
1 
 

Statistical Inference on the Two- and Three-State 
Availability of Repairable Units with the Sahinoglu-Libby Model 

 
Mehmet Sahinoglu 
Auburn University Montgomery, Department of Cybersystems and Information Security 
Montgomery, AL 36124, USA 
Email: msahinog@aum.edu 
 
Sedat Capar 
Dokuz Eylul University, Department of Statistics 
Izmir, Turkey 35160 
Email: sedat.capar@deu.edu.tr 
 
YanLing Yuan 
Troy University, Department of Computer Science 
Montgomery AL 36104 
Email: ylyuan66@hotmail.com 

ABSTRACT 
        With the advances in pervasive computing and wireless networks, quantitative risk measurement of 
component (unit) and network availability has become a challenging task.  It is widely recognized that the 
forced outage ratio (FOR) of an imbedded hardware component is defined as the failure rate divided by 
the sum of the failure and repair rates; or FOR is the non-operating time divided by the total exposure 
time. However, it is also well documented that FOR is not a constant a random variable.  The probability 
density function (p.d.f.) of the FOR is the Sahinoglu-Libby (SL) probability model, used if certain 
underlying assumptions hold. The failure and repair rates are taken to be the generalized gamma variables 
where the corresponding shape and scale parameters respectively are not equal. The SL model is shown to 
default to that of a standard two-parameter beta p.d.f. when the shape parameters are identical. Decision 
theoretic solutions are sought to compute small-sample Bayesian estimators by using informative and 
non-informative priors for the failure and repair rates with respect to three definitions of loss functions. 
These estimators for component availability are then propagated to calculate the network expected 
source-target availability for simple complex networks. On the other hand, an often overlooked fact is that 
many real-life grid units from routers or servers in cybersystems to electric-power generating plants, and 
water-supply networks or dams do not operate in a dichotomously full or empty capacity. Due to lack of a 
closed-form solution of the DFOR in the three-state model as opposed to closed-form of the two-state 
model, the analysis can be conducted by Monte Carlo simulations using the empirical Bayesian principles 
to estimate the full and derated availability of a repairable hardware unit. Industrial applications for units 
will be numerically illustrated. For the three-state model following the Monte Carlo simulations, authors 
will show how to estimate the resultant p.d.f.s obtained from numerical analyses regarding single units.  
 
Keywords: Two-State, Three-State, FOR, DFOR, Sahinoglu-Libby p.d.f., Bayesian Estimation, Monte 
Carlo Simulation, Gamma, Beta  
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1.      INTRODUCTION  
        The probability density function (p.d.f.) of the FOR was earlier studied in a textbook by the primary 
author, designated the Sahinoglu-Libby (SL) probability model used if certain underlying assumptions 
hold (Sahinoglu, 2007 and Sahinoglu et al., 2005). The failure and repair rates were taken to be the 
generalized gamma variables where the corresponding shape and scale parameters respectively were not 
equal. The SL model was shown to be default to that of a standard two-parameter beta p.d.f. when the 
shape parameters are identical. The method proposed was superior to estimating availability by dividing 
total uptime by exposure time. Examples had shown the validity of this method to avoid over- or 
underestimation of availability when only small samples or insufficient data exist for the historical life 
cycles of units. In this paper, however, additionally we shall also study a three-state SL similar to the two-
state SL, which will be called three-state Sahinoglu-Libby model (Sahinoglu, 2007 and Sahinoglu et al., 
2005). Due to infeasibility of closed-form solutions, the analysis will be carried out using Monte Carlo 
simulations, obeying the principles of Bayesian principles similar to Chapter 5 of the author‟s textbook 
(Sahinoglu, 2007).  In studying large capacity production units, it is  necessary to consider the 
probabilities associated with one or more forced derated states rather than accepting the unit being either 
available or unavailable (Billinton, 1970). This real-life situation has been also studied in a publication 
(Sahinoglu et al., 1983) where a system unit was assumed to exist in one of the three states; that is, UP, 
DERATED and DOWN. Following the Monte Carlo simulations, analytical p.d.f.s will be approximated. 
 
2.      METHODS 
2.1   Two-State Sahinoglu-Libby Probability Model 
         In using the distribution function technique, the p.d.f. of  FOR = q = )/(    is obtained first by 

deriving its c.d.f. GQ(q) = P(Q   q) = P ( )/(     q) and then taking its derivative to obtain gQ(q) as 
in equations 5A.1 to 5A.18 in Appendix 5A (Sahinoglu, 2007, pp. 26-32)  and in reference (Sahinoglu et 
al., 2005, p. 1487): 
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Note that gQ(q) is the p.d.f. of the random variable Q = FOR, where   = a + c,   = b + d ,  1=   + xT,  

and   2 =   + yT ;  and 0  q  1.   If L = 21 / = 1 or  1 =  2, the usual two-parameter beta p.d.f. is 
obtained.  An alternative original derivation of the same p.d.f. termed under generalized multivariate beta 
distribution is given by Libby in the same year 1981 (Sahinoglu et al., 2005).  The expression in Equation 
(1) can also be reformulated in terms of SL( = a + c,   = b + d, L = 21 / ), as follows: 
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Note, if L = 1, the Sahinoglu-Libby p.d.f. reduces to a Beta( ,  ) p.d.f.  
 

 
Fig. 2.1.1:  Given the input table, the p.d.f. of the  two-state SL is  plotted for up (r) and down(q) for  a 
90% confidence analytically  showing mode (m), mean (E) with upper & lower confidence bounds. 
 
2.2   Three-State Sahinoglu-Libby Probability Model 
         In studying large capacity generation (power) or production (cyber) units, it may be necessary to 
consider the probabilities associated with one or more forced derated-outage states rather than considering 
the unit as being either available or unavailable (Sahinoglu et al., 2005). In summary, there are gray areas 
or in-between capacities which are called derated states. However in this research paper, we will only 
consider a single derated state rather than multiple ones, which may well exist in practice such as in 50%, 
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60% or 75% derated capacity. But now, we have not only full-FOR but also derated-FOR or DFOR, that 
will be equal to derated operating time over the total exposure time.  DFOR = Derated time/(Up time + 
Derated time + Down time).  However, it is also well documented that any FOR or DFOR is not only a 
constant but a random variable (Sahinoglu et al., 2005).  The probability density function (p.d.f) of the 
FOR was earlier studied to be a (Bayesian) Sahinoglu-Libby (SL) probability model, where certain 
underlying assumptions hold.  However, we shall study above and beyond a traditional two-state SL, 
namely the three-state probability model where the transition rates are Gamma distributed (See Section 
2.2.1 to 2.2.6).  Let us examine the related state space diagram (Billinton, 1970): 

 
Figure 2.2.1:   General Three-State Diagram of a repairable hardware unit with Up, Down and Derated.  
 
Let:  transition rate from up to down (forced out) state; = transition rate from down to up state;   
transition rate from  up to derated (partially forced out) state;   transition rate from derated (partially 
forced out)  to up state;   transition rate from derated (partially forced out) to down (forced out)  state; 
  transition rate from down (forced out)  to derated (partially forced out) state. Utilizing an important 

reference (Sahinoglu et al., 2005, p.156-7) and adjusting it to our design by converting to the Greek letters 
from Latin, the time dependent (assuming negative exponential densities for each state‟s sojourn time go to 
a steady state) probabilities of occupying one of the three states are given in skipping the intermediate steps 
of derivation where  DENOM=  
 

P(UP) = FOR=  
DENOM

 

                                                                                                                   (5)

  
 

P(DERATED) = DFOR=  
DENOM

 

                                                                                                    (6)

  
 

P(DOWN) = 1- P(UP) – P(DERATED) =  
DENOM

 

                                                                          (7) 
  
A closed form solution of the three-state SL is out of question, and infeasible to obtain with too many 
variables. We will therefore have to simulate the above formulated P(UP), P(DER) and P(DOWN) by 
generating Monte Carlo simulated deviates of the state transition rates. This will be done through deriving 
first the conditional posterior densities of the six transition rates from sections 2.2.1. to 2.2.6, and using 
random uniforms for generating the transitions that constitute the probabilities.

 

 
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Figure 2.2.2: An Illustration of Feasible Transitions from Figure 1. 1 applied to Sections 2.2.1. to 2.2.6 
 
2.2.1 Up to Down Failure Transition Rate (λ), e.g. from x1 to w1, or x2 to w2 in Fig. 2.2.2. 
Let, a = number of occurrences of up (operating) times before going down (debugging) 
 
Xi = ~  λe-λX 

xT   = 
a

iX
1

      total up (operating) times before going down (recovery) for a #  such occurrences 

λ = full {up to down} failure rate 
c= shape parameter of gamma prior for full failure rate    
 = inverse scale parameter of gamma prior for full failure rate    

Now let the failure rate,   have a gamma prior distribution: 
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The joint likelihood of the up-time random variables is 
 
f(x1,x2,...,xa| )= aexp(–xT ),                                                                                                                 (9)                                                        
                                                                                     
The joint distribution of data and prior becomes: 

             k(x, ) = f(x1,x2,….,xa, ) = )](exp[
)(

1 







T
ca

c

x
c

                                                                    (10)                         

Thus, the posterior distribution for   is                              

h1( | = 

 



dxf ),~(
 ),x~k( )](exp[

)(
1 








T
ca

c

x
c

÷  )()(
)(

1 cax
c T

c







=              

)](exp[)( 1   

T
ca

T xx ,                                                                                                            (11) 
 which is also a Gamma [a+c, ( )Tx –1]. 
 
2.2.2   Down to Up Recovery Transition Rate (μ), e.g. from y1 to x1, or y2 to z1 in Fig. 2.2.2.     
Let, b= number of occurrences of down (debugging) times before going up (operating)  
 
Yi  ~  μe-μY 
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s1 
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yT = 
b

iY
1

    total down (recovery)  times before  going up for b #  such occurrences   

μ  = full recovery (down to up) rate 
d = shape parameter of Gamma prior for full recovery rate   
 = inverse scale parameter of gamma prior for full recovery rate   
Now let the full recovery rate, μ have a gamma prior distribution: 

 2(μ  ) = )exp(
)(
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The joint likelihood of the down-time random variables is 
 
f(y1,y2,...,ya| ) =  b exp (–yT )                                                                                               (13)                                                                                      
 
The joint distribution of data and prior becomes: 

k(y,  ) = f(y1,y2,….,yb,  )  =                                                                (14)                                                     

Thus, similarly the posterior distribution for   is 
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which is also a  Gamma [b+d, ( )Ty  –1]. 
 
2.2.3   Up to Derated Failure Transition Rate ( ), e.g. from z1 to u1, or z2 to s2 in Fig. 2.2.2.        
Let, o = number of occurrences of up times before going derated 

zT = 
o

iZ
1

 total  up times before  going derated for o # of  such occurrences  

Zi ~    e- Z
 

  = up-to-derated  failure rate    

e = shape parameter of gamma prior for up-to-derated failure rate    

  = inverse scale parameter of gamma prior for up-to-derated failure rate    
Now let the up-to-derated failure rate    have a gamma prior distribution: 

 3( ) = )exp(
)(
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e
, 0                                                                                                    (16)  

Similarly as above, skipping two intermediate steps, the conditional posterior density of  : 

h3( | z~ )=
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which is also a Gamma [o+e, ( )Tz  –1]. 
 
2.2.4   Derated to Up Recovery Transition Rate ( ), e.g. from u1 to x2, or u2 to z2 in Fig. 2.2.2        
Let, k= number of occurrences of up times before going derated 

uT = 
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     total  derated times before going up for k # of such occurrences  
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 = derated-to-up recovery rate 

  = shape parameter of gamma prior for derated-to-up recovery rate    
f = inverse scale parameter of gamma prior for derated-to-up recovery rate 
Now let the derated-to-up failure rate    have a gamma prior distribution: 

 4(  ) = )exp(
)(

1 





f
f

f
, 0                                                                                                (18)  

Similarly as above, skipping two intermediate steps, the conditional posterior density of  : 

h4(  |u~ )=
)(

1
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  

T
fk
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which is also a  Gamma [k+f, ( )Tu  –1].   
 
2.2.5   Derated to Down Failure Transition Rate ( ); e.g. from s1 to y2 in Fig. 2.2.2           
Let, j= number of occurrences of derated times before going down 

sT  =
j

iS
1

 total derated times before going down for j # of such  occurrences 

Si  ~   e- S 

  = derated-to-down failure rate 
g= shape parameter of gamma prior for derated-to-down failure rate   

= inverse scale parameter of gamma prior for derated-to-down failure rate rate   
Now let the derated-to-down failure rate    have a gamma prior distribution: 

 5( ) = )exp(
)(

1 




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g

g
, 0                                   (20) 

Similarly as above, skipping two intermediate steps, the conditional posterior density of  : 

h5( | s~ )=
)(

1
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  

T
gj
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which is also a  Gamma [j+g, ( )Ts  –1]. 
 
2.2.6 Down to Derated Recovery Transition Rate ( ), e.g. from w1 to s1, or w2 to u2 in Fig. 2.2.2   
Let, p=number of occurrences of  down times before going derated 

wT = 
p

iW
1

   total down times before going derated for p #  such occurrences 

Wi  ~   e- W 

  = down-to-derated recovery rate 
h = shape parameter of gamma prior for down-to-derated recovery rate   
  = inverse scale parameter of gamma prior for down-to-derated recovery rate   
Now let the down-to-derated recovery rate    have a gamma prior distribution: 

 6( ) = )exp(
)(

1 





h
h

h
, 0                                                                                                     (22)  

Similarly as above, skipping two intermediate steps, the conditional posterior density of : 


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h6( | w~ )=
)(

1
hp 

  

T
hp

T ww (exp[)( 1 )],                                                            (23)  

which is also a  Gamma [p+h, (wT +  )–1]. 
 
3. SIMULATIONS FOR THREE-STATE UNIT TO FIND THE P.D.F. OF UP, DOWN, DERATED 
      Given the following example covering the first n=5 counts or episodes of each of six different sojourn 
times as in Fig. 2.2.2 inspired from Fig. 2.2.1; n=100,000 simulations for various derivations 2.2.1 - 2.2.6 
are conducted.  Given the input table as in Fig.3.1 and 3.2, the Java program will compute the statistical 
measures of three random variables. Click ERBDC‟s three-state SL at www.areslimited.com for Java 
applications. Probability distributions of equations (5)-(7) are approximated: f(UP)=Normal(0.267, 0.107); 
f(DER)=Normal(0.433, 0.100), f(DOWN)= Normal(0.299, 0.106). The limits in Fig. 3.1 are: {UPu = .12, 
UPL  = .46}, { DERu = .27, DERL = .60}, { DOWNu = .14, DOWNL = .49}.  Medians , and first(Q1) and third 
(Q3) quartiles are computed in Fig. 3.2. {UPQ1 =.18, UPQ3  =.33}, { DERQ1 = .36, DERQ3 = .50}, { DOWNQ1 

= .22, DOWNQ3 = .37}. Medians (M) =˜ Means (E) are almost identical due to quasi-symmetricity. 

 

 
Figure 3.1 and Fig. 3.2: Given the input table, the p.d.f. of the 3 states are plotted for up (r), derated (d), 
and down (q) for  a 90% confidence level showing mode (m), mean (E) with upper & lower confidence 
for  n=100,000 simulation runs.  Fig 3.2 is same as Fig. 3.1 but with Median (M), first and third quartiles. 
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4.   DISCUSSIONS AND CONCLUSIONS 
      In this research we have studied the basic theory and application of the Sahinoglu-Libby (SL) p.d.f. both 
for a conventional two-state (up and down) and additionally three-state (up, derated and down) diagram 
applicable to hardware units and networks (Sahinoglu, 2007; Sahinoglu et al., 2005; and Billinton, 1970) in 
practical engineering projects.  The authors wish to study an important pillar of trustworthy computing, 
namely the availability of a system when the underlying units have two or three states with derated 
included, instead of the usual easier two-state assumption. In the theoretical section of the references 
(Sahinoglu, 2007 and Sahinoglu et al., 2005), a detailed analytical derivation of the univariate SL( L,, ) 
p.d.f. as originally noted in Sahinoglu‟s  Ph.D. dissertation (Sahinoglu, 1981) is presented with reference to 
an empirical Bayesian process for informative priors using squared-error and other loss functions.  
     Two-state univariate SL can be analytically derived in a closed form solution for the target unavailability 
expression of )/(   , but the three-state multivariate analysis must employ Monte Carlo simulations to 
arrive at an approximately normal distributional result. It is practically infeasible to find closed form 
solutions for the random variables of UP, DERATED and DOWN expressed by equations 5 to 7 due to a 
multiplicity of products and summations of Gamma p.d.f.s expressed in the denominator term of Section 2.2 

. At the final analysis as shown in Section 3, the resulting 
distributions for the three parameters, UP, DERATED and DOWN are approximated by normal 
distributions owing to normal probability plots (one way of goodness-of-fit tests) conducted favorably. The 
distributions in Section 3 are quasi-symmetrical with E (Mean) and M (median) almost equal, although 
slightly right-skewed because Mean>Median>Mode.      
      Therefore, SL( L,, ) p.d.f. is the continuous probability density function of the random variable of 
unavailability (or availability when reparametrized) of a two-state unit. For those units whose life time can 
be decomposed into operating (UP), derated (DER), and non-operating (DOWN) states in a tripod setting. 
up, derated and down times are assumed to be distributed with respect to the general gamma models where 
both shape and scale parameters are different from each other. The resultants p.d.f.s are nearly normal. 
      Further, analytical difficulties in calculating the closed-form moments of the said random variable of 
unavailability (or availability) are outlined, suggesting empirical Bayesian estimators using informative 
priors with respect to varying forms of squared-error loss functions. Due to infeasibility of closed form 
analytical solutions for a three-state version, Monte Carlo simulation technique is rightfully selected as a 
mathematically tractable and compatible model to calculate the UP and DER and DOWN probabilities for a 
three-state hardware repairable unit.  The two-state SL‟s closed form was derived (Sahinoglu, 2007 and 
Sahinoglu et al., 2005). Due to infeasibility of closed-form solutions of the three-state SL model, the 
analyses have been conducted by Monte Carlo simulations using the empirical Bayesian principles so as to 
estimate the full and derated availability of a repairable hardware unit, or ingress-egress (input-output) 
network composed of such three-state units. 
     Given the apriori parameters with respect to a squared error loss function, we first obtain the 
informative mean estimator. On the other hand, the median is the summary measure when absolute error 
loss is assumed. Mode is the maximum likelihood value. These summary measures are all shown in the 
plots of the Java applications in Section 5, also observable in the ERBDC section of the educational 
website www.areslimited.com (Sahinoglu, 2007 and Sahinoglu et al., 2005). Network applications for 
large and very large networks are studied using Monte Carlo simulations in reference (Sahinoglu et al., 
2010).The large number of simulation runs stretching to 100,000 assure that the simulation solutions are 
converging to the true result by way of convergence. Another question that is of interest to simulation 
experts is: Why do we use Gamma priors? Primary reasons are as follow:  

 

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS018) p.260

http://www.areslimited.com/


10 
 

1) Gamma priors are mathematically tractable, i.e., when Gamma is used as a prior, you get the posterior 
density also a Gamma. That is we take advantage of the statistical conjugacy property of gamma when 
negative exponential density is used as time to failure distribution for the counting Poisson process.  
2) In the 1980s, fast computing for Monte Carlo Simulation was not available, let alone pervasive as 
today. However now you can work with any prior you choose, and you can achieve the posterior without 
a computational burden. However the disadvantage is that you lose on the exactitude; that is Monte Carlo 
is only approximating the true solution, hoping it will converge as you reach millions of simulation runs.  
3) As important as the statistical-conjugacy property and mathematical tractability; if you possess real 
data, GOFT (Goodness of Fit Tests) can be applied to see which fit goes better?  Now, what you do is 
perform goodness of fit test on the prior data you have (empirical). Or if you are not an Empirical 
Bayesian, and otherwise, you directly may assume the Gamma p.d.f. as your prior, based on popular 
judgment such as what you know from the past experience regarding the unknown lambda (failure rate) or 
mu(repair rate). In past studies, collected empirical data resulted in Gamma priors (Sahinoglu, 1981).  
4) Gamma p.d.f. is one of most versatile and has a large domain of applicability from hyper- or hypo-
exponentiality to negative exponentiality and even rectangular p.d.f. when the appropriate shape and scale 
parameters are employed. Again, with the subsequent field data dominating over the prior parameters, the 
effect of priors will diminish unless you are dealing with a relatively few sample sizes. In that case, the 
prior judgment is important to influence when the samples are overly destructive (like collecting data on 
space programs waiting for the satellite crash data to happen!), and may need a life time to pass like in 
death for cancer patients. However in our case of millions of runs, the priors will lose its dominance as 
field data size approaches large. After the analyses, the approximate closed form p.d.f.s will be derived as 
shown in Section 3.1 owing to the favorable results by normal probability plots as one way of GOFT. For 
further analysis, GOFT will be conducted to fit the p.d.f. in Fig. 3.1, 3.2 to those of Sahinoglu-Libby. 
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