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1 Introduction

If the last century in Science belongs to Physical Sciences then this century must belong to Life

Sciences with many breakthroughs starting from DNA and proteins! The proteins are biological

macromolecules that are of primary importance to all living organisms and there are various open

problems including the Nobel-Prize-type problem related to protein folding. Some of these questions

mainly depend on the 3-dimensional shape of the protein, which can be summarized in terms of either

the configuration of points (landmarks) or more compactly by some dihedral angles (conformational

angles). A similar comment applies to RNA. We need some new appropriate tools in Statistical

Shape Analysis and Directional Statistics to answer various statistical problems for such data. In

Statistical Shape Analysis, the aim could be to align different proteins using unlabelled landmarks

so as to understand the function of proteins. In this case, new statistical alignment methods have

appeared but how do these methods compete with deterministic methods which are faster? Does a

hybrid approach provide a solution efficiently? In Directional Statistics, we need plausible multivariate

circular distributions to model such angular data. The problem is not as simple as the distributions

have unknown finite support in many dimensions. Also, there are clusters so mixture models are

appropriate. Further, the data in general are along a sequence so time series models are appropriate

leading to hidden Markov model with circular distributions as nodes. The statistical distributions

are now coming up but there are serious challenges, for example, what directional distributions are

workable? In this paper,we will mainly review new tools available so far in the two statistical areas;

these tools have a potential use in protein design, protein folding and drug discovery.

2 Shape Analysis

2.1 Background

Statistical shape analysis is concerned with extracting the shape information contained in a random

sample of physical objects, where shape is defined to be all the geometrical information about an object

that is invariant under a particular transformation of interest. Therefore, an important stage in the

comparison of the shapes of two or more objects is to align them in some optimal sense, under some

geometric transformation, so that the information which remains is the shape information of interest.

Here we will deal with size-and-shape, or Form, where only rotation and translation (rigid body

transformations) are filtered out. This is of interest here as the objects are molecules, where the bond

lengths between atoms should be preserved, so only the rigid body transformations are allowed.

It is common to represent the shape of an object as a configuration of points, where the points

represent the locations of landmarks chosen to represent the object. Landmarks in “labelled” shape

analysis are uniquely defined and ”homologous” for similar objects. An important problem is that

of unlabelled shape analysis, where the correspondence between landmarks on different objects is
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not known. The problem is then to simultaneously identify the matches between landmarks and

the transformation between the configurations in some optimal way. Figure 1 gives an example of

three unlabelled points which are aligned to a configuration with four unlabelled points under a rigid

transformation. The same principle applies to configurations in 3 dimensions such as the atomic

coordinates of proteins.

Figure 1: Top: Two unlabelled configurations of points. Bottom: Alignment under a rigid transfor-

mation (Figure by Chris Fallaize).

2.2 Bioinformatics

Biological macromolecules, in particular proteins and nucleic acids, need specific structure in order

to perform their specific functions (see, for examples, Branden and Tooze,1998). Changes to struc-

ture usually disrupt or change the way the macromolecules function. Also, homologous proteins are

thought to have evolved from a common ancestor. This information can be extracted ,for example,

by aligning proteins using their 3–dimensional structures. With the increasing number of protein

structures becoming available and deposited in databases such as the Protein Data Bank, reliable

methods for protein structure alignment are becoming very important. Many deterministic methods

for alignment have been developed, such as DALI, CE, LGA, SSAP, and others. These methods are

based on computational algorithms designed to find an optimal alignment in some sense, and do not

give any indication of uncertainty in this optimum; for instance there may be high uncertainty in some

areas of the alignment, and other areas where the alignment between the two structures is very good.

Therefore, there is a need for probabilistic methods which allow sampling over the space of all pos-

sible alignments, allowing a statistical interpretation of the alignment uncertainty to be made. Here,

we describe a fully Bayesian alignment model, which treats the registration parameters as unknowns

about which to draw inference, allowing quantification of their uncertainty as well as the matches

simultaneously.
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2.3 The BALI Pairwise Alignment Algorithm

Green and Mardia (2006) have proposed the pairwise alignment of two configurations using a Bayesian

hierarchical model. We call this BALI (Bayesian ALIgnment), following the well established DALI

(Distance alignment) algorithm . Consider aligning a pair of configurations x and y in 3 dimensions

under rigid body transformations. Denote the jth atom in the x configuration by xj , j = 1, . . . ,m and

the kth atom in the y configuration by yk, k = 1, . . . , n. Let A and τ denote the rotation matrix and

translation vector to bring y into alignment with x, with prior distributions p(A) and p(τ). We denote

the prior for σ, parameterising Gaussian noise in atomic positions for coordinates of xj , yk, by p(σ).

The joint posterior for the model is

p(M,A, τ, σ, x, y) ∝ p(A)p(τ)p(σ) ×
∏

j,k:Mjk=1

[

κ
φ{(xj −Ayk − τ)/σ

√
2}

(σ
√
2)3

]

,(1)

where φ(·) is the standard normal probability density function and κ > 0 is a parameter representing

the propensity of points to be matched. M is an unknown matrix for matching between points on each

configuration; here Mjk = 1 if xj is matched to yk , and Mjk = 0 otherwise. The priors recommended

are

A ∼ uniform, τ ∼ N(µτ , σ
2
τ I3), σ−2 ∼ Γ(α, β),(2)

where σ2τ is large. A point estimate M̂ ofM is found by minimising the error rates P (M̂jk = 1|Mjk = 0)

and P (M̂jk = 0|Mjk = 1) and is controlled by the cost ratio, K, of falsely matching points. The

posterior probability that the pair of points (xj , yk) are a match, pjk = P (Mjk = 1|x, y), is given by

the empirical frequency of this match from an MCMC run and M̂ is a solution to a “linear assignment”

problem with cost matrix (pjk−K). A standard linear assignment program is then used to find M̂ , with

the cost matrix (pjk −K)+. All details including the MCMC implementation and protein examples

are given in Green and Mardia (2006). A direct extension to multiple assignment is given in Ruffieux

and Green (2009) and an alternative faster approach based on pairwise BALI is provided by Mardia

et al (2010).

Green et al (2010) have given a review of various methods . The methods broadly speaking fall

into two categories ;one treating x and y symmetrically as here, the other regressing x on y as in Dryden

et al. (2007), Schmidler (2007) and Kent et al. (2010) . As suggested by Dryden (2007), approaches for

dealing with the nuisance (transformation) parameters fall into two general classes: marginalisation

and maximisation methods; the BALI falls into the former. In the maximisation approach, as in,

for example, the approaches of Dryden et al. (2007) and Schmidler (2007), the joint distribution is

maximised over the nuisance parameters (via a Procrustes alignment using the matched points), and

inference for M is then performed conditionally. From a non-Bayesian perspective, Kent et al.(2010)

have developed the EM algorithm, in which the likelihood is maximised over the transformation

parameters given expected values of the unknown matching labels (M–Step), and the expectation of

the labels is then taken with respect to the resulting maxima of the parameters (E–Step). That is,the

labels are treated as missing data (and a coffin bin is introduced for unmatched landmarks ). More

work is needed to compare the performance of these approaches in practical situations.

3 Directional Statistics

3.1 Bio-molecular Structure Validation

Validating the quality of new 3 dimensional structures of proteins and RNAs obtained from X-ray

crystallography is one of the important issues in biosciences (see, for example, Lovell et al ,2003). In

protein geometry, the basic shape of a protein is formed by the backbone while the side-chains are
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pointing away from the backbone. Their shape can be summarized by some dihedral angles needing

multivariate circular statistics. Mardia et al (2007) have used mixtures of bivariate circular distribu-

tions for modeling the dihedral angles on the backbone of proteins. However, since the dihedral angles

on both the backbone and side-chain vary a lot, all of these angles should be considered for assessing

the 3D structure of protein and RNA. We need to understand correlations and patterns in multivariate

angular data. Various models have been proposed as extensions of the univariate von Mises in Mardia

and Patrangenaru (2005) and Mardia et al (2008) but these have intractable normalizing constants.

In general, these data come from mixtures of distributions so in implementation, EM and Dirichlet

process mixtures, for example, are relevant.

3.2 Directional Models

The von Mises distribution(see, for, example,Mardia and Jupp,2000) is the basic distribution for the

angular data which has the probability density function

f(θ;µ, κ) = {2πI0(κ)}−1 exp{κ cos(θ − µ)}, θ ∈ (0, 2π], κ ≥ 0,

and µ ∈ (0, 2π] is the mean direction, κ is the concentration parameter and I0(κ) is the modified Bessel

function of the first kind and order zero. Mardia(1975) proposed the following family of bivariate von

Mises distributions with the probability density function

f(θ, φ) = c(κ1, κ2, A) exp {κ1 cos(θ − µ) + κ2 cos(φ− ν) +

[cos(θ − µ), sin(φ− µ)]A[cos(θ − ν), sin(φ− ν)]T },(3)

where the angles θ, φ, µ, ν ∈ (−π, π] lie on torus, and A is a 2× 2 matrix.

This model has eight parameters and allows for varied dependence between the two angles. Var-

ious important submodels with five parameters have appeared: the sine model (Singh et al,2002) and

the cosine model (Mardia et al ,2007) have been proposed to mimic the bivariate normal distribution.

The Sine model has the density

f(θ, φ) ∝ exp{κ1 cos(θ − µ) + κ2 cos(φ− ν) + λ sin(θ − µ) sin(φ− ν)}.(4)

Figure 2 shows a plot of a mixture of three sine distributions (with various parameter values ) on the

torus ; the key point is that the model has diffused to concentrated shapes. Kent et al (2008) have

given an overview of various bivariate circular submodels.

In protein bioinformatics, there has been a growing keen interest in bivariate von Mises direc-

tional distributions. For example, these distributions are used in various fundamental applications

arising from the conformational angles of protein backbones (see Boomsma et al, 2008; Mardia et al,

2008; Mardia, 2010; Lennox et al 2009,2010).

A multivariate extension of the distribution relevant for variables θ1, ..., θp can be written down

with density proportional to

exp{Σas cos θs +Σbs sin θs +Σast cos θs cos θt +Σbst cos θs sin θt +Σcst sin θs sin θt}(5)

where ass = bss = css = 0, and bst 6= bts. A particular case of importance is von Mises sine distribution,

with probability density function (Mardia et al, 2008):

f(θ;µ, κ,Λ) = C−1
p (κ,Λ) exp{κT c(θ, µ)− 1

2
s(θ, µ)TΛs(θ, µ)},(6)

where −π < θj ≤ π, −π < µj ≤ π, κj ≥ 0, −∞ < λjl <∞,

c(θ, µ) = (cos(θ1 − µ1), cos(θ2 − µ2), . . . , cos(θp − µp)),

s(θ, µ) = (sin(θ1 − µ1), sin(θ2 − µ2), . . . , sin(θp − µp)),

µT = (µ1, µ2, . . . , µp), κT = (κ1, κ2, . . . , κp),

(Λ)jl = λjl = λlj , j 6= l, (Λ)jj = λjj = 0, j, l = 1, . . . , p
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Figure 2: A mixture of three bivariate sine distributions showing a wide variety of correlation structure

(Figure by Jes Frellsen ).

and C−1
p (κ,Λ) is a normalizing constant. Note that for p = 1, it becomes a univariate von Mises density,

and for p = 2, it is the bivariate sine distribution . This distribution has a great potential for exploring

RNA structure ( see, Frellsen et al, 2009). It should be noted that the distributions as those in Figure

2 give rise to what are called Ramachandran plots (Ramachandran et al 1963), which represent the

distribution of the two dihedral angles of a protein backbone; the distributions are mixtures with finite

unknown support as there are area which are forbidden by the underlying chemistry. We conclude

with the question which multivariate circular distributions help in understanding protein and RNA

data; the subject is still in its infancy but some real progress has been made.
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RÉSUMÉ (ABSTRACT)

If the last century in Science belongs to Physical Sciences then this century must belong to Life

Sciences with many breakthroughs starting from DNA and proteins! We highlight what new tools

are required in Shape Analysis and Directional Statistics to solve some major problems in structural

bioinformatics.
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