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ABSTRACT

We discuss some potential applications of ambit processes and ambit fields to the modelling of

the spatio–temporal dynamics of turbulent flows. Of key interest are the statistical properties of the

turbulent velocity field.

1. INTRODUCTION

Stochastic modelling of the turbulent velocity field, understood as an explicit stochastic approach

(in contrast to an implicit set–up in terms of governing equations and/or in terms of related quantities

like velocity increments or velocity derivatives) is not well developed. Most of the existing literature

on stochastic turbulence modelling deals with models for derived quantities like velocity increments,

energy dissipation and accelerations. In addition, these models are mostly given in terms of (partial)

stochastic differential equations that do not allow an explicit characterization of the solution.

Early attempts of modelling the turbulent velocity field go back to Kraichnan [33]. Kraichnan

defines a Gaussian ensemble of velocities, decorrelated in time, which despite its strong limitations is

still used in turbulent transport problems [24]. Gaussian velocity fields are also used in wind modelling

with applications to wind energy farms [38]. Recently, this Gaussian model has been extended to

account for non-Gaussian statistics by incorporating a multifractal model for the energy transfer from

large to small scales to generate more realistic velocity increments [13].

In a Lagrangian framework, stochastic modelling of turbulence mainly concerns the modelling

of velocity gradients or accelerations. Most of the stochastic Lagrangian models for the simulation of

turbulent flows involve specific formulations of the generalized Langevin model [46]. The paper [15]

discusses the Lagrangian time evolution of the full velocity gradient tensor and shows the potential of

this model to reproduce many statistical and geometric trends observed in numerical and experimental

three dimensional turbulent flows. This model is extended in [11] to a multiscale model that couples

restricted Euler dynamics to a cascade model allowing energy exchange between scales to account for

high Reynolds number dynamics. The question of universality of the intermittency based on the work

in [15] is discussed in [16].

Some Lagrangian approaches also address the turbulent velocity field itself. In particular,

boundary layer problems are discussed in [18, 26]. Second order stochastic models are considered

in [10, 35, 47]. These papers include the modelling of the turbulent acceleration, which is also dis-

cussed in this context by conditioning on velocity fluctuations in [1]. Langevin models also proved

useful in subgrid modelling as was shown in [19, 36, 37].

Another approach for modelling turbulent velocity increments has been initiated in [21, 22, 40]

which investigates the Markov properties of turbulent velocity increments and accesses the multi-point

probability densities of velocity increments by a Fokker-Planck equation. The same procedure has also

been applied to the statistics of the energy dissipation in [25, 39, 42].

There is a huge amount of literature on stochastic modelling of various quantities in turbulent

flows and the above discussion is definitely not covering all of it. But it gives an impression of the

different approaches that are used and these approaches are, by nature, very different from the ambit
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field approach which we discuss in this paper.

Ambit fields allow to describe the turbulent velocity field explicitely as a function of time [5, 7].

The above mentioned models, in contrast, do not describe the velocity field itself and/or characterize

the quantity of interest in terms of heuristic construction rules or (partial) stochastic differential

equations that can not be solved in wide generality. In particular, we did not discuss the literature

about the theory of the stochastic Navier Stokes equations (see [12, 20] and references therein) which

mostly deals with existence and uniqueness properties of the solutions and does not capture the

turbulent character beyond Kolmogorov scaling. In contrast, ambit fields provide a unifying stochastic

modelling framework for all dynamically active scales in turbulent flows. Moreover, depending on the

quantity of interest and the problem at hand, different approaches have been employed in the literature

while the ambit field approach opens the possibility to incorporate all information about the turbulent

velocity field and is at the same time flexible and mathematically tractable.

The organization of the paper is as follows. In Section 1.1 we give a brief account on the

phenomenology of turbulent flows with focus on Kolmogorov’s fundamental contributions. Ambit

fields are defined in Section 1.2. They provide a general modelling framework for the turbulent velocity

field. An important ingredient in this approach is the intermittency field which is modelled as a certain

type of ambit field that is introduced in Section 1.3. A first application of the ambit framework to

the modelling of turbulent time series is briefly discussed in Section 2. A possible spatio–temporal

extension, the main topic of the present paper, is presented in Section 3. From these more general

considerations we derive a simple toy–model in Section 4 that shows the essential properties of the

new approach. Section 5 concludes with an outlook to possible extensions of the model.

1.1 Turbulence

There is no generally accepted definition of what should be called a turbulent flow. The main

features of turbulent flows are low momentum diffusion, high momentum convection, and rapid vari-

ation of pressure and velocity in space and time. Flow that is not turbulent is called laminar flow.

The non-dimensional Reynolds number R determines whether flow conditions lead to a laminar or a

turbulent state. Increasing the Reynolds number increases the turbulent character and the limit of

infinite Reynolds number is called the fully developed turbulent state. In this paper, we will only

consider turbulent flows that are stationary, homogeneous and isotropic.

Since the pioneering work of Kolmogorov [30, 31, 32] and Obukhov [43, 44, 45], intermittency of

the turbulent velocity field plays a central role in turbulence research. Intermittency refers to the fact

that fluctuations around the mean velocity occur in clusters and are more violent than expected from

Gaussian statistics. In terms of moments of spatial velocity increments vt(x)− vt(0), intermittency in

turbulence is usually described by approximate multifractal scaling of spatial structure functions

(1) Sn(x) = E{(vt(x)− vt(0))
n} ∝ |x|τ(n).

Here, vt(x) is one component of the velocity (usually along the mean flow) at position x (in direction

of the mean flow) and time t and the lag x (in direction of the mean flow) is within the so-called

inertial range. The inertial range is defined as the range of scales where the spectrum E(k) (the

Fourier transform of the correlation function of the velocity field) displays a power law E(k) ∝ k−5/3

[23, 43, 44]. The term multifractal scaling is due to the non-linear dependence of the spatial scaling

exponents τ(n) > 0 on the order n.

Scaling of second order and third order spatial structure functions can be motivated from the

Navier–Stokes equation as was first exposed in Kolmogorov’s seminal papers from 1941 [30, 31]. These

scaling relation are called the 2/3rd law since τ(2) = 2/3 and the 4/5th law since, for x > 0,

S3(x) = −
4

5
ǫx
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where ǫ is the mean energy dissipation. The energy dissipation measures the loss of kinetic energy in

a turbulent flow due to friction forces.

Scaling of structure functions is usually measured in the time domain, invoking Taylor’s Frozen

Flow hypothesis [55]. In the time domain one observes approximate scaling of temporal structure

functions

(2) Ŝn(t) = E{(vt(x)− v0(x))
n} ∝ |t|ξ(n).

within a certain range of time scales t (the temporal counterpart to the inertial range). It is generally

expected that τ(n) ≈ ξ(n). (However, in [48] it is shown that τ(n) = ξ(n) can not hold exactly if

Taylor’s Frozen Flow hypothesis is exact.) In the time domain, third order structure functions Ŝ3(s)

show a positive skewness of temporal velocity increments for s > 0 within the temporal inertial range.

Multifractal scaling of velocity increments is assumed to hold exactly in the limit of infinite

Reynolds numbers. However, experiments show that the scaling behaviour (2) might be poor, even

for large Reynolds numbers [2, 54]. Furthermore, even if the scaling relation (2) holds, the inertial

range still covers only part of the accessible scales where intermittency is observed.

From a probabilistic point of view intermittency refers, in particular, to the increase of the non-

Gaussian behaviour of the probability density function (pdf) of velocity increments with decreasing

scale. A typical scenario is characterized by an approximately Gaussian shape for the large scales

(larger than scales at the inertial range), turning to exponential tails within the inertial range and

stretched exponential tails for dissipation scales (below the inertial range) [14, 56]. It was reported in

[4, 8] that the evolution of the pdf of velocity increments for all amplitudes and all scales can well be

described within one class of tractable distributions, the normal inverse Gaussian (NIG) distributions

(a list of references concerning NIG distributions is given in [4]).

There are many more stylized statistical features of turbulent flows and a proper stochastic

model should be able to reproduce all of them. Of course, this is a far–reaching goal and a first

step is to capture the most important stylized facts. In the present paper we will focus on scaling

of spatial and temporal second order structure functions, a negative skewness of spatial third order

structure functions, a positive skewness of temporal third order structure functions and the evolution

of densities of velocity increments across scales within the class of NIG distributions. These properties

set the minimal requirements we pose on our stochastic modelling framework.

1.2 Ambit fields

The concept of ambit fields arose out of a current study [5, 7, 49, 51, 52] the ultimate aim of

which is to build a realistic stochastic process model of 3-dimensional turbulent velocity fields, in the

spirit of Kolmogorov’s phenomenological theory [23] – and beyond. Besides applications to turbulence,

the concept has also been used in modelling the growth of cancer tumours [6, 27, 28, 50], in modelling

electricity forward markets [3], and it should be of interest to other fields as well.

Let t denote time and x a point in some space S. To each point (x, t) ∈ S × R let there be

associated a random variable Yt (x). Such a process is said to be an ambit field if Yt (x) is determined

as a weighted combination of past events in space-time coupled with innovations and where only events

in a subset At (x) of past space-time, termed an ambit set, is involved in determining Yt (x). The past

events, except for the past innovations, are embodied in a random field {It (x)}(x,t)∈S×R
.

Of special interest is the case of a homogeneous and causal family of ambit sets where

(3) At (x) = {(s, ξ) : (s− t, ξ − x) ∈ A0(0)}

and A0(0) is bounded by a function ĥ

(4) A0 (0) =
{

(s, ξ) : −∞ ≤ T ≤ s ≤ 0, |ξ| ≤ ĥ(|s|)
}
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and where the boundary function ĥ(s) is increasing on [0, T ]. Here T denotes the temporal extension

of the ambit set At(x).

In the present paper we focus on ambit fields of the form

(5) Yt (x) =

∫

At(x)
f (t− s, x− ξ)L (dsdξ)

where f is a damping function and L is a Lévy basis on R×S, i.e. an independently and homogeneously

scattered random measure whose values are infinitely divisible. For a mathematically more rigorous

definition of independently scattered random measures and their theory of integration, see [5, 29, 34].

Note that Yt (x) is a stationary process in t for fixed x and a homogeneous process in x for fixed

t.

1.3 Stochastic intermittency fields

We call the exponential of an ambit field a stochastic intermittency field. For ambit fields of the

special type (5) we get

(6) σt(x) = exp {Yt(x)} = exp

{

∫

At(x)
f (t− s, x− ξ)L (dsdξ)

}

These fields comprise, as special cases, the temporal cascade processes discussed in [41] and [53], as

well as the spatio-temporal cascade process derived in [17, 52].

Independently scattered random measures provide a natural basis for describing uncorrelated

noise processes in space and time. A special class is that of a homogeneous Lévy bases, where the

distribution of the measure of each set is infinitely divisible and does not depend on the location of

the set. In this case, it is easy to handle integrals with respect to the Lévy basis using the well-known

Lévy-Khintchine and Lévy-Ito representations for Lévy bases. Here, we state the result and point to

[5] for greater detail and rigour.

We have the fundamental relation

(7) E

{

exp

{
∫

A
f(a)L(da)

}}

= exp

{
∫

A
K[f(a)]da

}

where E{ } denotes the expectation and Kda denotes the cumulant function of L(da), defined by

(8) ln E {exp {ξL(da)}} = K[ξ]da.

The usefulness of (7) is obvious: it permits explicit calculation of the correlation function of the

integrated and f -weighted noise field L(da) once the cumulant function K is known.

The model (6) yields explicit expressions for arbitrary n-point correlations E {σt1(x1) · . . . · σtn(xn)}

in closed form. Here, the focus is on two-point correlators of order (n1, n2), defined as

(9) cn1,n2
(x1, t1;x2, t2) ≡

E {σt1(x1)
n1σt2(x2)

n2}

E {σt1(x1)
n1}E {ǫ(x2, t2)n2}

.

Using (7), it is straightforward to show [5, 51, 52]

(10) cn1,n2
(x1, t1;x2, t2) = exp

{

∫

At1
(x1)∩At2

(x2)
K[n1f(t1 − t, x1 − x), n2f(t2 − t, x2 − x)]dxdt

}

,

with the abbreviation K[λ1, λ2] = K[λ1 + λ2]−K[λ1]−K[λ2].

In case of a finite ambit set with a finite decorrelation time T

(11) A0(0) =
{

(s, ξ) : −T ≤ s ≤ 0, |ξ| ≤ ĥ(|s|)
}
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and a constant weight function f(t, x) = 1 we get

(12) cn1,n2
(x1, t1;x2, t2) = exp

{

K[n1, n2]

∫

At1
(x1)∩At2

(x2)
dxdt

}

,

The important point here is the fact that the exponent in (12) factorizes into the overlap of the two

ambit sets times a factor depending only on the order (n1, n2).

2. MODELING TURBULENT TIME SERIES

High quality turbulent data sets, with a sufficient resolution of all dynamically active scales,

mostly consist of measurements of the main component of the velocity vector at a fixed position in

space and as a function of time. It has been shown in [7, 9, 49, 51, 52, 57] that Brownian semistationary

processes (BSS) of the form

(13) Yt =

∫ t

−∞
g(t− s)σsdBs + β

∫ t

−∞
g(t− s)σ2

sds

constitute a suitable modelling framework for turbulent time series. Here, B is Brownian motion, g

is a nonnegative deterministic functions on R, with g (t) = 0 for t ≤ 0, and σ is a stationary càdlàg

processes. The constant β controls the skewness of velocity increments.

BSS processes are able to reproduce many stylized features of turbulent time series, including

scaling of structure functions, multiplier distributions, scaling of energy dissipation correlators, the

evolution of the densities of velocity increments across scales and the statistics of the Kolmogorov

variable. In this modelling applications σs is a stochastic intermittency field that can be interpreted

as a continuous cascade process.

3. A SPATIO–TEMPORAL MODELING FRAMEWORK

A possible generalization of BSS processes to a spatio–temporal modelling framework for the

main component of the velocity vector in one spatial dimension is the class of spatially coupled Brow-

nian semi–stationary fields (SCBSS fields) defined as

(14) Yt(x) =

∫ t

−∞
g(t− s)σs(x− c(t− s))dBs + β

∫ t

−∞
g(t− s)σ2

s(x− c(t− s))ds

where σ is a stochastic intermittency field in space and time. The spatial dependence structure of

Yt(x) is solely mediated by the intermittency field σt(x).

In the turbulence context, the physical picture behind such a process is that of a constant

sweeping or advection velocity c that transports the intermittent events σt(x). The intermittency

σs(x − c(t − s)) at position x − c(t − s) reaches the point x at time t. Its contribution to Yt(x) is

damped by g(t− s) and modulated by dBs. The advection velocity is assumed to be positive, c > 0,

i.e. the advection has the direction along the positive x–axis, which is also the direction of the mean

velocity for β > 0.

We can think of σ2 as some type of local kinetic energy input that accelerates the velocity field

if dBs > 0 and slows it down if dBs < 0. The slowly varying skewness term then sums all the energy

input that can reach the position x at time t. We thus conceive the intermittency field as a background

field that sweeps with velocity c through the flow and leaves its fingerprint on the velocity at (x, t)

damped by g and modulated by dBs.

3.1 Spatial structure functions of order two
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Our primary goal is to suitably choose the ingredients of the spatio–temporal model (14) such

that second order structure functions show a pronounced scaling behaviour within some inertial range.

For the moment, we will ignore the skewness of the model (14), i.e. we set β = 0. We will discuss the

case of a positive, but small β in Section 4.

In the spatial domain we want to model

(15) S2(x) = E
{

(Y0(x)− Y0(0))
2
}

= Axτ(2)

for 0 < 2x0 ≤ x ≤ 2x1 and where A is some constant, i.e. for some inertial range bounded by the

constant length scales 2x0 and 2x1.

We define

(16) G(t) =

∫ ∞

0
g(s)g(s + t)ds

and normalize the intermittency field σ such that E{σ} = 1. We then get from the model (14) with

β = 0

(17) S2(x) = 2G(0) (c1,1(0, 0; 0, 0) − c1,1(x, 0; 0, 0))

where c1,1 denotes the correlator (9) of order (1, 1). We thus have the necessary and sufficient condition

for spatial inertial range scaling

(18) c1,1(0, 0; 0, 0) − c1,1(x, 0; 0, 0) ∝ xτ(2)

for 2x0 ≤ x ≤ 2x1. To achieve this condition, we model the intermittency field σ as a stochastic

intermittency field of the form

(19) σt(x) = exp

{

∫ x+L

2

x−L

2

∫ t−T+h(|ρ−x|)

t−T
W (dsdρ)

}

.

Here L denotes a finite decorrelation–length and T denotes a finite decorrelation–time. The ambit

set is bounded by the deterministic function h and the Lévy basis W is chosen to be a homogeneous

normal Lévy basis on R
2 with W (da) ∼ N(µda, σ̂2da). We choose

(20) µ = −
σ̂2

2

and get the normalization K[1] = 0, i.e. E{σ} = 1.

The spatial correlator of σ of order (1, 1) is, using (12)

(21) c1,1(x, 0; 0, 0) = exp

{

2K[1, 1]

∫ L

2

x

2

∫ h(ρ)

0
dsdρ

}

.

Here we assumed that h is decreasing. This condition is equivalent to the case of ĥ increasing as

defined in (4). The difference between the two bounding functions ĥ and h is that the former is

defined as a function of t and the latter as a function of x.

The next step is to find a suitable bounding function h such that the necessary condition (18)

holds. For that we define

(22) h(x) =











h0(x), 0 ≤ x ≤ x0
h1(x), x0 ≤ x ≤ x1
h2(x), x1 ≤ x ≤ L

2
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and choose

(23) h1(x) =
τ(2)a1x

τ(2)−1

2K[1, 1]
(

a0 − a1xτ(2)
)

where a0 and a1 are positive constants and

(24) a0 > a1x
τ(2)
1

which ensures h1(x) > 0.

We also need the condition ∂h1(x)
∂x ≤ 0 which gives the condition

(25) a0 ≥
a1x

τ(2)
1

1− τ(2)
.

The condition (25) also implies condition (24).

Next, we calculate the spatial correlators of σ of order (1, 1). For that we define

A0 =

∫ x0

0
h0(ρ)dρ, B0 = exp

{

2K[1, 1]A0

}

A1 =

∫ x1

x0

h1(ρ)dρ, B1 = exp
{

2K[1, 1]A1

}

A2 =

∫ L

2

x1

h2(ρ)dρ, B2 = exp
{

2K[1, 1]A2

}

and get for 2x0 ≤ x ≤ 2x1

(26) c1,1(x, 0; 0, 0) =
B2

(

a0 − a12
−τ(2)xτ(2)

)

a0 − a1x
τ(2)
1

.

Combining this result with

(27) c1,1(0, 0; 0, 0) = B0B1B2

yields

(28) c1,1(0, 0; 0, 0) − c1,1(x, 0; 0, 0) =
B2

a0 − a1x
τ(2)
1

(

B0

(

a0 − a1x
τ(2)
0

)

− a0 + a12
−τ(2)xτ(2)

)

and we get the spatial scaling relation

(29) c1,1(0, 0; 0, 0) − c1,1(x, 0; 0, 0) =
B2a12

−τ(2)

a0 − a1x
τ(2)
1

xτ(2)

if we have the second necessary condition (besides condition (25))

(30) B0

(

a0 − a1x
τ(2)
0

)

= a0.

This last condition can be rewritten as

(31) K[1, 1] =
log(a0)− log(a0 − a1x

τ(2)
0 )

2A0
.

In summary, we can construct the intermittency field σ solely from the condition of scaling of spatial

structure functions of the velocity field under the assumption that β = 0. In this construction we can

choose the parameters of the model for σ freely as long as the conditions (25) and (31) are fulfilled.
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In addition, we are free to choose any small scale boundary h0(x) and any large scale boundary h2(x)

as long as h(x) is decreasing. This opens the possibility to include advanced modelling of spatial

structure functions for scales below and above the inertial range.

3.2 Temporal structure functions of order two

Scaling of second order spatial structure functions (ignoring the skewness) fixes the inertial range

ambit set of the intermittency field σ, but it gives no condition on the weight function g. As will be

shown below, the weight function g is not a free parameter any more, if one additionally requires

scaling of temporal structure functions of order two.

For the temporal structure functions we get, again assuming that β = 0,

(32) Ŝ2(t) = E
{

(Yt(0) − Y0(0))
2
}

= 2G(0)c1,1(0, 0; 0, 0) − 2G(t)c1,1(ct, 0; 0, 0).

A scaling relation

(33) Ŝ2(t) = Btξ(2)

for a constant B and for t within some temporal inertial range then yields the condition on g

(34) G(t) =
2G(0)c1,1(0, 0; 0, 0) −Btξ(2)

2c1,1(ct, 0; 0, 0)

for t within the temporal inertial range. This condition on g involves the specification of c1,1(ct, 0; 0, 0)

for t within the temporal inertial range which is not restricted to coincide with the range [2x0/c, 2x1/c].

Of course, the correlator c1,1(ct, 0; 0, 0) for t within the temporal inertial range must be chosen such

that the condition (34) has a solution g. In the present paper we will not tackle these problems.

The important point here is that it is possible to find a function g that produces scaling of temporal

structure functions (or a good approximation to scaling) by proper choosing the orrelator c1,1(ct, 0; 0, 0)

for t within the temporal inertial range.

4. A SIMULATION STUDY

In this Section we illustrate the spatio–temporal turbulent velocity field (14) by simulations

from a simple version of the model (14). Our purpose is not to determine the function g from the

condition (34) but rather choose a simple weight–function g that shows the modelling potential of our

stochastic framework concerning the evolution of densities of velocity increments across scales and the

behaviour of the skewness of velocity increments.

For the model (14), we can freely choose 0 < τ(2) < 1, L, x1 < L
2 , a1, K[1, 1] and the constant

a0 according to (24). We then define the small scale boundary of the ambit set of σ as

(35) h0(x) = T

and the large scale boundary of the ambit set of σ as

(36) h2(x) =
h1(x1)
L
2 − x1

(

L

2
− x

)

where, according to (31) and the condition that h must decay, we must have that

(37) T =
log(a0)− log(a0 − a1x

τ(2)
0 )

2K[1, 1]x0
≥ h1(x0)
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which gives a condition on x0

(38) log

(

a0

a0 − a1x
τ(2)
0

)

≥
τ(2)a1x

τ(2)
0

a0 − a1x
τ(2)
0

(there is always a possible interval for the choice of x0).

Furthermore we choose, for simplicity,

(39) g(t) =

{

exp {−λt} − exp {−λT0} , 0 ≤ t ≤ T0

0, otherwise

with positive constants λ and T0. This function g does not fulfil condition (34) and we will not capture

scaling of temporal structure functions in the simulations.

For the simulation of the model (14) we use the parameters listed in Table 1 and we choose (see

condition (25))

(40) a0 =
a1x

τ(2)
1

1− τ(2)
+ 1

We recorded a spatial resolution of stepsize ∆x = 1 and a temporal resolution of stepsize ∆t = 1.

Figure 1 shows the second order spatial structure function S2(x) in double logarithic representa-

tion. The straight line indicates an (approximate) scaling regime for the spatial inertial range [11, 28]

with the scaling exponent τ(2) = 2
3 in agreement with Kolmogorov’s 2/3rd law. For β = 0 one would

expect a spatial inertial range [2x0, 2x1] = [2, 28]. It is the positive skewness control parameter β that

shrinks the spatial inertial range from below.

Figure 2 and Figure 3 display the third order spatial structure function S3(x) and the third

order temporal structure function Ŝ3(t), respectively. In the spatial domain we get a negative sign

away from the very small scales and a positive sign in the temporal domain. This behaviour agrees

with the empirical findings described in Section 1.1.

Some examples of the densities of the temporal velocity increments are shown in Figure 4 for a

small, a medium and a large lag t. We observe the typical evolution across scales that is characteristic

for turbulent time series, from heavy tales at small time lags towards an approximate Gaussian shape

at large time lags. The solid lines show the approximation of the densities of velocity increments

within the class of NIG distributions. The simulation produces distributions that are well fitted by

NIG distributions and are very similar to empirical velocity increment distributions [4].

We further illustrate this similarity between simulated velocity increments and those from empir-

ical turbulent time series within the NIG shape triangle in Figure 5. The NIG shape triangle displays

the range of the steepness parameter ξ and the asymmetry parameter χ of NIG distributions

(41) {(χ, ξ) : −1 < χ < 1, 0 < ξ < χ}.

The normal distribution corresponds to the limiting point (χ, ξ) = (0, 0) and the Cauchy distribution

to the limiting point (χ, ξ) = (0, 1). (We refer to [4] for a more detailed discussion of the NIG shape

triangle and its relation to turbulence.) Figure 5 shows the location of the densities of temporal

velocity increments from the simulation within the NIG shape triangle together with the location of

the densities of velocity increments from a turbulent time series measured in the atmospheric boundary

layer [4]. The evolution of the densities of velocity increments across scales from the simulation is very

similar to the typical evolution observed for turbulent data sets.

5. SUMMARY AND OUTLOOK
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The spatio–temporal model (14) is able to reproduce scaling of spatial and temporal structure

functions of order two, a positive skewness for temporal velocity increments, a negative skewness for

spatial velocity increments and an evolution of the densities of velocity increments across scales within

the class of NIG distributions that is very similar to empirical findings. To show the distributional

properties we used a very simple version of the model that does not have the condition (34). The

determination of g from the condition (34) is the next step in a further refinement of the model.

The basic assumption underlying the spatio–temporal model (14) is that of a constant sweeping

velocity c in direction of the positive x–axis. Keeping this assumption, a possible extension to a

spatio–temporal model with 3 space dimensions is straightforward. One can also argue that the actual

sweeping velocity is not a constant but bounded by some maximum value cm. Taking these arguments

into account and assuming that the advection is directional in direction of the positive x–axis, we

arrive at the following extended spatio–temporal model in 3 + 1 dimensions

(42) Yt(~r) =

∫ t

−∞

∫ cm

0
gc(t− s)σs(~r− c(t− s)~e)W(dcds) + β

∫ t

−∞

∫ cm

0
gc(t− s)σ2

s(~r− c(t− s)~e)dcds.

Here, ~e is the unit vector in x–direction, W is a homogeneous normal Lévy basis on [0, cm] × R and

the damping function g is allowed to depend on the sweeping velocity c. The intermittency field σ is a

stochastic intermittency field with the possibility to model anisotropic spatial structure functions by

choosing a proper anisotropic ambit set.

A further generalization would be to include density fluctuations that travel undirectional with

the speed of sound c0 and constitute a second mechanism that connects the dynamics at different

space–time points.
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λ L T0 τ(2) a1 K[1, 1] x0 x1 c

0.1 30 30 2/3 1 0.001 1 14 1

Table 1: Simulation parameters
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Figure 1: Double logarithmic representation of the second order spatial structure function S2(x) =

E{(Y0(x)−Y0(0))
2} obtained from a simulation of the model (14). The parameters for the simulation

are described in Section 4. The solid line indicates the scaling behaviour ∝ x2/3.
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Figure 2: The third order spatial structure function S3(x) = E{(Y0(x) − Y0(0))
3} obtained from a

simulation of the model (14). The parameters for the simulation are described in Section 4.
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Figure 3: The third order temporal structure function Ŝ3(t) = E{(Yt(0) − Y0(0))
3} obtained from a

simulation of the model (14). The parameters for the simulation are described in Section 4.
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Figure 4: The log densities log p(Yt(0) − Y0(0)) of temporal velocity increments Yt(0) − Y0(0) for

t = 1, 28, 56, obtained from a simulation of the model (14). The parameters for the simulation are

decribed in Section 4.
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Figure 5: NIG shape triangle for the evolution of the densities of temporal velocity increments Yt(0)−

Y0(0) obtained from a simulation of the model (14) (×) (black) with increasing t from top to bottom.

The parameters for the simulation are described in Section 4. For comparison, we also show the

evolution of the densities of temporal velocity increments across scales for a data set measured in the

atmospheric boundary layer (◦) (gray).
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