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1 Introduction

Recent survey literature shows an increasing interest in data collection methods that tailor strategies

and resources to subgroups in the target population. The reason behind it is that current survey designs

use uniform strategies that do not differentiate efforts, although it has been shown that effectiveness of

different survey design features and causes for nonresponse vary greatly over persons and households.

Apart from the intrinsic need for such flexible designs, the change of focus is also driven by technological

advances and potential savings in survey budgets. Survey management and monitoring systems can

be upgraded in order to allow for segmentation of samples over different strategies. Furthermore, web

surveys are substantially cheaper than interviewer-administered modes, which raises the question of

whether surveys can be much cheaper without a strong decrease in quality. This paper presents a case

study in which we differentiate efforts in order to optimize quality given constraints on costs.

There are various factors that influence the decision to accept or reject the request to participate

in sample surveys. Such factors include the social characteristics of the sample unit, the interviewer’s

behavior, and the attributes of the survey design, e.g., the interview mode, the schedule of the contact

attempts, and the language of the questionnaire. Traditional survey designs do not use the information

that results from studying these factors. Predicting the probability that a sample unit would respond

given a list of factors, quantifying the factors’ effects on human behavior in terms of costs and data

quality can be of great help in designing a high-quality but cost-effective survey.

While the research in the field is still in its infancy, there have been some design methods

investigated or implemented. The first attempts belong to [1], where the authors describe a two-

phase sampling framework for nonresponse. This approach has been termed as responsive survey

design. More advanced methods in the same context of responsive design are later presented in [2]

and [4], where the main idea is to identify a set of design attributes that potentially influence the

survey costs and the errors in the survey estimates and to monitor their influence on costs and errors.

This information helps in subsequent phases to alter the design features such that a desired balance

between costs and errors is achieved. Another example is given in [3], where the authors investigate

the influence on cooperation and costs of the number of call attempts.

The historical data considered in the aforementioned studies do not depend on person or house-

hold characteristics, the use of which could bring improvements in the response rate predictions. Such

characteristics are available from administrative registers, financial records, etc. When such informa-

tion is employed to adjust the design features for a given set of characteristics (i.e., different design
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features can be applied to different sample units) the resulting survey design is termed adaptive sur-

vey design and it has been generally introduced in [8] and [6]. The method originates from the field

of clinical trials, where treatments are group-specifically set before the start of the trial and change

during the trial according to the responses of patients. Therefore, the great advantage of this method

lies in its flexibility. It is tailored for groups of sample units, it can be defined before the survey

starts and also updated during the data collection based on information regarding the characteristics

of respondents and nonrespondents.

In the present paper, adaptive survey designs are analyzed from the perspective of resource

allocation problems, which constitutes the novelty of this research. Given a budget, a set of household

characteristics, and a list of factors that influence the survey costs and quality, we develop a model

that computes the allocation of survey resources such that quality is maximized while costs meet the

budget constraint. Extracting detailed information from historical data and building a survey design

that is both cost-efficient and of high-quality are the main contributions the current paper brings to

practice and the research in the field.

The remainder of the paper is structured as follows. Section 2 gives an overview of the concepts

in adaptive survey designs and Section 3 discusses the mathematical model and an algorithm to

derive optimal adaptive survey design policies. Numerical examples of these situations are given in

Section 3.4. Section 4 concludes the results of the paper and gives directions for future research.

2 An adaptive survey design model

2.1 Notation

Let the population consist of units k = 1, 2, . . . , N . The population of interest may consist of all units

in a population but also of all respondents to a previous wave in a panel study. To each unit a strategy

s will be assigned from the set of candidate strategies S = {∅, s1, . . . , sM}. Strategy ∅ implies that no

action is undertaken, i.e., the population unit is not sampled. In this paper, however, the sampling

design is not part of the strategy allocation, the sample is given and fixed. However, one may include

the decision to sample a unit explicitly in the overall allocation of resources.

In general, a strategy s is a specified set of design features, e.g., s1 = (advance letter, web

questionnaire, one reminder). A strategy may involve a sequence of treatments where treatments are

only followed when all previous treatments failed, e.g., s2 = (advance letter, web questionnaire, one

reminder, CATI questionnaire, maximum of six call attempts). It is assumed in this paper that the

set of strategies S is known and fixed when the strategy allocation starts. The set of strategies may

be identified based on historical survey data, experience and pilot studies.

The data collection can vary for different sample units. For example, follow-ups for refusal

conversion can increase the fieldwork for specific units. Most common survey modes are paper, web,

telephone and face-to-face. Each mode carries different levels of costs and quality which suggests that

different modes should be allocated to different sample units (i.e., a mixed-mode design). The contact

protocol has a significant impact on the quality of the survey results. Different number of contact

attempts or a specific timing for these attempts can influence the willingness to participate in the

survey.

Sample units can be clustered into homogeneous groups based on characteristics such as age,

gender, ethnicity, information that are available for all units from external sources of data. Let

G = {1, . . . , G} be the set of homogeneous groups with size Ng for group g ∈ G in the survey sample.

The proportion or importance of group g in the sample is then given by wg (usually wg = Ng/N).

A second set of characteristics, called paradata, may be available for unit k gathered during data

collection (e.g., the interviewer assessment of the propensity to respond). If information from paradata

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS033) p.522



is considered for clustering the sample units then the adaptive design is termed dynamic. In the current

paper we consider only static adaptive designs, i.e., clustering is based only on information available for

all sample units from external sources. However, the approach can be extended to include paradata.

Let τg(s) be the expected response propensity for units in group g that are assigned strategy

s. Such propensities are estimated from historical data, e.g., previous versions of the same survey,

surveys with similar topics and designs. It is imperative that response propensities are estimated

from randomized contrasts, i.e., historic data must carry randomized assignments to different design

features. For example, from a face-to-face survey with a maximum of three visits it cannot be inferred

what the response propensities would be if the maximum is raised to ten visits. Similarly, in telephone

surveys with evening calls only, it cannot be deduced what the contact propensities would be for

daytime shifts. Randomization over design features is, however, not sufficient. Historical data also

need randomization over groups in G.
There are various models in the literature that estimate response propensities while taking into

consideration survey design features, such as nested or sequential regression models, multilevel models.

However, uncertainty is still present in these estimates due to sampling variation and design mismatch

between similar surveys. Therefore, sensitivity analysis should always be used in order to obtain

insight into the variation of quality and costs caused by randomness in the input probabilities.

Let ρ(s|g) be the allocation probability of strategy s to a sample unit from group g. This implies

that

0 ≤ ρ(s|g) ≤ 1, ∀s ∈ S, g ∈ G,∑
s∈S

ρ(s|g) = 1, ∀g ∈ G.

Allowing for allocation probabilities between 0 and 1 increases the flexibility in meeting quality levels

or cost constraints.

To completely define the problem at hand we need to specify the quality and the cost functions.

It is important to keep in mind that other survey errors may sometimes play a dominant role and that

design features that have a high risk of survey errors other than nonresponse must be avoided. Such

design features are survey modes with low coverage of some groups or a higher risk of response bias,

increased item nonresponse in proxy reporting or increased response bias in follow-ups.

In general two types of quality functions can be distinguished, i.e., quality functions based on

characteristics from external data and paradata only, and quality functions that employ additionally

the answers to the survey target variables. The latter asks for a model-based approach since answers

from nonrespondents are missing. We focus on the first category of functions. Two well-known

examples are the response rate

τ̄ =
∑
g∈G

∑
s∈S

wg τg(s) ρ(s|g),(1)

and the representativeness indicator

R = 1− 2

√∑
g∈G

(τ̄g − τ̄)2,(2)

where τ̄g =
∑

s∈S wg τg(s) ρ(s|g) and τ̄ is as given by (1).

Denote by cg(s) the expected costs from assigning strategy s to group g. Note that startup costs

(e.g., designing questionnaires) are not taken into consideration. We assume here that such a cost

function can be constructed based on historical data, i.e., costs can be estimated for a given survey,

set of strategies and sample groups. The total costs for handling a sample are computed as∑
g∈G

∑
s∈S

wg cg(s) ρ(s|g).(3)
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For a more detailed description of adaptive survey designs we refer the reader to [6] and [8].

2.2 Numerical example

We illustrate the static setting of adaptive designs by means of an example. Suppose the strategy set

is given by S = {s1, s2, s3, s4}, with

s1 = (web administered, 1 reminder);

s2 = (web administered, no reminders, CAPI administered, maximum 3 visits);

s3 = (CAPI administered, maximum 6 visits);

s4 = the empty strategy.

Strategies s1 and s3 lead to a single-mode design while s2 describes a mixed-mode survey where CAPI

is administered to the nonrespondents from the initial wave of web.

We consider a sample of size N = 2, 000 clustered in two groups given an age criterion: g1 groups

sample units with age below or equal to 35 and g2 units with age above 35. The proportion of groups

in the sample is given by q(x) = (0.5, 0.5). With (1) as our objective, the task at hand is to assign

survey modes to groups such that the average response is maximized.

Costs are induced every time one of the following actions is taken

web questionnaire : e 5;

web reminder : e 2;

one visit : e 15;

one interview : e 20.

In order to investigate the trade off between quality and costs we set up a budget range between 0

and e 50,000 and require that costs do not overrun the budget. Moreover, we assume that there is

enough interviewer capacity to carry out the survey.

The response propensities τg(s) are estimated from historical data (see Table 1). On the basis

of these estimates we compute the expected costs cg(s) given in Table 1. Given this input we can

Table 1: Response propensities and expected costs

g1 g2

Strategy s1 s2 s3 s4 s1 s2 s3 s4
Response 0.432 0.789 0.684 0 0.574 0.806 0.663 0

Costs 6,320 20,094 20,535 0 6,120 20,103 23,132 0

conclude that s2 is preferred if enough budget is available. Moreover, assigning s3 to either group is

not optimal since it brings a lower response rate than s2 with greater costs.

The strategy allocation probabilities
(
ρ(s|g)

)
s∈S,g∈G form the set of decision variables. The

optimal solution with the corresponding objective value τ̄ is given in Table 2 for the indicated budget

levels. Using the definition given by (2) we compute the R-indicator for each budget level. A budget

larger than e 40,200 does not lead to further improvements in the response rate. As expected, when

resources are scarce the empty strategy is employed. With the gradual increase of the budget the

strategy allocation becomes a mixture of s1 and s4, s1 and s2 and ultimately with probability 1 s2 is

assigned to both groups when enough budget is available. Figure 1(a) displays the evolution of the

average response for various budget levels. A response-representativeness function is proposed in [7]

to reflect acceptable levels for R-indicator and response rates. The function R(τ̄) has an acceptable

level if R(τ̄) exceeds a given maximal bias threshold. In Figure 1(b) the lines represent the maximal
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Table 2: Optimal solution and corresponding response rate and R-indicator

Budget

0 5,000 10,000 20,000 30,000 40,000 40,200

ρ(s1|g1) 0 0 0.614 0.451 0 0 0

ρ(s2|g1) 0 0 0 0.549 1 1 1

ρ(s3|g1) 0 0 0 0 0 0 0

ρ(s4|g1) 1 1 0.386 0 0 0 0

ρ(s1|g2) 0 0.817 1 1 0.729 0.014 0

ρ(s2|g2) 0 0 0 0 0.27 0.986 1

ρ(s3|g2) 0 0 0 0 0 0 0

ρ(s4|g2) 1 0.183 0 0 0 0 0

τ̄ 0 0.235 0.420 0.601 0.713 0.796 0.797

R 1 0.435 0.571 0.743 0.790 0.959 0.983
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(a) Response rate for various budget levels (b) Response-representativeness function

Figure 1: Objective value evolution for various budget levels

bias thresholds with the indicated values. Once R(τ̄) exceeds the line, the corresponding maximal

bias threshold is met. The drops in the R(τ̄) function are caused by the different mixtures of allocated

strategies.

3 Optimal scheduling of contact attempts

In the following the objective is to maximize the response rate given by (1) while tailoring two design

features, namely survey modes and contact protocol, in particular the maximum number of contact

attempts per survey mode. Strategies in S have various sequences of survey modes (face-to-face, phone,

web, paper) and various values for the number of contact attempts (in case of interviewer-assisted

modes). We know that for interviewer-assisted modes successful participation in the survey depends

on first establishing contact, and then cooperation by answering the questionnaire. Therefore, we
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view the response propensity τg(s) through its components, i.e., contact probability p and cooperation

probability r. To maintain a general framework, we assume that for self-administered modes the

contact probability is equal to 1.

3.1 Notation

Consider the fieldwork divided into time slots (i.e., days in a month, shifts in a day) at which units

in a group can be approached for a survey. Denote by T = {1, . . . , T} the set of time units. The set

of different survey modes is denoted by M = {1, . . . ,M}. At each time slot t ∈ T one can decide

to approach units in group g ∈ G for a survey using mode m ∈ M. From historical data group-

dependent contact probabilities pg(t,m) and response probabilities rg(t,m) can be estimated, which

we consider as given quantities in our problem. Note that from historical data it can also be observed

that certain time slots (e.g., morning, evening) have an influence on the availability of the unit and

the willingness to respond. Therefore, to employ most of the available information, the contact and

response probabilities are modeled at the level of time slots for each group and per mode.

When a successful contact is established and the unit responds positively, the survey ends with

success; this happens with probability pg(t,m)rg(t,m). However, if the unit responds negatively

after successful contact, the unit is not considered for a future survey approach; this happens with

probability pg(t,m)
(
1−rg(t,m)

)
. Only in the case that the unit is not contacted successfully, the unit

can be considered for a future survey approach; this happens with probability 1 − pg(t,m). Thus, if

the unit is approached again at time t′ using mode m′, then the probability of a successful approach is(
1−pg(t,m)

)
pg(t

′,m′)rg(t
′,m′), and the probability of a contact failure is

(
1−pg(t,m)

)(
1−pg(t

′,m′)
)
.

Denote by xg(t,m) a binary 0-1 decision variable that denotes if units in group g are approached

for a survey at time t using mode m. Then, the probability that a contact fails at time t′, denoted by

fg(t
′), is given by

fg(t
′) =

t′∏
t=1

∏
m∈M

[
xg(t,m)

(
1− pg(t,m)

)
+

(
1− xg(t,m)

)]
.

This is a highly non-linear expression in the decision variables, which can be recursively computed by

(4) fg(t
′) =

∏
m∈M

[
xg(t

′,m)
(
1− pg(t

′,m)
)
+

(
1− xg(t

′,m)
)]
fg(t

′ − 1),

using the fact that fg(0) = 1.

3.2 Model

Note that values of
(
xg(t,m)

)
t∈T ,m∈M form a set of matrices for each g ∈ G. An element of this set

identifies a strategy. Using definition (4) and the fact that each group g is assigned one single strategy

the group response rate τg(s) can then be computed by∑
t∈T

∑
m∈M

fg(t− 1)xg(t,m) pg(t,m) rg(t,m).

Hence, the objective of the decision maker becomes to maximize

(5)
∑
g∈G

∑
t∈T

∑
m∈M

wg fg(t− 1)xg(t,m) pg(t,m) rg(t,m),

by setting the decision variables xg(t,m) optimally.

The decision variables are subject to constraints, though, due to scarcity in resources. Note

that a maximum number of attempts per sample unit is required in order to manage the costs and
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interviewer capacity. If a budgetary constraint and a capacity limitation are added to the model then

such a number becomes obsolete.

Let us define these two constraints. Both budget and capacity usage depend mainly on the

interview mode and on the outcome of each approach. Denote by bs(m) the costs that are incurred by

using mode m with a successful outcome. For the costs that are incurred by mode m that results in a

failure, we distinguish two types of costs: bfc(m) when the failure occurs due to failure of contact, and

bfr(m) when the failure occurs due to failure to respond. Let B be the total budget that is available

for the survey. An approach at time t using mode m bears the following costs

pg(t,m)
[
rg(t,m)bs(m) +

(
1− rg(t,m)

)
bfr(m)

]
+

(
1− pg(t,m)

)
bfc(m).

In general, the costs bg(t,m) at time t using mode m depend on the contact failures before time t.

These costs can be written as follows

bg(t,m) = xg(t,m)fg(t− 1)
[
pg(t,m)

[
rg(t,m)bs(m) +

(
1− rg(t,m)

)
bfr(m)

]
+

(
1− pg(t,m)

)
bfc(m)

]
,

with fg(t) given by (4). Hence, using this definition, the budgetary constraint that needs to be added

to our model is given by∑
g∈G

∑
t∈T

∑
m∈M

Ngbg(t,m) ≤ B.

A capacity constraint can be addressed in a manner analogous to the constraint on the budget.

Let C be the available capacity, measured by the number of interviewer hours available to survey the

sample. Similar to the budgetary cost structure, the required capacity depends on the interview mode

and on the outcome of each approach. Denote by cs(m), cfc(m), and cfr(m) the capacity utilized

when the approach is successful, or has failed due to contact failure, or failed due to a nonrespondent,

respectively. Following the same steps as above, the capacity constraint to be added to the model is

given by∑
g∈G

∑
t∈T

∑
m∈M

Ngcg(t,m) ≤ C,

with cg(t,m) defined as

cg(t,m) = xg(t,m)fg(t− 1)
[
pg(t,m)

[
rg(t,m)cs(m) +

(
1− rg(t,m)

)
cfr(m)

]
+

(
1− pg(t,m)

)
cfc(m)

]
.

Furthermore, at time t only one mode can be employed to approach a group, yielding the

constraint
∑

m∈M xg(t,m) ≤ 1. By combining the objectives with all the constraints, we can draft

our optimization problem as a binary programming problem in the following manner.

max
∑
g∈G

∑
t∈T

∑
m∈M

wg fg(t− 1)xg(t,m) pg(t,m) rg(t,m)

s.t.
∑
g∈G

∑
t∈T

∑
m∈M

Ngbg(t,m) ≤ B,

∑
g∈G

∑
t∈T

∑
m∈M

Ngcg(t,m) ≤ C,

∑
m∈M

xg(t,m) ≤ 1, ∀g ∈ G, ∀t ∈ T ,

fg(t) =
∏

m∈M
[xg(t,m)(1− pg(t,m)) + 1− xg(t,m)]fg(t− 1), ∀g ∈ G, ∀t ∈ T ,

fg(0) = 1, ∀g ∈ G,
xg(t,m) ∈ {0, 1}, ∀g ∈ G, ∀t ∈ T , ∀m ∈ M,

(6)
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with

bg(t,m) = xg(t,m)fg(t− 1)
[
pg(t,m)

[
rg(t,m)bs(m) +

(
1− rg(t,m)

)
bfr(m)

]
+(

1− pg(t,m)
)
bfc(m)

]
, ∀g ∈ G, ∀t ∈ T , ∀m ∈ M,

cg(t,m) = xg(t,m)fg(t− 1)
[
pg(t,m)

[
rg(t,m)cs(m) +

(
1− rg(t,m)

)
cfr(m)

]
+(

1− pg(t,m)
)
cfc(m)

]
, ∀g ∈ G, ∀t ∈ T , ∀m ∈ M,

Note that in this formulation, we have chosen to model the budgetary constraint and the capacity

restriction as a global constraint over all the groups. However, it is quite easy to divide the budget B

into budgets Bg for each group g, and then have a constraint per group. A similar remark holds for

the capacity restriction as well.

3.3 Algorithm

The solution of problem (6) is, however, not trivial. The objective function is a non-convex non-linear

function, and the constraints do not form a convex polytope either. As a consequence, our problem

is non-tractable even for small-sized problems (e.g., 1 group and 4 time slots!). However, this issue is

eliminated if (6) can be formulated as a Markov decision problem. In order to check this, note that at

any time t, it is sufficient to know fg(t) instead of the complete configuration xg(t
′,m) for t′ ≤ t for

all g. Hence, given fg(T ), the decision at time T is obvious when one also keeps track of the number

of times that mode m has been used for each group g. Since the decision at time T is completely

determined, one can then calculate the optimal decisions at time T − 1, and continue working back

towards the first time epoch. By keeping track of the time, the contact failure probability, and the

utilization of the different modes, the problem becomes completely Markovian and can be cast as a

Markov decision problem.

A Markov decision problem (see also [5]) can be solved by dynamic programming (or backward

recursion) with guaranteed convergence to the optimal solution. Note that the algorithm only needs T

iterations, and in each iteration only 2G·M actions need to be considered. Hence, for values of realistic

size, the algorithm is computationally feasible.

The optimal solution describes per group the best balance between various survey features. Then

ρg(s) will be equal to 1 for strategy s that matches this balance. If no such strategy s exists then the

final solution is given by a linear combination of closely related strategies (i.e., design features have

values close to those indicated by the optimal solution) such that the optimal quality level is achieved

and constraints are fulfilled. Then the allocations probabilities of the respective strategies are equal

to the coefficients of the linear combination thus computed.

3.4 Numerical example

The previous sections dealt with the theoretical model to solve the problem of resource allocation

within static adaptive survey designs. In this section, we illustrate our methodology by means of a

numerical example. The focus is on the optimal sequence of various modes.

In this setting, we drop the budget and the capacity constraints and we look instead at the

maximum number of attempts per mode. The example shows that the solution to this model is indeed

optimal, although, counterintuitive. Consider a survey sample in which all units belong to the same

group g. The set of available interview modes is M = {face-to-face, phone}. The survey fieldwork

is divided in T = 6 time slots. Table 3 gives the contact and response probabilities pg(t,m) and

rg(t,m) as estimated from previous such surveys and the maximum number of attempts k̄g(m) for

mode m ∈ M.
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Table 3: Input data for group g

Mode Probability t1 t2 t3 t4 t5 t6 k̄g(m)

Face-to-face
pg(t,m) 0.3 0.4 0.8 0.2 0.3 0.7

2
rg(t,m) 0.9 0.7 0.3 0.8 0.8 0.6

Phone
pg(t,m) 0.4 0.5 0.9 0.4 0.4 0.8

4
rg(t,m) 0.8 0.5 0.7 0.6 0.4 0.6

Note that there is a clear preference for contact at time slots t3 and t6 for both interview modes.

For response, on the other hand, the probabilities indicate more than 50% chance for positive response

except for an attempt by face-to-face at t3 and by phone at t5. Therefore, it is not obvious what time

slots should be chosen in order to maximize the total reward.

The strategy set is S = {s1, s2, s3, s4}, with

s1 = (T = 6, face-to-face, 2 attempts, phone, 4 attempts)

s2 = (T = 6, face-to-face, 3 attempts, phone, 4 attempts)

s3 = (T = 6, face-to-face, 2 attempts, phone, 3 attempts)

s4 = (T = 6, face-to-face, 3 attempts, phone, 3 attempts).

Using the algorithm from Section 3, we obtain the solution depicted in Table 4.

Table 4: Optimal solution – original setting

Time slot t1 t2 t3 t4 t5 t6 Response rate

Mode F2F F2F Ph Ph 0 Ph 0.753

Let us analyze this solution. It looks surprising that for the first time slot mode F2F is chosen

and not Ph, although the immediate reward is higher for Ph. However, considering the formula

given in (4) for the group average response, we see that the lower the contact probability for the

first time slot, the higher the future reward. Also, the response probability rg(t1,F2F) is higher than

rg(t1,Ph). The situation changes when rg(t1,F2F) < rg(t1,Ph). For example, take rg(t1,F2F) = 0.7.

As expected, the new optimal solution (see Table 5) uses phone as first approach interview mode.

Table 5: Optimal solution – different response probability at t1

Time slot t1 t2 t3 t4 t5 t6 Response rate

Mode Ph F2F Ph Ph F2F Ph 0.736

The structure of the solution given in Table 4 is motivated by the choice of k̄g(m). From t3
onward phone is the only interview mode left available. Thus, the choice for time slots t3, t4, and t6 is

logical. However, taking action 0 at t5 again looks counterintuitive. Since there are enough attempts

left for mode Ph and there are no budget or capacity constraints, it feels natural to choose for an

attempt to approach. The explanation lies in the value of the objective function that is higher in this

case (0.753 compared to 0.752 if the unit is approached).

The optimal solution in Table 4 does not employ all attempts available for mode Ph. Therefore,

we cannot obtain a different solution if we increase the number of attempts for this mode. Conse-

quently, selecting strategies s1 or s2 is not necessary. On the other hand, if we increase the number of

attempts to 3 for F2F, then the average response improves (see Table 6). The structure of the optimal

solution does not change much from the original setting. The only difference appears at t5 where this

time there are enough attempts for mode F2F, and selecting this mode leads to a higher reward.
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Table 6: Optimal solution – more attempts available

Time slot t1 t2 t3 t4 t5 t6 Response rate

Mode F2F F2F Ph Ph F2F Ph 0.755

We conclude that given the set S strategy s4 gives the maximum response rate, thus ρ(s4|g) = 1.

4 Conclusions

For every survey that is planned, survey organizations are confronted with the decision over the

necessary budget such that the resulting survey quality is above a pre-agreed level. In most cases, the

budget proves insufficient due to an increased effort to convince sample units to respond. Temporary

solutions can be found in replacing the expensive design with a cheaper one. That, however, has a

negative influence on the survey quality. Moreover, the decreasing response prevents expensive designs

from performing as well as it is expected. Therefore, a new perspective needs to be taken. Learning the

behavior patterns, i.e., the survey features that influence the willingness to participate into surveys,

for respondents and nonrespondents, can help with a more useful assignment of resources to surveys.

Striving for an optimal resource allocation can help with reducing the budget overruns.

In the current paper we give a brief overview of the ingredients of adaptive designs such as survey

strategies, population characteristics, contact and response probabilities, cost and quality functions

and strategy allocation probabilities. Tailoring of design features has been implemented in practice

but not necessarily as a result of an optimal balance between quality and costs. Our research aims

at optimizing the resource allocation for an adaptive survey design, where the focus is on interview

modes, number of time slots and constraints on costs and capacity.

One of the key components of adaptive designs that has not been discussed here is the estimation

of input probabilities. A great deal of attention has to be paid to this phase since the optimization

part builds upon this input. Issues such as time-dependency, history-dependency, and repeated shifts

between interview modes have to be taken into account when estimating the input probabilities.

As mentioned before, the current paper deals with aspects of static adaptive designs. In order

to extend to a dynamic setting, additional effort has to be first put into developing techniques to

collect, store and utilize paradata such that input parameters and strategy allocation probabilities

are updated in real-time. Once these techniques are defined, our method could address a dynamic

adaptive design.

Flexibility in addressing various objective functions is another aspect of interest. Recent lit-

erature on survey methodology argues that aiming for high response rates influences negatively the

bias of the estimators (see, e.g., [7] and [4]). Other quality measures, such as low variation in the

group response rates (i.e., representativeness of the respondent sample), have been indicated as more

suitable. Currently, the method presented in Section 3 cannot address such a quality function.

Future research aims at tackling these issues in order to develop a model that meets practical

needs. Intuitively, taking two survey designs with similar settings, an adaptive design is expected to

outperform the classical design since more information becomes available from historical data and the

design is tailored such that the group response rate is optimized.
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