model in backshift form with B(Yt)=Yt−1 we have (1− αBs)yt = et but 
it may be that that this is not appropriate in that (1− αBs)yt is perhaps not white noise but in fact autocorrelated.  
This can be accommodated by the so-called seasonal multiplicative model (1−ϕ1B−ϕ2B2−…−ϕpBp)(1−αBs)yt = 
et.  DHF give a method for fitting such a model in steps as follows.  
 Step 1: Fit the model under the null hypothesis, that is, fit an autoregressive order p model to the 
seasonal differences of yt where yt is Yt adjusted for a regression estimate of f(t). Save the residuals. 
 Step 2: Estimate the “filtered series” by computing zt = (1−ϕ1B−ϕ2B2−…−ϕpBp)yt with the 
autoregressive coefficients replaced by their estimates. The idea is that for large m this z will approximately 
follow the simple seasonal lag model already discussed.  
 Step 3: Regress the residuals from the model in step 1 on lag s of the zt series and p lags of yt−yt−s to 
obtain the studentized test statistic and first order adjustments to the ϕj estimates. The studentized test statistic 
for zt−s  is the same asymptotically (m increasing) as if it were from the simple model.  See DHF for details and a 
formal proof.  
 
8. Conclusion 

Tables for testing for seasonal unit roots are available for a few commonly occurring seasonal values 
such as s=12 for monthly data.  For cases where no tables exist and s is large, for example s=52 for weekly data, 
this paper provides justification for using a normal distribution to calculate approximate p-values. It does so by 
looking at limits as s increases, finding a rather straightforward central limit theorem. While theoretically 
pleasing, this result is only practical for very large values of s, however it is neither the variance nor the bell 
shape of the distribution but rather the mean that is responsible for this drawback.  With a mean adjustment, 
motivated by the Taylor’s series expansion of the studentized statistic, that problem is overcome and a statistic 
that works well in practice even for smaller s values such as 12 and even 4 results.  To be practical, the 
accommodation of a few deterministic terms in the model is needed.  Low degree polynomials have little effect 
on the distribution whereas periodic functions of period s, like sines and cosines, require another simple 
adjustment of order s−1/2 to make the standard normal a reasonable approximation.   
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Abstract 
Dickey, Hasza, and Fuller (1984) gave tables of critical values for seasonal unit root tests.  The simplest of these 
is the studentized statistic (t test) that tests for a coefficient equal to 1 in the regression of the response at time t 
to the response at time t−s where s is the seasonal lag, s=12 in monthly data for example.  As is usual in these so 
called “unit root tests,” the distribution, even in the limit, is non standard, that is, the t statistic is not 
asymptotically normal. To make matters worse for practical applications, the percentiles change with changes in 
s and with additional terms, like seasonal means, in the model.  Therefore the existing results are limited to the 
few s values that have been studied, including s=4 and s=12, arguably the most common cases in practice.  
Herein we take the approach of treating s as an increasing parameter and with this type of asymptotics, find a 
limit normal distribution, quite in contrast to the fixed s asymptotics previously studied.  With some finite 
sample adjustments, the limit results provide good approximations for surprisingly small s values.   
 
Key Words: Nonstationarity, differencing, asymptotic 
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