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1 Introduction

In large statistical surveys, estimates of population descriptive quantities for a target variable Y are
usually needed for the population as a whole and for different collections of sub-populations (domains
or areas). Provided that an adequate domain-specific sample size is available, statistical agencies
apply the same design-based methods used for the estimation of population level quantities to domain
estimation. When available samples are not large enough to allow for reliable estimation in all or most
of the domains, we have a small area estimation problem.

The application of design-based estimators, namely the Generalized Regression (GREG) estima-
tor, to the small area setting is introduced by Särndal (1984) and reviewed in Rao (2003, Sections 2.4
and 2.5). These estimators are design consistent, approximately design unbiased for moderate area
specific sample sizes, their randomization based variances may be easily estimated. Unfortunately,
they typically overlook ‘local effects’, that is the between area variation not accounted for by the re-
gressors. For this reason, model dependent estimators relying on mixed models became very popular
(see Rao, 2003; Jiang and Lahiri, 2006a). Informally, we may classify the mixed models applied to
small area estimation in two classes. In the first class, often labeled as area level models, the data
provide information only at the domain level and a model is assumed on the direct survey estimates.
In the second class a model is specified at the unit level. The reliability of these methods hinges on
the validity of model assumptions, a criticism often raised within the design-based research tradition
(Estevao and Särndal, 2004). Moreover, model-based estimators based on unit-level models such as
the popular nested error regression (Battese et al., 1988) or multi-level (You and Rao, 2000) typically
do not make use of the unit level survey weights; as a result the estimators are not design consistent
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as the area sample sizes become large, unless the sampling design is self-weighting within areas.
Design consistency is a form of protection against model failures, at least in large domains. Kott

(1989) was the first to propose a design consistent estimator based on a linear mixed model. Prasad and
Rao (1999), assuming a nested error regression model, introduced a pseudo-EBLUP, demonstrated its
superiority to the estimator proposed in Kott (1989) and obtained a more stable Mean Square Error
(MSE) estimator. You and Rao (2002) extended Prasad and Rao (1999) and obtained a pseudo-
EBLUP achieving the nice property of benchmarking. Note that, although design consistent, these
predictors are ‘model based’ and their statistical properties such as bias and MSE are evaluated with
respect to the distribution induced by the data generating process and not randomization. Jiang and
Lahiri (2006b) obtained design consistent predictors also for generalized linear models and evaluated
MSE with respect to the joint randomization-model distribution.

In this paper we consider small area estimators based on M-quantile regression models (Cham-
bers and Tzavidis, 2006), a robust alternative to estimators based on linear mixed models. M-quantile
regression relies on the assumption of a quantile-specific linear relationship between the target and the
auxiliary variables. They are free of distributional assumptions and do not require explicit specifica-
tion of the random part of the model. Moreover the recourse to M-estimation protects from presence
of outliers and influential observations. However, the small area estimators based on M-quantile re-
gression discussed by Chambers and Tzavidis (2006) and by Tzavidis et al. (2010) do not make use of
sampling weights and are, in general, not design consistent.

The main goal of this paper is to obtain design consistent small area estimators based on M-
quantile regression models, thereby generalizing Chambers and Tzavidis (2006) and Tzavidis et al.
(2010). The proposed estimators are obtained by adopting a model-assisted approach: a working
linear M-quantile regression model is assumed only to motivate the estimators but only properties
with respect to the randomization distribution induced by the sample design will be considered. Along
with estimators of area means and totals we consider also estimators of alternative functionals of the
area-specific distribution functions, more specifically of quantiles.

We consider a general probability sampling design and and consider two different situations
with respect to its ignorability: in the first, sampling design is ignorable given the auxiliary variables
included in the small area model, so the sample and the population obey the same model and estimators
of model parameters are model consistent regardless of the use of sampling weights. In the second
situation, we assume that the design is ignorable only conditionally on the variables included in the
small area model and the sampling weights; this means that some of the variables contributing to
weights are not included into the small area model. This may the case in practice, where weights
reflect the design and non-response corrections but variables used in this process are not available to
the researcher. We show that our estimators preserve their nice design-based properties also in this
second situation, while pseudo-EBLUPs, because of the unweighted estimation of variance components,
are less efficient.

The paper is organized as follows. In Section 2 we propose a design consistent estimation of the
M-quantile regression coefficients. Our new design consistent small area predictors are introduced in
Section 3, along with estimators for their design-based MSE. In Section 4 we introduce a simulation
exercise in order to comparing weighted and non-weighted M-quantile based small area estimators.
The simulation is also aimed at comparing the properties of the proposed estimator of the mean to the
popular psuedo-EBLUP by You and Rao (2002) and to the generalized regression (GREG) estimator
for small areas. Moreover, in the simulation study the estimators of MSE of the proposed predictors
are tested.
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2 Design consistent estimation of the M-quantile regression coeffi-

cients

Let’s suppose that a population U of size N is divided into m non overlapping subsets Ui (domains
of study or areas) of size Ni, i = 1, ...,m. We index the population units by j and the small areas
by i. The population data consist of values yij of the variable of interest, values xij of a vector of p
auxiliary variables. We assume that xij contains 1 as its first component. Suppose that a sample s
is drawn according to some, possibly complex, sampling design such that the inclusion probability of
unit j within area i is given by πij , so that area-specific samples si ⊂ Ui of size ni ≥ 0 are available for
each area. Note that non-sample areas have ni = 0, in which case si is the empty set. The set ri ⊂ Ui
contains the Ni − ni indices of the non-sampled units in small area i. Values of yij (j = 1 . . . n) are
known only for sampled values while for the p−vector of auxiliary variables the area mean is known.

Since much of the development in this paper is based on the application of linear M-quantile
regression, we now give a brief definition of related concepts. The q-th M-quantile for the random
variable Z with distribution function F (Z), Qq, is defined as the solution of the equation

(1)
∫
ψq

(
Z −Qq
σq

)
F (dz) = 0,

where ψq(u) = 2ψ(u)
{
qI(u > 0)+(1−q)I(u ≤ 0)

}
and ψ is an influence function, that we assume to be

a bounded and monotone non decreasing function over the real line with ψ(0) = 0. The parameter σq
is a suitable measure of the scale of the random variable Z−Qq. Note that if we relax boundedness, i.e.
assuming ψ(u) = u we obtain the expectile of order q, which represents a quantile-like generalization
of the mean, while for ψ(u) = sgn(u) we obtain the ordinary population quantiles.

Since this presentation of M-quantile models is not directly related to small area estimation,
let’s drop the subscript i from the notation of this Section. Ordinary linear regression is based on the
idea of modelling the expected value of the dependent variable as a function of the regressors; that
is, on the assumption that E(yj |xj) = xTj β, j = 1, . . . , N . In M-quantile regression (Breckling and
Chambers, 1988) it is the conditional M-quantile Qq(yj |xj) that is assumed to be a linear function of
the auxiliary information, that is a distinct (hyper-)plane, characterized by quantile-specific regression
coefficients βψ(q) is assumed to have generated the data at each q ∈ (0, 1). More specifically we may
write the basic model assumption as:

(2) Qq(yj |xj) = xTj βψ(q),

with q ∈ (0, 1). Under ignorable sampling, for given q and the influence function ψ, a consistent
estimate of the vector of the regression parameters βψ(q) may then be obtained by solving the following
normal equations respect to βψ(q):

n−1
∑
j∈s

ψq

(
yj − xTj βψ(q)

σ̂q

)
xj = 0,

where σ̂q is some robust estimate of the scale of the residuals yj − xTj βψ(q), e.g.
σ̂q = median|yj − xTj βψ(q)|/0.6745. The solution may then be obtained via iterative re-weighted
least squares. M-quantile regression provides a ‘quantile-like’ generalization of regression based on
influence functions. As such, both the quantile regression introduced by Koenker and Bassett (1978)
and the expectile regression by Newey and Powell (1987) may be obtained as special cases. See
Breckling and Chambers (1988) for a more detailed introduction to M-quantile regression.

When data are obtained from complex surveys, weights may be included into the estimation
process to obtain design consistent estimators. Design consistency provides a protection against the
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failure of (2). We now introduce a design consisten estimator β̂wψ(q) for βψ(q) assuming a general
sampling design characterized by inclusion probabilities πj , allowing that it may be non-ignorable
given the regressors included into model (2), as it may be the case when some of the design variables
are not available or not used in the modelling stage.

For any q ∈ (0, 1) let Bψ(q) be the solution of the Census system of equations N−1
∑

j∈U ψq(yj−
xTj βψ(q))xj = 0. Kocic et al. (1997) proved that this solution is unique when ψ(u) is a continuous
monotone function in u.

We now introduce the following set of assumptions: i) ψ(u) is a monotone continuous function
in u and ψ is differentiable in βψ; ii) The regularity conditions on the sampling design that guarantee
the consistency of the Horwitz-Thompson estimator hold. They are needed to prove the following
result:

Theorem 2.1 Under assumptions i) and ii), for each q ∈ (0, 1), β̂wψ(q) defined as the solution of the
weighted normal equations

n−1
∑
j∈s

wjψq(yj − xTj βψ(q))xj = 0

is design consistent for Bψ(q).

An iteratively re-weighted least squares algorithm is used to calculate the design-weighted M-
quantile regression coefficients at q. The weighted least squares estimates of βψ(q) can be written
as

(3) β̂wψ(q) =
(
XTWC(q)X

)−1
XTWC(q)y,

where X and y are the n×p matrix of sample x values and the vector of sample y values, respectively;
W is the diagonal sampling weight matrix of order n and C(q) is the diagonal weight matrix of order
n that defines the estimator of the design-weighted M-quantile regression coefficient at q.

3 M-quantile regression methods applied to small area estimation

3.1 Estimation of small area characteristics based M-quantile regression

In the application of M-quantile regression to small area estimation, Chambers and Tzavidis (2006)
characterize the variability across the population not accounted for by the regressors using the M-
quantile coefficients of the population units. For unit j in area i, this coefficient is the value θij such
that Qθij

(yij |xij) = yij . The authors observe that if a hierarchical structure does explain part of the
variability in the population data, units within areas defined by this hierarchy are expected to have
similar M-quantile coefficients. This represents an alternative to more popular recourse to area-specific
random effects and has the advantage of avoiding distributional assumptions.

The small area descriptive quantities can be represented as functionals of the target variable
distribution function within the area in question:

Fi(t) = N−1
i

∑
j∈Ui

I(yij ≤ t) =
[∑
j∈si

I(yij ≤ t) +
∑
j∈ri

I(yij ≤ t)
]

with Ui = ri ∪ si. Estimators of Fi under M-quantile linear models are the used to obtain M-quantile
(MQ) predictors of area descriptive quantities. For instance the two authors propose

(4) F̂MQ
i = N−1

i

[∑
j∈si

I(yij ≤ t) +
∑
j∈ri

I(ŷij ≤ t)
]
,
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where ŷij = xTij β̂ψ(θ̄i) and θ̄i =
∑ni

j=1 θij when ni > 0, while if ni = 0 we set θ̄i = 0.5 and estimators
of Fi reduce to synthetic estimators based on M-median regression. Tzavidis et al. (2010) note that
this ‘naive’ estimator of the distribution function implies a potentially severely biased estimator of the
area means under the linear M-quantile regression model; they propose to use an alternative estimator
of Fi based on a smearing argument and discussed in Chambers and Dunstan (1986):

(5) F̂
MQ/CD
i = N−1

i

[∑
j∈si

I(yij ≤ t) +
∑
j∈ri

∑
h∈ri

I[ŷij + (yih − ŷih) ≤ t]
]
.

Both (4) and (5) are unweighted model-based estimators that neglect sampling inclusion probabilities
or weights. For this reason, the associated estimators of area descriptive quantities will not be, in
general, consistent. For instance, if we adopt (5), the associated estimator of the small area mean is

(6) ˆ̄YMQ/CD
i =

∫
tdF̂

MQ/CD
i (t) = N−1

i

[∑
j∈si

yij +
∑
j∈ri

xTijβ̂ψ(θ̄i) +
Ni − ni
ni

∑
j∈si

{yij − xTijβ̂ψ(θ̄i)}
]
,

that may be written in the form:

(7) ˆ̄YMQ/CD
i = n−1

i

∑
j∈si

yij +
{
N−1
i

∑
j∈Ui

xTij − n−1
i

∑
j∈si

xTij
}

β̂ψ(θ̄i).

It resembles a GREG estimator of the small-area mean under the assumption of simple random
sampling or some other self-weighting design, but under more general sampling designs it will not be
design consistent.

3.2 Design consistent small area predictors

We may obtain design consistent estimators of area descriptive quantities using a modified Rao-Kovar-
Mantel estimator of Fi (Rao, Kovar and Mantel, 1990) defined as

(8) F̂
WMQ/RKM
i = N−1

i

[∑
j∈si

wijI(yij ≤ t) +
∑
j∈Ui

I(xTijβ̂wψ(θ̄i) ≤ t)−
∑
j∈si

wijI(xTijβ̂wψ(θ̄i) ≤ t)
]
.

This estimator is nearly unbiased and consistent with respect to the randomization distribution. In
fact, under the mild assumption that the limit in probability θi = p lim θ̄i exists, β̂wψ(θ̄i) is design
consistent for βψ(θi). Nice design-based properties of the point estimators obtained as functionals of

F̂
WMQ/RKM
i and namely, the design consistency follows. More specifically, the M-quantile regression

based estimator of the area mean associated to (8) is given by:

(9) ˆ̄Y WMQ
i =

∫
tdF̂

WMQ/RKM
i (t) =

1
Ni

∑
j∈si

wijyij +
( 1
Ni

∑
j∈Ui

xTij −
1
Ni

∑
j∈si

wijxTij
)
β̂wψ(θ̄i).

We note that because an iteratively re-weighted least squares algorithm is used to calculate the
design-weighted M-quantile regression fit at θ̄i, it immediately follows that we may write (9) as
linear combinations of the sample values of y, i.e., ˆ̄Y WMQ

i = N−1
i w∗Ti y where w∗i = (w∗ij) =

W1i + C(θ̄i)X
(
XTWC(θ̄i)X

)−1(∑
j∈Ui

xTij −
∑

j∈si
wijxTij

)T
.

Here 1i is the n-vector with j-th component equal to one whenever the corresponding sample
unit is in area i and is zero otherwise. The area-specific M-quantile coefficient θi may be estimated
using ˜̄θi =

∑ni
j=1 w̆ijθij instead of the unweighted average θ̄i. Using the simulation exercise discussed

in next Section, we found that this choice has no appreciable impact on the efficiency of estimators.
As anticipated, expression (9) has a GREG-like form and may be seen as the design-weighted

version of (7). It may easily be noted that it is nearly unbiased and design consistent. Moreover, under
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the usual assumptions that guarantee the application of the finite population central limit theorem to

the Horwitz-Thompson estimators, we have that ( ˆ̄Y WMQ
i − Ȳi)/

√
V ( ˆ̄Y WMQ

i ) → N(0, 1). See Breidt
et al. (2005). With respect to ordinary GREG estimators used in small area literature (see Rao, 1999,
Section 2.5), note that: i) the use of an area specific coefficient in M-quantile regression accounts
for area characteristics not explained by the auxiliary variables; ii) the use of M-estimation makes
estimator (9) robust to data points with high leverages. However, similarly to the ordinary GREG,
estimator (9) is not robust to outliers in the y that are not outliers in the auxiliary variables.

Estimates of small area quantiles may be obtained straightforwardly by inverting F̂WMQ/RKM
i :

(10) Q̂WMQ
i (q) = infx∈<F̂

WMQ/RKM
i (x) ≥ q = (F̂MQ/RKM

i )−1(q),

q ∈ (0, 1). Note that, while estimator of the area mean (9) needs only the means of the auxiliary
variables to be known at the population level, the estimator for the quantiles does require xij to be
known ∀j ∈ ri.

3.3 Estimation of the design-based variance

Estimators of the design-based Mean Square Error of ˆ̄Y WMQ
i , Q̂WMQ

i (q) and other functionals of
F̂
WMQ/RKM
i may be obtained using bootstrap. For sampling desings as general as multistage stratified

design with unequal inclusion probabilities bootstrap algorighms are known in the literature. See for
instance Rao (1999, Section 5).

As far as ˆ̄Y WMQ
i is concerned, in view of its nearly design unbiasedness we may consider the

simple estimator of its variance based on Taylor linearization:

(11) V̂ ( ˆ̄Y WMQ
i ) =

1
N2
i

∑
j∈si

∑
k∈si

πijk − πijπik
πijk

(yij − xTijβ̂ψw(θ̄i))
πij

(yjk − xTikβ̂ψw(θ̄i))
πik

,

where πijks are the joint order inclusion probabilities. The estimator is a first order approximation
because (11) does not take into account both the variability due to the estimation of the value θ̄i
and that associated to the estimation of β̂ψw(θ̄i). The estimator (11) underestimates the actual

MSE( ˆ̄Y WMQ
i ), but if the overall sample size (on which estimation of the M-quantile model is based) is

at least moderate and sampling variance of the yij and xij dominates that associated to the uncertainty
in estimating θi, the underestimation is likely to be small. This issue will be considered also in the
simulation exercise of next Section, when it will be shown that it enjoys good properties even with
quite small n.

4 Simulation exercise

In this Section we report results from a simulation based on the Swissmunicipalities population, that
provides information about the Swiss municipalities in 2003 (Tillé and Matei, 2009). As we are inter-
ested in design based properties of estimators, this population will be kept fix and, repeatedly sampled
according to a design described below. We are interested in comparing the bias and mean square error
of the discussed estimators of small area means and quantiles to those of selected alternatives and,
secondly to assess the performances of the proposed MSE estimators. In this study we focused on
MSE estimation for the 20th and 80th percentile using the bootstrap estimator, and for the mean
using either the approximated variance estimator (11) or the bootstrap estimator.

4.1 Description of the simulation experiment

The Swissmunicipalities population consists in the records of 22 variables for each of the 2896 Swiss
municipalities. One of this variables is Canton that will define areas of interest in the simulation. More
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specifically, there are twenty-six of these areas whose sizes range from 3 to 400. We merge the smallest
canton (of size 3) with the adjacent canton so we work with a collection of 25 areas. Our target
variable is the area with buildings (Airbat; Y ); its distribution is skewed to the right. As auxiliary
information, assumed known for each unit in the population, we consider a single variable defined as
the square root of the the total municipality population (PopTot; X). Note that corrU (Y,X) = 0.78,
where corrU (, ) indicates the population-level linear correlation coefficient. Fitting the mixed model
with canton-specific random effects and computing the Shapiro-Wilk normality test on the residuals,
we obtain a p-value < 2.2e−16 showing that the null hypothesis that the residuals follow a normal
distribution is rejected. For this reason, the use of an M-quantile model that relaxes these assumptions,
with a bounded influence function, seems reasonable for these data.

Samples are selected according to a fixed size, unequal probability without replacement sampling
design using the Midzuno’s method (Deville and Tillé , 1998) implemented in the Sampling package
(Tillé and Matei, 2009) running under R. We consider a sample sizes of n = 290 units corresponding
approximately to a 10% sampling rate and two different size variables Z: i) Area under cultivation
(Surfacescult), ii) a Uniform variable on the interval (1, 20). More specifically, in case i), we define
πj = 0.2× zj + 0.05, ∀j ∈ U to avoid that some inclusion probabilities are greater than one.

Using the first size variable the design is non-ignorable if we condition only on PopTot as
corrU (Airbat, Surfacescult|PopTot) = 0.327 and this correlation is signficant. Of course, the design
would become ignorable if we include Surfacescult into the models, but we prefer not to do so, to
mimic situations where not all variables relevant for the design or the non response correction are
included into the model. With the second size variable we have an ignorable desing conditionally on
PopTot. To emphasize the difference between the two scenarios, we label the desing as ‘non-ignorable’
when the size variable is Surfacescult and ‘ignorable’ when the Uniform is the size variable.

The estimators we are going to compare with those obtained with the illustrated Weigthed M-
quantile (WMQ) method are the ‘direct’, the unweighted M-quantile (MQ), and only as far as the
mean is concerned, the EBLUP (see Rao, 2003, Chapter 7), pseudo-EBLUP (You and Rao, 2000)
and the GREG (see Rao, 2003, Section 2.5) for small areas. The ‘direct’ estimator of the mean is a
post-stratified ratio estimator that does not make use of auxiliary information, i.e. ˆ̄Yi =

∑
j∈si

w̃ijyij

with w̃ij = Ni(N̂iπij)−1, N̂i =
∑

j∈si
π−1
ij . The direct estimator of quantiles is obtained by inverting

the weight empirical distribution function (with weights w̃ij).
Note that for the M-quantile models the Huber Proposal 2 influence function is used with

c = 1.345. This value provides 95% efficiency when the errors are normal and still offers protection
against outliers Huber (1981). In addition the Huber Proposal 2 satisfies the assumption i) of Theorem
1.

In the simulation, we use the following procedure described by Särndal et al. (1992, Chapter 11)
for estimating the MSE. We illustrate it for ˆ̄Y WMQ

i , but it applies similarly to Q̂WMQ
i (q).

• Using the sample data to build an artificial population U∗ by using the sample weights wij .

• Draw T independent samples s∗ from U∗ by using the same design used to draw s from U .

• For each bootstrap sample compute the replication ˆ̄Y WMQ∗
it of ˆ̄Y WMQ

i for i = 1, . . . ,m and
t = 1, · · · , T .

The bootstrap estimator of the MSE of ˆ̄Y WMQ
i for each small area can be computed as

M̂SEi = T−1
∑T

t=1

(
ˆ̄Y WMQ∗
i − ˆ̄Y WMQ

i

)2
.

The Monte-Carlo experiment consists in drawing R = 5, 000 samples from this population and
calculating small area estimators for the mean, the 20th and the 80th percentile of Airbat, along with
bootstrap estimators of their MSE based on T = 200 bootstrap replicates and the approximated MSE

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS062) p.1158



Table 1: Design-based simulation results using the Switzerland data. Results show across areas
distribution of Absolute Relative Bias (ARB%) and Relative Root Mean Square Error (RRMSE%)
over simulations.

Summary of across areas distribution
Predictor Indicator Min Q1 Median Mean Q3 Max

non-ignorable design
MQ ARB(%) 0.36 1.85 3.58 5.33 5.97 18.35

RRMSE(%) 6.45 9.68 13.46 16.34 21.82 42.91
WMQ ARB(%) 0.01 0.24 0.52 0.74 0.75 2.69

RRMSE(%) 6.15 9.19 12.27 13.37 14.27 34.55
EBLUP ARB(%) 0.33 7.22 12.09 15.60 20.35 46.48

RRMSE(%) 7.01 12.32 20.64 23.34 26.04 57.15
pseudo-EBLUP ARB(%) 0.33 6.11 9.02 11.53 15.56 37.62

RRMSE(%) 6.60 12.07 15.04 17.65 20.15 40.81
GREG ARB(%) 0.01 0.19 0.37 0.69 0.85 2.41

RRMSE(%) 8.08 12.78 16.47 19.00 21.02 46.69
Direct ARB(%) 0.08 0.88 1.37 2.35 3.49 8.89

RRMSE(%) 19.23 24.96 31.96 36.99 41.62 101.57
ignorable design

MQ ARB(%) 0.03 0.42 1.25 1.63 2.72 4.34
RRMSE(%) 6.37 10.36 11.92 14.21 17.11 32.60

WMQ ARB(%) 0.00 0.29 0.45 0.70 0.91 2.52
RRMSE(%) 6.17 11.14 14.16 16.30 18.82 45.29

EBLUP ARB(%) 0.07 3.09 6.45 8.54 12.88 32.30
RRMSE(%) 6.65 9.84 13.12 14.69 16.94 34.80

pseudo-EBLUP ARB(%) 0.24 4.46 7.07 9.22 12.06 31.82
RRMSE(%) 7.66 10.88 15.90 16.55 18.91 35.24

GREG ARB(%) 0.03 0.22 0.39 0.72 0.58 6.80
RRMSE(%) 10.05 14.64 16.48 19.98 21.77 42.78

Direct ARB(%) 0.05 0.21 1.05 1.33 1.92 5.74
RRMSE(%) 20.15 30.30 36.90 43.48 50.24 115.92

for the mean estimators. The performance of the different small area estimators is evaluated with
respect the absolute relative bias and the relative root mean square error of estimates of the small
area parameters. The absolute relative bias for small area i is computed as

ARBi =
1
T

∣∣∣∣∣
T∑
t=1

m̂it −mi

mi

∣∣∣∣∣× 100,

and the relative root mean square error for area i is computed as

RRMSEi =

√√√√ 1
T

T∑
t=1

(m̂it −mi)2

mi
× 100.

Note that the subscript t (t = 1 . . . T ) indexes the Monte-Carlo simulations, with mi denoting the
value of the small area i parameter while m̂it denotes the estimate of mi in MC replication t.
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4.2 Discussion of the results

We show detailed results only for small area means estimators, because of space constraints. Tables
illustrating the rest of results are available from the authors upon request. Summaries of the dis-
tributions of the ARB and RRMSE of the estimators for the mean across the areas are set out in
Tables 1. It shows that the WMQ predictor has a much better performance in terms of bias and
efficiency when the design is non-ignorable. In addition the relative bias and thus the RRMSE of the
WMQ estimator tend to zero faster than the those values of the pseudo-EBLUP. As stated in You
and Rao (2002) the pseudo-EBLUP is derived under the assumption of ignorability of the sampling
design; more specifically variance components used in weighting the composite estimator’s elements
are unweighted, design-biased estimators. In fact, if we include Surfacescult into the equation of
the linear mixed model, pseudo-EBLUP compares to WMQ similarly to the case of ignorable design.

Under this scenario, we have that WMQ and GREG predictors have a smaller design-bias than
MQ, pseudo-EBLUP and EBLUP estimators, but WMQ, pseudo-EBLUP and GREG estimators show
bigger variability than MQ and EBLUP estimators, and for this reason they loose in terms of efficiency.

In principle we may expect that β̂wψ(q) is more biased and less variable than B̂ on which the
GREG relies, because of the bias-variance trade-off typical of robust estimators. We may also expect
that this is true also for small area mean estimators as they share the same structure. But, since WMQ
makes use of area-specific M-quantile coefficients, the resulting estimators show biases comparable to
those of the GREG, while keeping smaller variances.

Let’s now summarize other results (tables not reported). As far as the estimation of quantiles,
we note that WMQ is more efficient than its unweighted counterpart under both ignorable and non-
ignorable design. In the first case it is characterized by larger variances, but remarkably smaller biases.
We also calculated estimators of the percentiles based on the (unweighted) linear mixed models. Their
performances are close to those of MQ, but the biases are slightly larger. About MSE estimation, we
note that the estimators based on the bootstrap algorithm track very well the actual root MSE of mean
and percentiles area by area. They show a small negative bias, especially in areas with very small (less
than 10) area-specific sample sizes. For the estimation of the MSE of the WMQ estimator of small
area means, we have that estimator (11) performs well, showing a small amount of underestimation.
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