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1. Introduction 

Small area estimation (SAE) generally relies on either implicit or explicit modeling assumptions. 
It may happen that a relatively few observations do not fit the model that adequately explains 
bulk of the data.  Such observations may adversely affect estimation of the model parameters. In 
the context of the well-celebrated Fay-Herriot area level normality-based model (see Fay and 
Herriot, 1979), Datta and Lahiri (1995) noted that even in the presence of one unusually large 
direct estimate, empirical Bayes estimates for all small areas collapse to the corresponding direct 
estimates and thereby loose the benefit of borrowing strength from relevant sources.  To deal with 
such influential small areas, they proposed a hierarchical Bayes method based on a scale mixture 
of normal prior distribution, which has a heavier tail than the traditional normal prior. One 
problem with the area level model is that it assumes the sampling variances to be known although 
they are estimated by certain variance smoothing techniques such as the Generalized Variance 
Function (GVF) method (see Hawala and Lahiri 2010 and the references therein) and the model 
does not incorporate the variability due to the estimation of these sampling variances.  To get 
around this problem, one may use unit level model such as the one proposed by Battese, Harter 
and Fuller (1988). Since a unit level model typically requires modeling of a large dataset, it is 
common to encounter some unusual observations. Several methods that are resistant to influential 
observations have been proposed in the SAE literature in recent years (Chambers and Tzavidis 
2006, Sinha and Rao 2008, Gershunskaya, 2010). 

Influential observations may suggest a real finite population structure that is not described by the 
assumed base model. Such influential observations or representative outliers (using Chambers’ 
1986 terminology) carry important information and it would be unwise to ignore it and rely only 
on the base model. In a non-SAE setting, Chambers (1986) proposed a bias correction to the 
initial estimator, where the initial estimator is based firmly on the assumed working model while 
the bias correction is an estimated mean of residuals after relaxing the modeling assumptions. In a 
SAE application, one may add area specific bias correction term to the initial predictor for small 
area parameter, a method explored by Chambers et al. (2009). The drawback of such adaptation 
of the non-SAE methodology is that inevitably the estimation of the bias correction terms for 
small areas would be based on small samples, potentially leading to inefficient estimates. 

The approach proposed in the present paper is a slight modification of a classical linear mixed 
model application to SAE. The underlying distribution is a scale mixture of two normal 
distributions. This model explicitly describes the behaviour of the influential observations relative 
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to the other units; thus, it automatically produces estimates (e.g., using MLE) that account for 
influential observations.  

A simple formulation of the mixture model used in this paper may still be too strong in certain 
assumptions about the distribution of influential observations. First, the outliers are assumed to 
appear randomly across areas. However, the outliers may be clustered in certain areas. This may 
lead to bias in the prediction of the area-level random effects. Gershunskaya (2010) proposed an 
area-level bias correction method that is different from the one of Chambers et al. (2009) and 
attempted to preserve the efficiency of the initial model by introducing the corrections only to 
select areas, after these areas have been tested on possible outlyingness. One could alternatively 
explore the possibility of using a heavy tailed distribution for the random effects such as the ones 
suggested by Datta and Lahiri (1995). Another potentially incorrect assumption is that the 
influential observations are distributed symmetrically around a common mean. Failure of this 
assumption may lead to an overall bias across areas. The overall bias correction (OBC) can be 
based on the data combined from all areas, thus the initial modeling assumptions can be more 
safely relaxed to estimate the correction at this higher level.   

In Section 2, we briefly review several existing approaches to outlier resistant SAE. The proposed 
approach is detailed in Section 3. Section 4 contains results of a simulation study that compares 
several methods of robust SAE. We consider two applications of the proposed methodology in 
Section 5. Our first application concerns estimation of monthly employment changes in the 
metropolitan statistical areas (MSA) in the Current Employment Statistics (CES) Survey 
conducted by the U.S. Bureau of Labor Statistics (BLS). The second application relates to county 
level estimation of crop yield, which is of interest to the National Agricultural Statistical Service 
(NASS) of the United States Department of Agriculture (USDA). 

  

2. Review of existing approaches 

Under the prediction approach to surveys, an estimator of iY , the mean of the ith small area, is 

given by: 

 
 

(1) 
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For example, the predictor  can be obtained using a linear mixed model. A comprehensive 
account on the application of the linear mixed model theory to SAE is given by Rao (2003) and 
Jiang and Lahiri (2006). To facilitate the subsequent discussion, we refer to the following special 
case of the linear mixed model, known as the nested-error regression model (Battese et al. 1988):   
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2~ (0, )
iid

iv N   and 2~ (0, ),   
iid

ij N                                                                                                 (3)   

where ijx is a vector of known auxiliary variables for an observation ij , β  is the corresponding 

vector of parameters; iv  are random effects. The distribution of the random effects describes 

deviations of the area means from values T
ijx β ; ij  are errors in individual observations

( 1,..., ;  1,..., )ij N i m   . The random variables iv  and ij  are assumed to be mutually 

independent.  We assume that sampling is non-informative for the distribution of measurements

ijy , given the auxiliary information ijx ( 1,..., ;  1,..., )ij N i m  .  The best linear unbiased 

predictor (BLUP) of irY  has the form ˆ ˆ ˆ ,T
ir ir iY v x β where 1
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best linear unbiased estimator (BLUE) of β , îv is BLUP of iv  and it has the form: 
2 2 2 1 ˆˆ ( ) ( ).T

i i i iv n y      x β
 

We obtain an empirical best linear unbiased predictor 

(EBLUP) of irY  after plugging in estimates of 2 and 2 . 

The linear mixed model assumptions about the distribution of the random terms, iv  and ij , may 

hold for most of the observations.  However, there may be areas that do not fit the assumption on 

the random effects iv ; there may also be individual observations that are not well described by 

the model assumption on the error terms ij . The influence of the outlying areas or individual 

observations on estimation of the model parameters can be reduced by using bounded influence 
functions for the corresponding residual terms when fitting the model estimating equations. For 
the general case of the linear mixed models, this approach was considered by Fellner (1986). 
Modification of Fellner’s approach, also involving the bounded influence functions, was 
proposed by Sinha and Rao (2008). The predictor for irY  based on such a robustified fitting of the 
linear mixed model is called the Robust Empirical Best Linear Unbiased Predictor (REBLUP): 

ˆ ˆ ˆ .REBLUP T REBLUP REBLUP
ir ir iY v x β   An alternative to the mixed model approach to robust SAE is 

based on M-quantile regression, which is a generalization of the quantile regression technique. 
This approach was proposed by Chambers and Tzavidis (2006). 

In M-quantile regression, a separate set of linear regression parameters is considered for quantiles 
q  of the conditional distribution of y  given x . The M-estimator of the vector qβ  

of the q th 

quantile regression coefficients is a solution to estimating equations of the form
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bounded influence function, s is a robust estimate of scale. Suppose an observation j  falls into 

quantile jq . The second step consists of finding the average quantile of the observations in each 

area i as 1
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the estimate of the area’s i slope. 
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We next describe the bias correction approach proposed by Chambers et al. (2009). The 
estimation consists of two steps. First, robust estimates are obtained using any outlier robust 
estimation method, for example, one of the approaches described above. Second, the bias of the 
initial robust estimate is obtained using an outlier robust approach with different tuning 
parameters in the corresponding bounded influence functions. The second step tuning parameters 
should be less restrictive than the ones used at the initial step; that is, there is more reliance on the 
data rather than on the model assumptions so that the purpose of the second step is to “undo” the 
effect of a possible model misspecification imposed at the first step. The final estimate is the sum 
of the robust estimate computed at the first step and the bias correction term computed at the 
second step. 

Let (.)   be some bounded function that is not as restrictive as (.) .  

The bias-corrected version of REBLUP (either Fellner’s or Sinha and Rao’s approach) is 

 1

1

ˆ ˆ ˆ ˆ( ) /
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ir ir i i ij ij i i

j
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corrected version of Chambers and Tzavidis’ approach is  
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j
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
   x β   where REBLUP

is and MQ
is  are some robust  

estimates of scale for the respective sets of residuals in area i. 
 
3. Proposed approach 

The proposed approach uses the same general form (1). The predictor for the sample-complement 
part is derived from a model (denoted N2) that is based on mixture of two normal distributions 
with common mean and different variances. The model is given by (4)-(6): 

ˆ ,T
ij ij i ijy v   x β    (4) 

2~ (0, )
iid

iv N   and 2 2
1 2|  ~  (1 ) (0, ) (0, ),

iid

ij ij ij ijz z N z N     (5) 

and the mixture part indicator is a random binomial variable 

| ~ (1; ),
iid

ijz Bin    (6) 

where   is the probability of belonging to mixture part 2 ( 1,..., ; 1,..., )ij N i m  .  Note that, 

conditional on the value of the mixture part indicator ijz , the model is the usual linear mixed 

effects model as given by (2) and (3).  

The predictor is given by 2 2 2ˆ ˆ ˆ .N T N N
ir ir iY v x β  Let 1 2( , , , , )     β  denote the set of model 

parameters. We used the EM algorithm for estimation of the model parameters. 

Each observation has its own conditional probability { 1| , , } | , ,ij ij ij ij ij ijP z y E z y     x x
 
of 

belonging to part 2 of the mixture, so that the observations in the sample can be ranked according 
to these probabilities. The estimate of β  (thus, the synthetic part of the estimator) is outlier robust 
because the outlying observations would be classified with a higher probability to the higher 
variance part of the mixture; hence, they would be “down-weighted” according to the formula 
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Note that the “direct” estimate 2ˆ N
iy  accounts for outliers.  In fact, this estimate is not exactly 

“direct” because it depends on units from other areas through the estimates of variances and the 
probabilities of belonging to part 2 of the mixture.  

Let 2 2 2ˆ ˆN T N N
ij ij ij ie y v  x β , then the overall bias corrected EBP is given by

 2 2 1 2

1 1

ˆ ˆ ,
inm

N OBC N R N R
ir ir b ij

i j

Y Y n s e s 

 
   where Rs  is a robust measure of scale for the set of 

residuals  2; 1,..., , 1,...,N
ij ie j n i m  , e.g., 2 2( ) 0.6745R N N

ij ijs med e med e   and b  is a 

bounded Huber’s function with the tuning parameter b = 5. 

4. Simulation Study 

The purpose of the simulation study is to compare the performances of different methods under 
different scenarios. We use the same setup as in Chambers et al. (2009) and briefly describe it 
here.  From each area, a sample is selected using simple random sampling without replacement. 
Each area has 100 population units and 5 sampled units.  The auxiliary variable ijx  is generated 

from the lognormal distribution with mean 1.004077 and standard deviation of 0.5 and the 
population values ijy  are generated as 100 5ij ij i ijy x v     . There are several scenarios for 

distribution of iv  and ij , as described below. 

1. No contamination scenario, [0,0]: ~ (0,3)iv N , ~ (0,6)ij N ; 

2. Outlying areas, [0,v]: for the first 36 areas, ~ (0,3)iv N ; for the last four areas, 

~ (9,20)iv N ; ~ (0,6)ij N  for all observations; 

3. Individual outliers, [e,0]: ~ (0,3)iv N  for all areas; ~ (0,6)ij N  with probability 0.97 

and ~ (20,150)ij N  with probability 0.03; 

4. Individual outliers and outlying areas, [e,v]: for the first 36 areas, ~ (0,3)iv N ; for the 

last four areas, ~ (9,20)iv N ; ~ (0,6)ij N  with probability 0.97 and ~ (20,150)ij N  

with probability 0.03; 
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5. Individual outliers only, ~ (0,6)ij N  with probability 0.75 and ~ (20,3000)ij N  with 

probability 0.25; random effects are ~ (0,3)iv N . (This version was considered in 
Gershunskaya 2010) 

The tuning parameters in the bounded Huber’s function for REBLUP are set to b=1.345; for the 
bias-correction of REBLUP (Fellner and SR) and MQ, the tuning parameters are set to b=3. The 
tuning parameter for the overall bias correction is b=5. We used 250 simulation runs for each of 
the above scenarios and compared the estimates with the corresponding population area means. 

To assess the quality of the estimators, we used the median value of the relative bias, 
250 2501 1

1 1
ˆ100 {250 ( ) 250 }i is is iss s

RB med Y Y Y 
 

    ,  and the median of the relative root mean 

squared error, 
250 2501 2 1

1 1
ˆ100 250 ( ) 250i is is iss s

RRMSE med Y Y Y 
 

    
 

  , index 

1,..., 250s  denotes the simulation run. 

Consider scenarios 1-4 (see Tables 4.1). In the no-outliers situations, the estimator N2 works 
similar to the regular EBLUP. If there are only individual outliers or only area level outliers, 
REBLUP and N2 (not the bias-corrected versions) have similar RRMSE’s. Both the original and 
the bias-corrected versions of MQ are less efficient than REBLUP for the four outlying areas. 
(Some discrepancy between our results for MQ and the ones reported in Chambers et al. (2009) 
could be due to the sensitivity of MQ to the choice of the number of quantiles.) N2 estimator has 
a large bias when both the individual and area outliers are present. This bias is corrected in the 
N2+BC versions, so that the RRMSE’s of the N2+BC versions in the four outlying areas is 
comparable to the other estimators (see Gershunskaya 2010).  In the OBC* version of N2, we 
only correct the overall bias.  The OBC version for N2 corrects both area and overall bias (see 
Gershunskaya 2010).  It appears that N2+OBC works uniformly well for all considered scenarios.  
Gershunskaya (2010) found that for scenario 5, N2+OBC version is better than the other 
estimators. If a similar situation happens in the CES data, then this version of N2 estimators may 
be preferred.  

Table 4.1: Simulation Results Scenarios 1-4 (250 runs), 100iN  , 5in   

No outliers Individual outliers only Area outliers 

Individual 
and area  
outliers 

Estimator / 
Scenario [0,0] [0,u]/1-36 [e,0] [e,u]/1-36 [0,u]/37-40 [e,u]/37-40

Median values of Relative Bias (expressed as a percentage) 

EBLUP -0.001 0.067 -0.004 0.191 -0.579 -1.546 

REBLUP (F) 0.003 0.075 -0.374 -0.298 -0.625 -0.977 

REBLUP (SR) 0.005 0.090 -0.370 -0.275 -0.538 -0.902 

MQ 0.020 0.097 -0.374 -0.286 -1.003 -0.468 

F+BC -0.007 -0.003 -0.265 -0.258 -0.043 -0.233 

SR+BC -0.009 -0.001 -0.266 -0.255 -0.034 -0.225 

MQ+BC -0.006 0.001 -0.262 -0.258 -0.243 -0.156 

N2 -0.001 0.068 -0.448 -0.321 -0.594 -3.250 

N2+OBC* -0.001 0.068 -0.235 0.071 -0.594 -2.885 

N2+OBC -0.005 0.003 0.002 -0.153 -0.073 -0.842 
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Median values of Relative Root MSE (expressed as a percentage) 

EBLUP 0.809 0.859 1.207 1.354 1.041 2.289 

REBLUP (F) 0.821 0.823 0.989 0.972 1.076 1.396 

REBLUP (SR) 0.825 0.827 0.991 0.966 1.035 1.342 

MQ 0.844 0.846 0.996 0.975 1.650 1.468 

F+BC 0.913 0.917 1.221 1.224 0.861 1.189 

SR+BC 0.910 0.916 1.219 1.225 0.866 1.179 

MQ+BC 0.914 0.920 1.223 1.226 0.994 1.421 

N2 0.808 0.858 1.007 0.978 1.049 4.559 

N2+OBC* 0.808 0.858 0.937 0.953 1.049 4.221 

N2+OBC 0.859 0.878 0.921 0.944 0.879 1.308 
 

5. Applications 

5.1. U.S. Bureau of Labor Statistics Application 

The purpose of this study is to provide a first glimpse into the prospect of using the alternative 
models for SAE in CES. In this simulation, historical administrative data from the Quarterly 
Census of Employment and Wages (QCEW) program of the U.S. Bureau of Labor Statistics 
played the role of “real” data. (In real time production, the estimates are based on the data 
collected by CES, which is somewhat different from the QCEW data; nevertheless, the use of the 
QCEW data is appropriate for preliminary research.) 

In CES, the goal is to estimate the relative over-the-month change in employment at a given 
month t in areas i=1,…,m, where the areas are formed by cross-classifying industries and 
metropolitan statistical areas (MSA). For area m, the target finite population quantity at month t is 

, ,
, , , 1 ,

i t i t
i t ij t ij tj P j P

R y y  
  where ,i tP  is a set of the area m population establishments 

having non-zero employment in both previous and current months, i.e., , 1 0ij ty   and , 0ij ty  . 

The direct sample estimate is 
, ,

, , , 1
ˆ ,

i t i t
i t ij ij t ij ij tj S j S

R w y w y  
  where ,i tS  is a set of the area 

m sample establishments having , 1 0ij ty   and , 0ij ty   ; ijw is the sample weight for unit ij . 

In order to work at a unit level, we expand ,m tR  around a hypothetical true superpopulation 

parameter (as in Gershunskaya and Lahiri 2008). Define the following variable:
* 1

, , ,
ˆ ˆˆˆ ˆˆ(1 )( 1) ( 1) ,ij t i i ij ij t t i i ty f w w v R f v      where ˆ

tR  is the estimated ratio of employment at a 

statewide level; 1
, 1 , , 1

ˆ ˆˆ ( )ij t t ij t t ij tv Y y R y
    is the estimated influence function for the ratio; 1

ˆ
tY   is 

an estimate of the previous month mean statewide employment; 
,

1

i t
i i ijj S

w n w


  is area m 

average weight; 
,

1
, ,

ˆ ˆ
i t

i t i ij tj S
v n v


  ; 1ˆ ˆ

i i if N n  is the estimated area sample fraction and 

,

ˆ
i t

i ijj S
N w


 is the estimated number of population units. 

We compared performances of several estimators: one estimator is based on the area-level Fay-
Herriot model and the other estimators are based on different unit-level models. We used single 
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slope, without intercept linear models, with the past year’s population trend , 12i tR   playing the 

role of an auxiliary variable (i.e., area-level auxiliary information for all observations in area i). 

We considered four States (Alabama, California, Florida, and Pennsylvania) and obtained 
estimates for September 2006 using the sample drawn from the 2005 sampling frame, mimicking 
the production timeline. We fit the models separately for each State’s industrial supersector: a set 
of MSAs within States’ industrial supersectors defined the set of small areas. The resulting 
estimates were compared to the corresponding true population values ,m tR  available from 

QCEW.  

Performance of each estimator is measured using the 75th percentile of the absolute error 

, , ,
ˆ100i t i t i tE R R   and the empirical root mean squared error 

1

2
1 2

,
1

.
m

t i t
i

ERMSE m E



 
  
 

   

Summaries of results for each State are reported in Tables 5.1. Overall, the performance of N2 
(and its bias-corrected versions) is quite satisfactory. In Alabama, the N2 estimator is slightly 
more efficient than REBLUP and better than the other estimators. In California, ERMSEs of 
REBLUP and MQ are smaller than of N2 but, in terms of the 75th percentile (reported in 
Gershunskaya 2010), these estimators are very close. In Florida, N2 is only slightly better than 
REBLUP for 75 percent of the areas but is much better in terms of the ERMSE, due to a 
significantly better performance in a few areas. In Pennsylvania, in several industries, N2 
estimator had a large error due to the overall bias. The OBC version of N2 reduced the bias and 
made a good estimator. 

Table 5.1: Empirical Root Mean Squared Error, % 
 

State FH EBLUP 
REBLUP 

(F) 
MQ F+BC MQ+BC N2 N2+OBC* N2+OBC

AL 1.868 2.257 1.899 2.023 2.027 2.133 1.767 1.743 1.873 

CA 2.502 2.339 2.099 2.040 2.388 2.378 2.165 2.158 2.307 

FL 3.425 2.707 2.771 3.766 2.887 3.847 1.184 1.197 1.145 

PA 1.418 1.318 1.754 1.664 2.092 2.129 1.627 1.547 1.264 
 

5.2 NASS Application 
 
The United States Agricultural Statistical Service (NASS) has been publishing county level crop 
and livestock estimates since 1917 (see Iwig 1993).  County indications of crops such as 
harvested yield (i.e. production per unit harvested acreage) are needed to assist farmers, 
agribusinesses and government agencies in local agricultural decision making.  Most NASS Field 
Offices conduct a separate County Estimates Survey every year.   Data from multiple sample 
surveys (such as the County Acreage and Production Survey (CAPS) and Quarterly Agricultural 
Survey (QAS)) are used to estimate harvested yield for various crops (such as soybeans) at the 
county level.  
 
We evaluated performances of EBLUP under normal model (2)-(3) and the EBP for mixture 
model (4)-(5) [N2] with direct (KB) and NASS official estimates for seven mid-western states in 
the year 2007, treating the census as gold standard.  To save space, we report results for three 
states - Illinois, Iowa, and Minnesota.   Following Bellow and Lahiri (2010), we report average 
absolute deviation (AAD), average squared deviation (ASD), average absolute relative deviation 
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(AARD), average squared relative deviation (ASRD) and percentage below census (PBPC) in 
Table 5.2.  We use the following definition: (i)  AAD: the mean of absolute deviations between 
county estimates and corresponding 2007 census (PC) values; (ii) ASD: the mean of squared 
deviations between estimates and PC values; (iii) AARD: the mean of ratios between absolute 
deviations and PC values; (iv)  ASRD: the mean of squared ratios between absolute deviations 
and PC values; (v) PBC: the proportion of counties with estimate less than the corresponding PC 
value. Values of PBPC below (above) 0.5 indicate possible overestimation (underestimation) 
tendencies for an estimator. The EBLUP under normal model (2)-(3) and the EBP for mixture 
model (4)-(5) [N2] estimates are clearly superior to the Kott-Busselberg (KB) direct estimates for 
all the states considered.  EBPs are also better than the official estimates in all but one state 
(Minnesota), where the official estimates have slight edge over EBPs.  The OBC* correction to 
N2 provides similar results for most of the seven states.  However, it provides slightly better 
results for Iowa, but slightly worse results for Minnesota.  In the future, we plan to evaluate the 
other estimators considered in the paper. 
 
Table 5.2: Estimation Accuracy Measures for Harvested Yield* 
 

 

*The evaluation metric for KB and Official estimators are obtained from Bellow and Lahiri 
(2010). 
 
6.  Concluding Remarks 
The EBP under mixture model with appropriate area level and overall bias correction appears to 
perform better than the rival estimators in most situations.  We are currently investigating the 
possibility of resampling methods in estimating the mean squared error of the proposed 
estimators and the associated confidence interval problem.  We shall report the findings in a 
separate paper. 
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    State    Estimator                              Metric 
AAD ASD AARD ASRD PBC 

   Illinois EBLUP 1.34 2.85  0.036  0.002 0.32 
KB   2.7 12.6    0.07  0.009 0.85 
N2 1.33  2.8  0.036   0.002 0.33 
N2+OBC* 1.33 2.8 0.036 0.002 0.32 
Official   1.82 5.18  0.048  0.004 0.42 

  Iowa EBLUP  1.10 1.81  0.022  0.001 0.69 
KB   2.7 13.5  0.055  0.006 0.82  
N2  1.24 2.15  0.025  0.001 0.83 
N2+OBC* 0.95 1.48 0.019 0.001 0.72 
Official   2.12 5.94  0.043  0.002 0.08 

Minnesota EBLUP  1.32 3.92  0.037  0.004 0.31 
KB  3.46 26.0  0.095  0.022 0.85 
N2  1.23 4.04  0.036  0.004 0.36 
N2+OBC* 1.38 4.58 0.040 0.005 0.28 
Official   1.32  2.67  0.034  0.002 0.19 
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