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1 Introduction

Since the seminal work of [8], U -statistics have been widely studied to investigate the asymp-

totic properties of many statistics such as the sample variance, the Gini’s mean difference

and the Wilcoxon one-sample statistic, see [13] for other examples. One of the most powerful

tools used to derive the asymptotic behavior of U -statistics is the Hoeffding’s decomposition

introduced in [8]. In the i.i.d and weak dependent frameworks, it provides a decomposition of

a U -statistic into several terms having different orders of magnitudes, and in general the one

with the leading order determines the asymptotic behavior of the U -statistic, see [13, 3] and

the references therein for further details. A recent review of the properties of U -statistics in

various frameworks is presented in [9]. In the case of processes having a long-range dependent

structure, decomposition ideas are also crucial. However, in the case of Gaussian long-memory

processes, the classical Hoeffding’s decomposition may not provide the complete asymptotic

behavior of U -statistics because all terms of this decomposition may contribute to the limit,

see for example [5]. In this case, the asymptotic study of U -statistics can be achieved by

using an expansion in Hermite polynomials, see [4, 5]. For a large class of processes including

linear and nonlinear processes, a new decomposition is discussed in [9]. These authors use

martingale-based techniques to establish the asymptotic properties of U -statistics.

A very natural extension of U -statistics is the notion of U -processes which encompasses

a wide class of estimators. For example, [3] study the Grassberger-Proccacia estimator which

can be used to estimate the correlation dimension. In Section 5 of their work, the authors

investigate the asymptotic properties of U -processes when the underlying observations are

functionals of an absolutely regular process, that is, short-memory processes. As far as we

know, the asymptotic properties of U -processes in the case of long-range dependence setting

have not been established yet, and this is the subject of this paper. More precisely, our

contribution consists first in extending the results of [3] in order to address the long-range

dependence case, second in extending the results obtained in [4] to functions of two variables

and third in extending the results of [9] to U -processes. The authors of the latter paper estab-

lish the asymptotic properties of U -statistics involving causal but non necessarily Gaussian

long-range dependent processes whereas, in our paper, we establish the asymptotic proper-

ties of U -processes involving Gaussian long-range dependent processes. The authors in [9]

use a martingale decomposition and we use a Hoeffding decomposition or a decomposition in

Hermite polynomials.
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Consider the U -process defined by

(1) Un(r) =
1

n(n− 1)

∑

1≤i6=j≤n

1{G(Xi,Xj)≤r} , r ∈ I

where I is an interval included in R, G is a symmetric function i.e. G(x, y) = G(y, x) for all

x, y in R, and the process (Xi)i≥1 satisfies the following assumption:

(A1) (Xi)i≥1 is a stationary mean-zero Gaussian process with covariances ρ(k) = E(X1Xk+1)

satisfying:

ρ(0) = 1 and ρ(k) = k−DL(k), 0 < D < 1 ,

where L is slowly varying at infinity and is positive for large k.

Note that, for a fixed r, Un(r) is a U -statistic based on the kernel h(·, ·, r) where

h(x, y, r) = 1{G(x,y)≤r} ,∀x, y ∈ R and r ∈ I .(2)

We show in this paper that the asymptotic properties of the U -process Un(·) depends on the

value of D and on the Hermite rank m of the class of functions {h(·, ·, r) − U(r), r ∈ I},
defined in Section 2. We obtain the rate of convergence of Un(·) and also provide the limiting

process when D > 1/2, m = 2 and when D < 1/m, m = 1, 2. The convergence rate in the

former case is of order
√
n whereas it is of order nmD/2/L(n)m/2 in the latter. These results

are stated in Theorems 1 and 2, respectively. They can be applied to derive the asymptotic

properties of well-known robust location and scale estimators such as the Hodges-Lehmann

estimator defined in [7] and the Shamos scale estimator proposed by [14] and analyzed by [2].

Theorems 1 and 2 allow us to establish novel asymptotic properties of these estimators in the

long-range dependence context. The most striking result is that these robust estimators have

the same asymptotic distribution as the classical estimators.

The paper is organized as follows. In Section 2, Theorems 1 and 2 are stated. In

Section 3, we derive the asymptotic properties of some quantile estimators. Section 4 presents

new asymptotic results in the context of long-range dependence. In this section, central and

non-central limit theorems are provided for several statistics as an illustration of the theory

presented in Sections 2 and 3. These statistics are the Hodges-Lehmann estimator defined

in [7], and a robust scale estimator proposed by [14] and [2]. In Section 5, we investigate

through numerical experiments the finite-sample properties of the Hodges-Lehmann estimator

and illustrate its robustness with respect to the presence of additive outliers.

2 Main results

We start by introducing the terms involved in the Hoeffding’s decomposition of [8]. Recall the

definition of Un(·) in (1) and let U(·) be defined as

U(r) =

∫

R2

h(x, y, r)ϕ(x)ϕ(y)dxdy , for all r in I ,(3)
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where ϕ denotes the p.d.f of a standard Gaussian random variable and h is given by (2). For

all x in R, and r in I, let us define

h1(x, r) =

∫

R

h(x, y, r)ϕ(y)dy .(4)

The Hoeffding decomposition amounts to expressing, for all r in I, the difference

(5) Un(r)− U(r) =
1

n(n− 1)

∑

1≤i6=j≤n

[h(Xi,Xj , r)− U(r)] ,

as

(6) Un(r)− U(r) = Wn(r) +Rn(r) ,

where

(7) Wn(r) =
2

n

n∑

i=1

{h1(Xi, r)− U(r)} ,

and

(8) Rn(r) =
1

n(n− 1)

∑

1≤i6=j≤n

{h(Xi,Xj , r)− h1(Xi, r)− h1(Xj , r) + U(r)} .

We now define the Hermite rank of the class of functions {h(·, ·, r)−U(r), r ∈ I} which plays a

crucial role in understanding the asymptotic behavior of the U -process Un(·). We shall expand

the function (x, y) 7→ h(x, y, r) in a Hermite polynomials basis of L2
ϕ(R

2), that is, the L2 space

on R
2 equipped with product standard Gaussian measures. We use Hermite polynomials

with leading coefficients equal to one which are: H0(x) = 1, H1(x) = x, H2(x) = x2 − 1,

H3(x) = x3 − 3x, . . . . We get

(9) h(x, y, r) =
∑

p,q≥0

αp,q(r)

p!q!
Hp(x)Hq(y) , in L2

ϕ(R
2) ,

where

(10) αp,q(r) = E[h(X,Y, r)Hp(X)Hq(Y )] ,

and where (X,Y ) is a standard Gaussian vector that is X and Y are independent standard

Gaussian random variables. Thus,

(11) E[h2(X,Y, r)] =
∑

p,q≥0

α2
p,q(r)

p!q!
.

Note that α0,0(r) is equal to U(r) for all r, where U(r) is defined in (3). The Hermite

rank of h(·, ·, r) is the smallest positive integer m(r) such that there exist p and q satisfying

p+ q = m(r) and αp,q(r) 6= 0. Thus, (9) can be rewritten as

(12) h(x, y, r)− U(r) =
∑

p,q≥0

p+q≥m(r)

αp,q(r)

p!q!
Hp(x)Hq(y) , in L2

ϕ(R
2) .

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS005) p.40



The Hermite rank m of the class of functions {h(·, ·, r) − U(r) , r ∈ I} is the smallest

index m = p+ q ≥ 1 such that αp,q(r) 6= 0 for at least one r in I, that is, m = infr∈I m(r).

By integrating with respect to y in (9), we obtain the expansion in Hermite polynomials

of h1 as a function of x:

(13) h1(x, r)− U(r) =
∑

p≥1

αp,0(r)

p!
Hp(x) , in L2

ϕ(R) ,

where L2
ϕ(R) denotes the L2 space on R equipped with the standard Gaussian measure. Let

τ(r) be the smallest integer greater than or equal to 1 such that ατ,0(r) 6= 0, that is, the

Hermite rank of the function h1(·, r) − U(r). The Hermite rank of the class of functions

{h1(·, r) − U(r) , r ∈ I} is the smallest index τ ≥ 1 such that ατ,0(r) 6= 0 for at least one r.

Since τ(r) ≥ m(r), for all r in I, one has

(14) τ ≥ m .

In the sequel, we shall assume that m is equal to 1 or 2. As shown in Section 4, this covers

most of the situations of practical interest. Theorem 1, given below, establishes a central limit

theorem for the U -process {√n(Un(r)− U(r)), r ∈ I} when

D > 1/m and m = 2 .

Theorem 1. Let I be a compact interval of R. Suppose that the Hermite rank of the class

of functions {h(·, ·, r) − U(r) , r ∈ I} as defined in (12) is m = 2 and that Assumption (A1)

is satisfied with D > 1/2. Assume that h and h1, defined in (2) and (4), satisfy the three

following conditions:

(i) There exists a positive constant C such that for all s, t in I, u, v in R,

(15) E[|h(X + u, Y + v, s)− h(X + u, Y + v, t)|] ≤ C|t− s| ,

where (X,Y ) is a standard Gaussian vector.

(ii) There exists a positive constant C such that for all k ≥ 1,

(16) E[|h(X1 + u,X1+k + v, t)− h(X1,X1+k, t)|] ≤ C(|u|+ |v|) ,

(17) E[|h(X1,X1+k, s)− h(X1,X1+k, t)|] ≤ C|t− s| .

(iii) There exists a positive constant C such that for all t, s in I, and x, u, v in R,

(18) |h1(x+ u, t)− h1(x+ v, t)| ≤ C(|u|+ |v|) ,

and

(19) |h1(x, s)− h1(x, t)| ≤ C|t− s| .
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Then the U -process

{√n(Un(r)− U(r)), r ∈ I}
defined in (1) and (3) converges weakly in the space of cadlag functions D(I) equipped with

the topology of uniform convergence to the zero mean Gaussian process {W (r), r ∈ I} with

covariance structure given by

(20) E[W (s)W (t)] = 4 Cov(h1(X1, s), h1(X1, t))

+ 4
∑

ℓ≥1

{Cov(h1(X1, s), h1(Xℓ+1, t)) + Cov(h1(X1, t), h1(Xℓ+1, s))} .

The proof of the theorem follows from the decomposition (6) and uses that {√nWn(r), r ∈
I} converges weakly in the space of cadlag functions D(I) equipped with the topology of uni-

form convergence and supr∈I
√
n|Rn(r)| = oP (1). For a detailed proof, we refer the reader to

[10].

When D < 1/m, Wn and Rn are not the leading term and the remainder term, respec-

tively. Note that, on one hand, for a fixed r, Corollary 2 of [4] gives Rn(r) = OP (n
−DL(n))

for any D in (0, 1). On the other hand, if D < 1/τ , where τ is defined in (14), Theorem 6 of

[1] implies that Wn(r) = OP (n
−τD/2L(n)τ/2) and if D is in (1/τ, 1/m), Wn(r) = OP (n

−1/2)

by Theorem 4 of [1]. Thus, if for instance, τ = m = 2, Wn(r) and Rn(r) may be of the

same order OP (n
−DL(n)). Hence, to study the case D < 1/m, we shall introduce a different

decomposition of Un(·) based on the expansion of h in the basis of Hermite polynomials given

by (9). Thus, Un(r) defined in (1) can be rewritten as follows

(21) n(n− 1){Un(r)− U(r)} = W̃n(r) + R̃n(r) ,

where

(22) W̃n(r) =
∑

1≤i6=j≤n

∑

p,q≥0

p+q≤m

αp,q(r)

p!q!
Hp(Xi)Hq(Xj) .

Introduce also the Beta function

(23) B(α, β) =

∫ ∞

0
yα−1(1 + y)−α−βdy =

Γ(α)Γ(β)

Γ(α+ β)
, α > 0, β > 0 .

The limiting processes which appear in the next theorem are the standard fractional Brownian

motion (fBm) (Z1,D(t))0≤t≤1 and the Rosenblatt process (Z2,D(t))0≤t≤1. They are defined

through multiple Wiener-Itô integrals by

(24) Z1,D(t) =

∫

R

[∫ t

0
(u− x)

−(D+1)/2
+ du

]
dB(x), 0 < D < 1 ,

and

(25) Z2,D(t) =

∫ ′

R2

[∫ t

0
(u− x)

−(D+1)/2
+ (u− y)

−(D+1)/2
+ du

]
dB(x)dB(y), 0 < D < 1/2 ,

where B is the standard Brownian motion, see [6]. The symbol
∫ ′

means that the domain of

integration excludes the diagonal. Note that Z1,D and Z2,D are dependent but uncorrelated.

The following theorem treats the case D < 1/m where m = 1 or 2.
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Theorem 2. Let I be a compact interval of R. Suppose that Assumption (A1) holds with D <

1/m, where m = 1 or 2 is the Hermite rank of the class of functions {h(·, ·, r) −U(r) , r ∈ I}
as defined in (12). Assume the following:

(i) There exists a positive constant C such that, for all k ≥ 1 and for all s, t in I,

(26) E[|h(X1,X1+k, s)− h(X1,X1+k, t)|] ≤ C|t− s| .

(ii) U is a Lipschitz function.

(iii) The function Λ̃ defined, for all s in I, by

(27) Λ̃(s) = E[h(X,Y, s)(|X| + |XY |+ |X2 − 1|)] ,

where X and Y are independent standard Gaussian random variables, is also a Lipschitz

function.

Then, {
nmD/2L(n)−m/2 (Un(r)− U(r)) ; r ∈ I

}

converges weakly in the space of cadlag functions D(I), equipped with the topology of uniform

convergence, to

{2α1,0(r)k(D)−1/2Z1,D(1); r ∈ I} , if m = 1 ,

and to

{k(D)−1
[
α1,1(r)Z1,D(1)

2 + α2,0(r)Z2,D(1)
]
; r ∈ I} , if m = 2 ,

where the fractional Brownian motion Z1,D(·) and the Rosenblatt process Z2,D(·) are defined

in (24) and (25) respectively and where

(28) k(D) = B((1−D)/2,D) ,

where B is the Beta function defined in (23).

For a detailed proof, we refer the reader to [10].

3 Asymptotic behavior of empirical quantiles

We shall apply Theorems 1 and 2 in the preceding section to empirical quantiles. Recall

that if V : I −→ [0, 1] is a non-decreasing cadlag function, where I is an interval of R, then

its generalized inverse V −1 is defined by V −1(p) = inf{r ∈ I, V (r) ≥ p}. This applies to

Un(r) and U(r) since these are non-decreasing functions of r. We derive in the following

corollaries the asymptotic behavior of the empirical quantile U−1
n (·) using Theorems 1, 2 and

the functional Delta method (Theorem 20.8 in [15]).

Corollary 1. Let p be a fixed real number in (0, 1). Assume that the conditions of Theorem

1 are satisfied. Suppose also that there exists some r in I such that U(r) = p, that U is

differentiable at r and that U ′(r) is non null. Then, as n tends to infinity,

√
n(U−1

n (p)− U−1(p))
d−→ −W (U−1(p))/U ′(U−1(p)) ,

where W is a Gaussian process having a covariance structure given by (20).
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Corollary 2. Let p be a fixed real number in (0, 1). Assume that the conditions of Theorem

2 are satisfied. Suppose also that there exists some r in I such that U(r) = p, that U is

differentiable at r and that U ′(r) is non null. Then, as n tends to infinity,

nmD/2

L(n)m/2
(U−1

n (p)− U−1(p))

converges in distribution to

−2k(D)−1/2α1,0(U
−1(p))

U ′(U−1(p))
Z1,D(1) , if m = 1 ,

and to

−k(D)−1
{
α1,1(U

−1(p))Z1,D(1)
2 + α2,0(U

−1(p))Z2,D(1)
}
/U ′(U−1(p)) , if m = 2 ,

where Z1,D(·) and Z2,D(·) are defined in (24) and (25) respectively, k(D) in (28) and αp,q(·)
is defined in (10).

4 Applications

In this section, we explain how the results established in Sections 2 and 3 can be used to

study the asymptotic properties of estimators based on U -processes in the long-range depen-

dence setting such as the Hodges-Lehmann estimator and the Shamos scale estimator. Other

examples of application can be found in [12] and [10].

4.1 Hodges-Lehmann estimator

Consider the problem of estimating the location parameter of a long-range dependent Gaussian

process. Assume that (Yi)i≥1 satisfy Yi = θ +Xi where (Xi)i≥1 satisfy Assumption (A1). To

estimate the location parameter θ, [7] suggest using the median of the average of all pairs of

observations. The statistic they propose is

(29) θ̂HL = median

{
Yi + Yj

2
; 1 ≤ i < j ≤ n

}
= θ + median

{
Xi +Xj

2
; 1 ≤ i < j ≤ n

}
.

Define the U -process Un(r), r ∈ R by (1), where G(x, y) = (x+ y)/2. The Hodges-Lehmann

estimator may be then expressed as

θ̂HL = θ + U−1
n (1/2) .

We proved in [10] that the following result holds.

Proposition 1. Assume that (Yi)i≥1 satisfy Yi = θ + Xi where (Xi)i≥1 satisfy Assumption

(A1) then the Hodges-Lehmann estimator θ̂HL defined in (29) satisfies

nD/2L(n)−1/2(θ̂HL − θ)
d−→ N (0, 2(−D + 1)−1(−D + 2)−1) ,

and has the same asymptotic behavior as the sample mean Ȳn = n−1
∑n

i=1 Yi.
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4.2 Shamos scale estimator

Assume that (Yi)i≥1 satisfy Yi = σXi where (Xi)i≥1 satisfy Assumption (A1). The results

of the previous section can be used to derive the properties of the estimator of the scale σ

proposed by [14] and [2]. From Y1, . . . , Yn, it is defined by

(30) σ̂SB = c median{|Yi − Yj|; 1 ≤ i < j ≤ n} = c σ median{|Xi −Xj |; 1 ≤ i < j ≤ n} ,

where c ≈ 1.0483 to achieve consistency for σ in the case of Gaussian distribution. Here

G(x, y) = |x− y|. The following proposition is proved in [10].

Proposition 2. Assume that (Yi)i≥1 satisfy Yi = σXi where (Xi)i≥1 satisfy Assumption (A1).

Then the Shamos-Bickel scale estimator σ̂SB defined in (30) satisfies:

(i) If 1/2 < D < 1,

√
n(σ̂SB − σ)

d−→ N (0, σ̄2) , as n → ∞ ,

where

σ̄2 =
2c2σ2

ϕ2(1/(c
√
2))


Var(h1(Y1/σ, 1/c)) + 2

∑

k≥1

Cov(h1(Y1/σ, 1/c), h1(Yk+1/σ, 1/c))




and h1 is given by

h1(x, r) =

∫

R

1{|x−y|≤r}ϕ(y)dy = Φ(x+ r)− Φ(x− r) ,

Φ and ϕ being the c.d.f and the p.d.f of a standard Gaussian random variable, respec-

tively.

(ii) If 0 < D < 1/2,

k(D)nDL(n)−1(σ̂SB − σ)
d−→ σ

2
(Z2,D(1) − Z1,D(1)

2) , as n → ∞ ,

where k(D) is defined in (28) and the processes Z1,D(·) and Z2,D(·) are defined in (24)

and (25). The square root of the sample variance estimator (
∑n

i=1(Yi− Ȳn)
2/(n− 1))1/2

has, in this case, the same asymptotic behavior as σ̂SB.

Remark 1. We proved in [11] that in the case (i) of Proposition 2, the asymptotic relative

efficiency of σ̂SB with respect to the square root of the sample variance estimator is larger

than 86.31%.

5 Numerical experiments

In this section, we investigate the robustness properties of the Hodges-Lehmann estimator

defined in Section 4 using Monte Carlo experiments. We shall regard the observations Xt,

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS005) p.45



t = 1, . . . , n, as a stationary series Yt, t = 1, . . . , n, corrupted by additive outliers of magnitude

ω. Thus we set

(31) Xt = Yt + ωWt,

where Wt are i.i.d. Bernoulli(p/2) random variables. (Yt)t is a stationary time series and it is

assumed that Yt and Wt are independent random variables. The empirical study is based on

5000 independent replications with n = 600. We consider the cases where (Yt) are Gaussian

ARFIMA(1, d, 0) processes, that is,

(32) Yt = (I − φB)−1(I −B)−dZt ,

where B denotes the backward operator, φ = 0.2 and d = 0.1 corresponding to D = 0.8,

where D is defined in (A1) and (Zt) are i.i.d N (0, 1).

In the sequel, we illustrate the results of Proposition 1. In Figure 1, the empirical density

functions of θ̂HL and X̄n are displayed when Xt has no outliers, that is ω = 0 in (31) (left)

and when there are some outliers such as p = 10% and ω = 10 in (31) (right). In the case of

no outlier (left part of Figure 1) both shapes are similar to the limit indicated in Proposition

1, that is, a Gaussian density with mean zero. In the presence of outliers in the observations

(right part of Figure 1) the sample mean is much more sensitive to the presence of outliers

than the Hodges-Lehmann estimator. Further numerical experiments can be found in [12],

[11] and [10].
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Figure 1: Empirical densities of the quantities θ̂HL (’*’) and X̄n (’o’) for the ARFIMA(1, d, 0) model with

d = 0.1 without outliers (left) and with outliers such as p = 10% and ω = 10 (right).
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