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1 Introduction

Let (X1, Y1), . . . , (Xn, Yn) be observations taken at equal time intervals and for each i ∈ {1, . . . , n},
define Hi(x, y) = P(Xi ≤ x, Yi ≤ y). Suppose one is asking if at some undetermined moment B ∈
{1, . . . , n − 1}, the joint distribution of these vectors changes. In other words, one wants to test for

the null and alternative hypotheses

H′0 : H1 = · · · = Hn

H′1 : H1 = · · · = HB 6= HB+1 = · · · = Hn for some B ∈ {1, . . . , n− 1}.

Here, it is understood that HB 6= HB+1 means that HB(x0, y0) 6= HB+1(x0, y0) for at least one pair

(x0, y0) ∈ R2.

Some statistical procedures have been proposed to compare H′0 and H′1. Many of them are

parametric, i.e. H1, . . . ,Hn are supposed to belong to a given parametric family. This approach was
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privileged by Gombay and Horváth (1997), Jandhyala et al. (2009) and Brodsky and Darkhovsky

(2005). Nonparametric methods have also been proposed (see e.g. Zou et al. (2007), Antoch and

Hušková (2001), Antoch et al. (2008), Csörgő and Horváth (1988) and Gombay and Horváth (1995)).

It is worth noting that the alternative hypothesisH′1 hides three possible sources of change-point,

namely

(i) a change in the univariate distribution of the series X1, . . . , Xn;

(ii) a change in the univariate distribution of the series Y1, . . . , Yn;

(iii) a change in the dependence structure of (Xi, Yi), i ∈ {1, . . . , n}.

As a consequence, if one of the methodologies cited above is used, it is not possible to identify the

source of the change in the event of a rejection of H′0. In the study of many phenomena, especially in

finance, hydrology and climatology, being able to identify the nature of a change-point, i.e. patterns

of type (i), (ii) and (iii), would give precious informations on the underlying process that generates

the observed data.

In this paper, tests for the detection of change-points of type (iii) are proposed. So far, the only

available procedure for that problem is the test of Dias and Embrechts (2009). However, this method

is parametric in the sense that the dependence structure is supposed to belong to a given parametric

family and the margins are assumed to be known. These assumptions are often unrealistic in practice.

The statistics proposed in this work assume nothing about the form of the underlying distributions.

The starting point is the possibility to extract the dependence structure of a multivariate distribution,

i.e. its copula. Specifically, if one assumes that for all i ∈ {1, . . . , n}, the marginal distributions

Fi(x) = P(Xi ≤ x) and Gi(y) = P(Yi ≤ y) are continuous, then Sklar’s theorem ensures that there

exist unique copulas C1, . . . , Cn such that

Hi(x, y) = Ci{Fi(x), Gi(y)};

see Sklar (1959). With this notation, the null and alternative hypotheses of a change-point in the

dependence structure of a bivariate time series can be stated as

H0 : C1 = · · · = Cn

H1 : C1 = · · · = CB 6= CB+1 = · · · = Cn for some B ∈ {1, . . . , n− 1}.

The procedures proposed in this work are based on Kendall’s measure of association. This

dependence index is attractive in our context since its population value depends only on the underlying

copula of a random couple. Moreover, its sample version is easy to compute and a quick, valid re-

sampling procedure is available for inference purposes. The test statistics that will be investigated in

this work are L1–, L2–, and L∞–distances of an empirical process defined as differences of Kendall’s

measures of association. Their asymptotic distributions are derived and the validity of a re-sampling

procedure to compute p-values is established.

The paper is organized as follows. In Section 2, sample and bootstrapped versions of Kendall’s

tau are described. In Section 3, three test statistics for the detection of a change-point in the cop-

ula structure of a bivariate time series are proposed and the required asymptotics are established.

Examples on simulation series from the Canadian regional climate model are offered in Section 4.
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2 Kendall’s tau : population, sample and bootstrapped versions

Consider a pair (X,Y ) of random variables with cumulative distribution function H(x, y) = P(X ≤
x, Y ≤ y) and marginals F and G. Kendall’s tau for this random vector is defined by τ(H) =

4EH{H(X,Y )} − 1, where EH denotes expectation with respect to H. By the change of variable

u = F (x) and v = G(y), one can show that

τ(H) = τ(C) = 4

∫
[0,1]2

C(u, v)dC(u, v)− 1,

where C is the unique copula associated to H via C(u, v) = H{F−1(u), G−1(v)}. It is then clear that

Kendall’s measure of association is only linked to the dependence structure of H. This feature will be

exploited later in order to come up with statistical methodologies for the detection of change-points

in the copula that underlies the joint distribution of bivariate observations.

Now suppose that n ≥ 2 independent copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ) are observed. An

unbiased estimation of τ(C) based on the subsample (XI , YI), . . ., (XJ , YJ), where 1 ≤ I < J ≤ n, is

given by

τI:J =
2

(J − I + 1)(J − I)

J∑
i,j=I

Qij − 1,(1)

where

Qij = I {(Xi −Xj)(Yi − Yj) > 0}

and I(·) is the indicator of a set. When Qij = 1, the pairs (Xi, Yi) and (Xj , Yj) are said to be

concordant. When the number of observations used to estimate Kendall’s tau increases to infinity,

τI:J tends to the normal distribution. In particular, T1:n =
√
n{τ1:n − τ(C)} converges in law to

T ∼ N (0, σ2τ ) as n → ∞, where σ2τ = 16V{H(X,Y ) − H̄(X,Y )} and H̄(x, y) = P(X > x, Y > y) is

the survival function of (X,Y ). This result can be deduced from the theory of U -statistics; see Lee

(1990).

3 The test statistics and the computation of p-values

In what follows, consider a series of independent observations (X1, Y1), . . ., (Xn, Yn), where (Xi, Yi) ∼
Hi. It is also supposed that the marginal distributions are stable, i.e. Xi ∼ F and Yi ∼ G for all

i ∈ {1, . . . , n}. Although these requirements are often not met in practice, it is recommended to work

with the residuals of models adjusted for the marginals. The idea is detailed in Section 5.

Denote by Ci the underlying copula of Hi, that is

Ci(u, v) = Hi{F−1(u), G−1(v)}.

If the alternative hypothesis H1 holds, then there exists a B ∈ {1, . . . , n− 1} and two copulas D1, D2

such that Ci = D1 for i ≤ B and Ci = D2 for i > B. As a consequence, τ(C1) = · · · = τ(CB) 6=
τ(CB+1) = · · · = τ(Cn) whenever τ(D1) 6= τ(D2). Since the empirical version of Kendall’s tau

based on i.i.d. observations is unbiased for its population version, one has E(τ1:B) = τ(D1) and

E(τB+1:n) = τ(D2). Hence, in the case when B is known and as long as τ(D1) 6= τ(D2), a consistent

test would be based on a suitably standardized version of τ1:B − τB+1:n.
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In practice, the true location of the change is generally unknown. In order to test for a change-

point in the dependence structure at an unknown location, an idea is to consider all possible differences

of empirical Kendall’s tau computed for the sets {1, . . . ,B}∪{B+ 1, . . . , n}, where B ∈ {2, . . . , n− 2}.
To this end, let λn,B = B/n and define the empirical process

(2) KBn = λn,B(1− λn,B)
√
n (τ1:B − τB+1:n)

indexed by B ∈ {2, . . . , n−2}. Note that the factor λn,B(1−λn,B)
√
n in the above definition is chosen so

that KBn converges in distribution. Indeed, one can show that KBn converges in law to N (0, λ(1−λ)σ2τ )

under H0, where B depends on n in such a way that λ = limn→∞ λn,B ∈ (0, 1). Natural statistics

based on L1–, L2–, and L∞–distances of the vector Kn = (K2
n, . . . ,Kn−2

n ) are

(3) Kn1 =
1

n

n−2∑
B=2

∣∣KBn ∣∣ , Kn2 =
1

n

n−2∑
B=2

∣∣KBn ∣∣2 and Kn3 = max
2≤B≤n−2

∣∣KBn ∣∣ .
Their asymptotic behavior is described in the next proposition, whose proof is available upon request.

Here and in the sequel,  means convergence in distribution.

Proposition 1 Under H0,

Kn1  ΥC

∫ 1

0
|G(t)|dt, Kn2  Υ2

C

∫ 1

0
|G(t)|2 dt and Kn3  ΥC sup

t∈[0,1]
|G(t)| ,

where ΥC depends on the common copula of (X1, Y1), . . . , (Xn, Yn) under H0 and G is a Brownian

bridge, i.e. a continuous and centered Gaussian process defined on [0, 1] with G(0) = G(1) = 0 and

E{G(s)G(t)} = min(s, t)− st.

In view of Proposition 1, the asymptotic distributions of Kn1, Kn2 and Kn3 depend on the

unknown underlying copula C of the population under H0. This causes an obvious problem when

trying to compute the p-values of the tests. A solution would be to use permutations, as in Horváth

and Hušková (2005). This approach is not very attractive due to its computational complexity. This

issue will rather be tackled from a multiplier version of the process {KBn , 2 ≤ B ≤ n− 2}. To this end,

note that KBn can be re-written, under H0, as

KBn =
√
λB,n(1− λB,n)T1:B − λB,n

√
1− λB,n TB+1:n,

where TI:J =
√
J − I + 1{τI:J−τ(C)}. From this representation, the multiplier bootstrap (see van der

Vaart and Wellner, 1996; Kosorok, 2008) versions of KBn can be defined, for h ∈ {1, . . . ,M}, by

K̂B,(h) =
√
λB,n(1− λB,n) T̂

(h)
1:B − λB,n

√
1− λB,n T̂ (h)

B+1:n,

where

T̂
(h)
I:J =

4

(J − I + 1)3/2

∑
i,j∈[I,J ]

(
g
(h)
i

ḡ
(h)
I:J

− 1

)
Qij , with ḡ

(h)
I:J =

g
(h)
I + · · ·+ g

(h)
J

J − I + 1
.

Multiplier versions of the three test statistics are then given by

K̂
(h)
1 =

1

n

n∑
B=1

∣∣∣K̂B,(h)∣∣∣ , K̂
(h)
2 =

1

n

n∑
B=1

∣∣∣K̂B,(h)∣∣∣2 and K̂
(h)
3 = max

1≤B≤n

∣∣∣K̂B,(h)∣∣∣ .
The validity of the method under H0 is stated in the next proposition. Its proof is available upon

request.
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Proposition 2 For each j ∈ {1, 2, 3}, one has(
Knj , K̂

(1)
j , . . . , K̂

(M)
j

)
 
(
Kj , K̃

(1)
j , . . . , K̃

(M)
j

)
under H0, where K̃

(1)
j , . . . , K̃

(M)
j are independent copies of Kj.

For each j ∈ {1, 2, 3}, let

LM,j(t) =
1

M

M∑
h=1

I
(
K̂

(h)
j ≤ t

)
.

Proposition 2 ensures that under the null hypothesis,

pM,1 = 1− LM,1 (Kn1) , pM,2 = 1− LM,2 (Kn2) and pM,3 = 1− LM,3 (Kn3)

are asymptotically valid p-values, as min(M,n)→∞, for the tests based on Kn1, Kn2 and Kn3.

4 Illustrations on climatic data sets

We illustrate the proposed tests statistic with climatic data, more precisely with long-run simulations

issued from climate models. Hereafter, we first provide a general description of the data and then

develop two applications.

4.1 General description of the data

According to IPCC (2007, Chapter 8): “Climate models are based on well-established physical princi-

ples and have been demonstrated to reproduce observed features of recent climate (...) and past climate

changes (...). There is considerable confidence that [these models] provide credible quantitative esti-

mates of future climate change, particularly at continental and larger scales”. However, “confidence

in the changes projected by global models decreases at smaller scales”.

To overcome this problem, climatologists have developed regional climate models in order to

be able to study climate change at both regional and local scales. A regional climate model is a

high-resolution (e.g. 45 x 45 km) limited-area model nested in a low-resolution (typically of 300 x 300

km) global model over the region of interest, e.g. North America. Large-scale information from the

global model is transferred to the regional model by forcing its lateral boundaries with the values of

the global model; see Caya et al. (1995).

The data sets used in Sections 4.2–4.3 result from simulated observations with respect to a

regional climate model. More specifically, the simulated data were performed with the Canadian

Regional Climate Model (CRCM4.2.3; Caya and Laprise, 1999; Music and Caya, 2007). The CRCM

data has been generated and supplied by Ouranos, consortium on regional climatology and adaptation

to climate change. The runs were driven by atmospheric fields taken from simulation output of

the third generation Canadian Coupled Global Climate Model (CCGCM3; Flato and Boer, 2001;

McFarlane et al., 2005; Scinocca et al., 2008).

The domain of simulation covers North-America (AMNO, 201 x 193 grid points) with a horizon-

tal grid-sized mesh of 45 km (true at 60 N). A spectral nudging technique was applied to large-scale

winds (Riette and Caya, 2002) within the interior of the regional domain to keep CRCM’s large scale

flow close to its driving data.
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To take into account a potential variability in the global climate model, the initial conditions

are slightly modified. In the terminology used in climatology, different members of the simulation are

thus obtained. Both global and regional simulations were performed according to IPCC “observed

20th century” scenario for years 1961-2000 and scenario A2 for greenhouse gas and aerosol projected

evolution for years 2001-2100 (Nakicenovic et al., 2000).

In climatic projections, many variables are simulated in order to model most physical processes.

In the applications presented below, we focus on precipitation and runoff for small watersheds located

in the northern part of the province of Québec, namely Pyrite and Arnaud. It is important to note

that runoff is obtained by putting in adequacy the atmospheric balance and the hydrologic balance

(Peixoto and Oort, 1992), without making use of a rainfall-runoff model.

The two applications that are detailed in Sections 4.2–4.3 highlight the importance of stabilizing

the margins before testing for a change in the dependence structure. For the two examples, various

kinds of changes in the mean are apparent. Hence, the following steps were accomplished:

(S1) Hypothesis testing based on the statistics Kn1, Kn2 and Kn3 computed from the original sample

(X1, Y1), . . . , (Xn, Yn);

(S2) Test for a smooth change in the mean of the two marginal series based on the following model

θi =


µ1, 1 ≤ i ≤ K1;(
K2 − i
K2 −K1

)
µ1 +

(
i−K1

K2 −K1

)
µ2, K1 < i < K2;

µ2, K2 ≤ i ≤ n .

(4)

(S3) In the case of a significant marginal change-points identified in step (ii), estimate (K̂1, K̂2) as

advocated by Lombard (1987) via

(K̂1, K̂2) = arg max
1≤K1<K2≤n


∣∣∣∣∣∣
K2∑

j=K1+1

j∑
`=1

{
φ(X`)− φ̄

σφ

}∣∣∣∣∣∣
/
σ

(
K1

n
,
K2

n

) ,(5)

where φ(u) = 2u− 1 is Wilcoxon’s score function, φ̄, σφ are the mean and standard deviation of

φ{1/(n+ 1)}, . . . , φ{n/(n+ 1)}, and

σ2(u, v) =
(1− u)3(1 + 3u)

12
− (1− v)3(1 + 3v)

12
− (1− v)2(v2 − u2)

2
.

and stabilize the mean based on the least-square estimators (µ̂1, µ̂2) (see Quessy et al., 2011,

equ. 6 and 7);

(S4) Perform the three tests for the detection of change-points in the dependence based on the sta-

bilized pseudo-sample (X1,n, Y1,n), . . . , (Xn,n, Yn,n).

Step S1 has been included in order to illustrate the importance of stabilizing the marginal

series. Step S2 uses a Cramér–von Mises statistics proposed by Lombard (1987) for the detection of

smooth changes in the mean. As shown by Quessy et al. (2011) in their extensive simulation study,

this test statistic performs very well to identify many kinds of change-points, including the general

smooth-change pattern, as well as abrupt and onset of trend changes.
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4.2 Application 1: testing change in dependence between two members

The first dataset concerns a bivariate time series representing the simulated mean annual precipi-

tation driven by two different members of the MCCG3.1 for the Pyrite watershed. The latter are

called respectively aet and aev. The simulation period ranges from 1961 to 2099. The three tests

for the detection of a change in the dependence structure were first performed on the original se-

ries shown in Figure 1. The estimated p-values, based on M = 10 000 multiplier samples, were

(pM,1, pM,2, pM,3) = (0.0020, 0.0031, 0.0210). Hence, the three tests concluded to a significant change-

point in the dependence structure. Based on the estimator

B̂ = arg max
2≤B≤n−2

∣∣KBn ∣∣ ,(6)

implicit in the definition of Kn3 this change happened in 2004.

1960 1980 2000 2020 2040 2060 2080 2100

1.5

2

2.5

Year

pc
p 

[m
m

/j]
, a

et

1960 1980 2000 2020 2040 2060 2080 2100
1.2

1.4

1.6

1.8

2

2.2

2.4

Year

pc
p 

[m
m

/j]
, a

ev

Figure 1: Time series of the mean annual precipitation (simulations aet and aev) for the Pyrite

watershed for the period 1961–2099

In view of Figure 1, however, the conclusion of the tests may have been influenced by the

occurrence of change-points in the marginal series. In order to remove these undesirable effects,

Lombard’s test was performed. For aet, the latter concluded to a significant change-point estimated,

via Equation (5), by (K̂1, K̂2) = (1983, 2093). As the second change-point is located near the upper

boundary of the time series, this is an example of the so-called onset of trend model. Lombard’s test

also detected a significant change-point in aev at (K̂1, K̂2) = (1968, 2094). Here again, the change

corresponds to an onset of trend pattern. The stabilized series based on the residuals of the smooth-

change model (4) are illustrated in Figure 2.

This time, the tests based on Kn1, Kn2 and Kn3 are no more significant when computed from

the stabilized series. Indeed, the estimated p-values were greater than 0.97 for the three tests. Hence,

the change-point detected on the original series was only an artefact induced by the unstability of the

margins with respect to their mean.

In figure 3, one can see the value of KBn as a function of B ∈ {2, . . . , n− 2} both for the original
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Figure 2: Stabilized time series of the mean annual precipitation (simulations aet and aev) for the

Pyrite watershed for the period 1961–2099

and the stabilized series. This figure relies to statistic Kn3 given by Equation (3). The lack of stability

in margins, as shown in Figure 1, yields to a global maximum in the corresponding series KBn (in blue)

and also several “local maxima” (values of KBn greater than the estimated critical value). However,

after stabilizing the margins (see Figure 2), all values of KBn (in red) are smaller than the estimated

critical value.

1960 1980 2000 2020 2040 2060 2080 2100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Year

K
B n

 

 
Original
Stabilized

Figure 3: Values of KBn as a function of B computed from the original series (in blue) and from the

stabilized series (in red); the horizontal dotted lines correspond to the estimated critical values while

vertical lines identify the detected change-point in dependence
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In the former example, we illustrate how the lack of stability in margins may drastically affect

the results of tests based on Kn1, Kn2 and Kn3 and yield to the wrong conclusion that there exists a

change-point in dependence. In the next example, we show the effect of stabilization on the estimated

change-point B̂ defined by (6) when a change in dependence really occurred.

4.3 Application 2: testing change in dependence between two variables

The second example relates to the mean annual precipitation and runoff simulated from the Canadian

Regional Climate Model (CRCM) from 1961 to 2099 for the Arnaud watershed. The corresponding

bivariate time series, involving two variables, is presented in Figure 4.

1960 1980 2000 2020 2040 2060 2080 2100
0.4

0.6

0.8

1

1.2

1.4

Year

ro
f [

m
m

/j]

1960 1980 2000 2020 2040 2060 2080 2100

1

1.2

1.4

1.6

1.8

Year

pc
p 

[m
m

/j]

Figure 4: Time series of the mean annual runoff and precipitation (simulation aet) for the Arnaud

watershed for the period 1961–2099

The three tests of change-point detection in the dependence yield estimated p-values inferior

to 0.0001, indicating a clear change-point in the dependence structure. The location of the change,

estimated via (6), is identified in 2011. Since the two univariate series have a clear tendency to increase

following a smooth-change pattern, these conclusions could be erroneous, however. Indeed, Lombard’s

test detected significant marginal change-points at (K̂1, K̂2) = (2008, 2083) for the runoff variable. For

the precipitation variable, significant change-points are located at (K̂1, K̂2) = (1961, 2090). Figure 5

shows the stabilized time series based on the residuals of the smooth-change model (4). The estimated

p-values of the tests for the detection of change-point in the dependence based on this transformed

series are (pM,1, pM,2, pM,3) = (0.0003, 0.0005, 0.0088). Hence, the conclusion of a significant change-

point still holds, but the year when it occurred is now estimated at B̂ = 2038. Kendall’tau before the

change-point in dependence is τ
1:B̂ = 0.363 while this measure of association almost doubles after year

2038 with τB̂+1:n
= 0.681.
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Figure 5: Stabilized time series of the mean annual runoff and precipitation (simulation aet) for the

Arnaud watershed for the period 1961–2099
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