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1 Introduction

Let F be a set of real-valued functions on a set X and let S : F → G be an arbitrary mapping. We

consider the problem of making inference about S(f), with f ∈ F unknown, from a finite set of point-

wise evaluations of f . We are mainly interested in the problems of approximation and optimization.

Formally, a deterministic algorithm to infer a quantity of interest S(f) from a set of n evaluations of

f is a pair
(
Xn , Ŝn

)
consisting of a deterministic search strategy

Xn : f 7→ Xn(f) = (X1(f), X2(f), . . . , Xn(f)) ∈ X
n ,

and a mapping Ŝn : F → G, such that:

a) X1(f) = x1, for some arbitrary x1 ∈ X

b) For all 1 ≤ i < n, Xi+1(f) depends measurably on Ii(f), where Ii = ((X1, Z1) , . . . , (Xi, Zi)), and

Zi(f) = f(Xi(f)), 1 ≤ i ≤ n.

c) There exists a measurable function φn such that Ŝn = φn ◦ In.

The algorithm
(
Xn , Ŝn

)
describes a sequence of decisions, made from an increasing amount of infor-

mation: for each i = 1, . . . , n − 1, the algorithm uses information Ii(f) to choose the next evaluation

point Xi+1(f). The estimator Ŝn(f) of S(f) is the terminal decision. We shall denote by An the class

of all strategies Xn that query sequentially n evaluations of f and also define the subclass A0
n ⊂ An

of non-adaptive strategies, that is, the class of all strategies such that the Xis do not depend on f .

A classical approach to study the performance of a sequential strategy is to consider the worst

error of estimation on some class of functions F

ǫworstcase(Xn) := sup
f∈F

L(S(f), Ŝn(f)) ,

where L is a loss function. There are many results dealing with the problems of function approximation

and optimization in the worst case setting. Two noticeable results concern convex and symmetric

classes of bounded functions. For such classes, from a worst-case point of view, any strategy will

behave similarly for the problem of global optimization and that of function approximation. Moreover

the use of adaptive methods can not be justified by a worst case analysis (see, e.g., Novak, 1988,

Propositions 1.3.2 and 1.3.3). These results, combined with the fact that most optimization algorithms

are adaptive, lead to think that the worst-case setting may not be the most appropriate framework

to assess the performance of a search algorithm in practice. Indeed, it would be also important, in

practice, to know whether the loss L(S(f), Ŝn(f)) is close to, or on the contrary much smaller than

ǫworstcase, for “typical” functions f ∈ F not corresponding to worst cases. To address this question, a

classical approach is to adopt a Bayesian point of view.

In this paper, we consider methods where f is seen as a sample path of a real-valued random

process ξ defined on some probability space (Ω, B, P0) with parameter in X. Then, Xn(ξ) is a random
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sequence in X, with the property that Xn+1(ξ) is measurable with respect to the σ-algebra generated

by ξ(X1(ξ)), . . . , ξ(Xn(ξ)). From a Bayesian decision-theoretic point of view, the random process

represents prior knowledge about f and makes it possible to infer a quantity of interest before eval-

uating the function. This point of view has been widely explored in the domain of optimization and

computer experiments. Under this setting, the performance of a given strategy Xn can be assessed by

studying the average loss

ǫaverage(Xn) := E L(S(ξ), Ŝn(ξ)) .

How much does adaption help on the average, and is it possible to derive rates of decay for errors in

average? In this article, we shall make a brief review of results concerning average error bounds of

Bayesian search methods based on a random process prior.

This article has three parts. The precise assumptions about ξ are given in Section 2. Section 3 deals

with the problem of function approximation, while Section 4 deals with the problem of optimization.

2 Framework

Let ξ be a random process defined on a probability space (Ω, B, P0), with parameter x ∈ R
d. Assume

moreover that ξ has a zero mean and a continuous covariance function. The kriging predictor of ξ(x),

based on the observations ξ(Xi(ξ)), i = 1, . . . , n, is the orthogonal projection

(1) ξ̂n(x) :=
n∑

i=1

λi(x; Xn(ξ)) ξ(Xi(ξ))

of ξ(x) onto span{ξ(Xi(ξ)), i = 1, . . . , n} in L2(Ω, B, P0). At step n ≥ 1, given evaluation points Xn(ξ),

the kriging coefficients λi(x; Xn(ξ)) can be obtained by solving a system of linear equations (see, e.g.,

Chilès and Delfiner, 1999). Note that for any sample path f = ξ(ω, · ), ω ∈ Ω, the value ξ̂n(ω, x) is a

function of In(f) only.

The mean-square error (MSE) of estimation at a fixed point x ∈ R
d will be denoted by

σ2
n(x) := E{(ξ(x) − ξ̂(x; Xn(ξ)))2} .

It is generally not possible to compute σ2
n(x) when Xn is an adaptive strategy.

Regularity assumptions. Assume that there exists Φ : Rd → R such that k(x, y) = Φ(x − y), which

is in L2(Rd) and has a Fourier transform

Φ̃(u) = (2π)−d/2
∫

Rd
Φ(x)ei(x,u)dx

that satisfies

(2) c1(1 + ‖u‖2
2)−s ≤ Φ̃(u) ≤ c2(1 + ‖u‖2

2)−s , u ∈ R
d ,

with s > d/2 and constants 0 < c1 ≤ c2. Note that the Matérn covariance with regularity parameter ν

(see, e.g., Stein, 1999) satisfies such a regularity assumption, with s = ν + d/2. Tensor-product

covariance functions, however, never satisfy such a condition (see Ritter, 2000, chapter 7, for some

results in this case).

Let H be the RKHS of functions generated by k. Denote by ( · , · )H the inner product of H, and

by ‖ · ‖H the corresponding norm. It is well known (see, e.g. Wendland, 2005) that H is the Sobolev

space

W s
2 (Rd) =

{
f ∈ L2(Rd); f̃( · )(1 + ‖ · ‖2

2)s/2 ∈ L2(Rd)
}

due to the following result.
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Proposition 1. H ⊂ L2(Rd) and ∀f ∈ H,

‖f‖2
H =

∫

Rd
|f̃(u)|2 Φ̃(u)−1 du .

‖f‖2
H is equivalent to the Sobolev norm

‖f‖2
W s

2 (Rd) = ‖f̃( · )
(
1 + ‖ · ‖2

2

)s/2
‖L2(Rd)

3 Approximation

We first consider the problem of approximation, with the point of view exposed in Section 2. Using

the notations introduced above, the problem of approximation corresponds to considering operators

S and Ŝn defined by S(ξ) := ξ |X and Ŝn(ξ) := ξ̂n |X , with X ⊂ R
d a compact domain with non-

empty interior. For the design of computer experiments, classical criteria for assessing the quality of

a strategy Xn ∈ An for the approximation problem are the maximum mean-square error (MMSE)

ǫmmse(Xn) := sup
x∈X

E

((
ξ(x) − ξ̂n(x)

)2)
= sup

x∈X

σ2
n(x)

and the integrated mean-square error (IMSE)

ǫimse(Xn) := E

(
‖ξ − ξ̂n‖2

L2(X,µ)

)
=

∫

X

σn(x)2 µ(dx)

(see, e.g., Sacks et al., 1989; Currin et al., 1991; Welch et al., 1992; Santner et al., 2003). These criteria

correspond to G-optimality and I-optimality in the theory of (parametric) optimal design.

As mentioned earlier, computing σ2
n(x) is usually not possible in the case of adaptive sampling

strategies, even for a Gaussian process. From a theoretical point of view, however, it is important to

know if adaptive strategies can improve upon non-adaptive strategies for the approximation problem.

Proposition 2. Assume that ξ is a Gaussian process. Then adaptivity does not help for the approxi-

mation problem, with respect to either the MMSE or the IMSE criterion.

Proof. For any adaptive strategy Xn , it can be proved by induction (using the fact that Xi+1 only

depends on Ii) that, for each x ∈ X,

(3) σ2
n(x) = E

(
σ2(x; X1(ξ), . . . , Xn(ξ))

)
,

where σ2(x; x1, . . . , xn), x1, . . . , xn ∈ X, denotes the MSE at x of the non-adaptive strategy that selects

the points x1, . . . , xn. Therefore, for each x ∈ X,

σ2
n(x) ≥ min

x1, ..., xn ∈X

σ2(x; x1, . . . , xn) ,

which proves the claim in the case of the MMSE criterion. Similarly, integrating (3) yields

∫

X

σ2
n dµ = E

{∫

X

σ2(x; Xn(ξ)) µ(dx)

}

≥ min
x1, ..., xn ∈X

∫

X

σ2(x; x1, . . . , xn) µ(dx) ,

which proves the claim in the case of the IMSE criterion.
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In the case of the IMSE criterion, Proposition 2 can be seen as a special case of a general result

about linear problems (see, e.g., Ritter, 2000, Chapter 7). The following proposition establishes a

connection between the MMSE criterion and the worst-case L∞-error of approximation in the unit

ball of H, which will be useful to establish the optimal rate for IMSE- and MMSE-optimal designs.

Proposition 3. Let H1 denote the unit ball of H. For any non-adaptive strategy Xn ∈ A0
n, the MMSE

criterion equals the squared worst-case L∞-error of approximation in H1 using Ŝn:

ǫmmse(Xn) =

(
sup

f∈H1

‖S(f) − Ŝn(f)‖L∞(X)

)2

.

Proof. Let Xn ∈ A0
n be a non-adaptive strategy such that Xi(ξ) = xi, i = 1, . . . , n, for some arbi-

trary xis in X. Denote by λi(x) = λi(x; Xn(ξ)) the corresponding kriging coefficients (which do not

depend on ξ). Using the fact that the mapping ξ(x) 7→ k(x, · ) extends linearly to an isometry from

span{ξ(y), y ∈ R
d} to H, we have for all x ∈ X

σn(x) =
∥∥ξ(x) − ξ̂n(x)

∥∥
L2(Ω,B,P0)

=
∥∥k(x, · ) −

∑
i
λi(x) k(xi, · )

∥∥
H

= sup
f∈H1

(
f , k(x, · ) −

∑
i
λi(x) k(xi, · )

)
H

.

= sup
f∈H1

(f − Ŝnf)(x) .

Thus,

sup
x∈X

σn(x) = sup
f∈H1

sup
x∈X

(f − Ŝnf)(x) = sup
f∈H1

∥∥f − Ŝnf
∥∥

L∞(X)
.

The following proposition summarizes known results concerning the optimal rate of decay in the

class of non-adaptive strategies for both the IMSE criterion and the MMSE criterion. Note that, by

Proposition 2, this rate is also the optimal rate of decay in the class of all adaptive strategies if ξ is a

Gaussian process.

Proposition 4. Assume that ξ has a continuous covariance function satisfying the regularity assump-

tions of Section 2, and let ν = s − d/2 > 0. Then there exists C1 > 0 such that, for any Xn ∈ A0
n,

(4) C1 n−2ν/d ≤ ǫimse(Xn) ≤ µ(X) ǫmmse(Xn)

Moreover, if X has a Lipschitz boundary and satisfies an interior cone condition, then there exists

C2 > 0 such that

(5) inf
Xn∈A0

n

ǫimse(Xn) ≤ µ(X) inf
Xn∈A0

n

ǫmmse(Xn) ≤ C2 n−2ν/d .

The optimal rate of decay is therefore n−2ν/d for both criteria.

Proof. It is proved in (Ritter, 2000, Chapter 7, Proposition 8) that there exists C1 > 0 such that

ǫimse(Xn) ≥ C1 n−2ν/d in the case where X = [0; 1]d. This readily proves the lower bound (4) since

any X with non-empty interior contains an hypercube on which Ritter’s result holds.

If X is a bounded Lipschitz domain satisfying an interior cone condition, then (Narcowich et al.,

2005, Proposition 3.2) there exists c1 > 0 such that ‖S(f) − Ŝn(f)‖L∞(X) ≤ c1h
s−d/2
n ‖S(f)‖W s

2 (X) for
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all f ∈ H, where hn = supx∈X mini∈{1,...,n}‖x−Xi(f)‖2 is the fill distance of the non-adaptive strategy

Xn in X. Therefore

‖S(f) − Ŝn(f)‖L∞(X) ≤ c1hν
n ‖S(f)‖W s

2 (X) ≤ c1hν
n ‖f‖W s

2 (Rd) ≤ c2hν
n ‖f‖H

for some c2 > 0, using the equivalence of the Sobolev W s
2 (Rd) norm with the RKHS norm (see

Section 2). Considering any non-adaptive space-filling strategy Xn with a fill distance hn = O(n−1/d)

yields

inf
Xn∈A0

n

sup
f∈H1

∥∥f − Ŝnf
∥∥

L∞(X)
≤ c3 n−ν/d

for some c3 > 0 and the upper-bound (5) then follows from Proposition 3.

Finding a non-adaptive MMSE-optimal design is a difficult non-convex optimization problem in

nd dimensions. Instead of addressing directly such a high-dimensional global optimization problem,

we can use the classical sequential non-adaptive greedy strategy Xn( · ) = (x1, . . . , xn) ∈ X
n defined

by

(6) xi+1 = argmax
x∈X

σ2 (x; x1, . . . , xi) , 1 ≤ i < n .

Of course, the strategy is suboptimal but it only involves simpler optimization problems in d dimensions

and has the advantage that it can be stopped at any time. Following Binev et al. (2010), it can be

established that this greedy strategy is rate optimal.

Proposition 5. Assume that ξ has a continuous covariance function satisfying the regularity as-

sumptions of Section 2, and let ν = s − d/2 > 0. Let Xn be the sequential strategy defined by (6).

Then,

ǫmmse(Xn) = O(n2ν/d) .

Proof. Theorem 3.1 in Binev et al. (2010), applied to the compact subset {ξ(x), x ∈ X} in L2(Ω, B, P0),

states that the greedy algorithm (6) preserves polynomial rates of decay. The result follows from

Proposition 4.

4 Optimization

In this section, we consider the problem of global optimization on a compact domain X ⊂ R
d,

which corresponds formally to operators S and Ŝn defined by S(ξ) = supx∈X ξ(x) and Ŝn(ξ) =

maxi∈1,...,n ξ(Xi(ξ)).

In a Bayesian setting, a classical criterion to assess the performance of an optimization procedure

is the average error

ǫ
opt

(Xn) := E(S(ξ) − Ŝn(ξ)) .

Although it may be not possible in the context of this article to make a comprehensive review of

known results concerning the average case in the Gaussian case, it can be safely said however that

such results are scarce and specific.

In fact, most available results about the average-case error concern the one-dimensional Wiener

process ξ on the interval [0, 1]. Under this setting, Ritter (1990) shows that the average error of

the best non-adaptive optimization procedure decreases at rate n−1/2 (extensions of this result for
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non-adaptive algorithms and the r-fold Wiener measure can be found in Wasilkowski, 1992). Under

the same assumptions for ξ, Calvin (1997) derives the exact limiting distribution of the error of a

particular adaptive algorithm, which suggests that adaptivity does yield a better average error for the

optimization problem—the result is that, for any 0 < δ < 1, it is possible to find an adaptive strategy

such that n(1−δ)(S(ξ) − Ŝn(ξ)) converges in distribution.

A theoretical result concerning the optimal average-error criterion for less restrictive Gaussian pri-

ors is also available. If the covariance of a Gaussian process ξ is α-Hölder continuous, then Grünewälder

et al. (2010) show that a space filling strategy Xn achieves

(7) ǫ
opt

(Xn) = O(n−α/(2d)(log n)1/2) .

Thus, under the assumptions of Section 2, for a Matérn covariance with regularity parameter ν, the

rate of the optimal average error of estimation of the optimum is less than n−ν/d(log n)1/2 (since a

Matérn covariance is α-Hölder continuous with α = 2ν). Note that this bound is not sharp in general

since the optimal non-adaptive rate is n−1/2 for the Brownian motion on [0; 1], the covariance function

of which is α-Hölder continuous with α = 1.

In view of these results, we can safely say that characterizing the average behavior of adaptive

sequential optimization algorithms is still an open (and apparently difficult) problem. At present, the

only way to draw useful conclusions about the interest of a particular optimization algorithm is to

resort to numerical simulations.

In the following paragraphs, we shall illustrate the kind of results that can be expected from such

empirical studies. Benassi et al. (2011) provide an empirical comparison between four optimization

algorithms. The first algorithm is a non-adaptive space-filling strategy. The second algorithm as-

sumes a Gaussian prior about the objective function and use the expected improvement (EI) sampling

criterion (Mockus et al., 1978) for choosing the evaluation points. In practice however, it is often

difficult to choose a Gaussian prior before any evaluation is made. As a result, the covariance func-

tion of ξ is usually chosen in some parametric class of positive definite functions, the value of the

parameters assumed to be unknown. The third algorithm compared in Benassi et al. (2011) is a fully

Bayesian algorithm (FBA), which is used to deal with uncertain parameters of the covariance of ξ.

The fourth strategy is the popular efficient global optimization (EGO) algorithm introduced by Jones

et al. (1998), which assumes a Gaussian process prior and takes a plug-in approach to deal with the

uncertain parameters of the covariance.

In order to compare the four optimization strategies, Benassi et al. (2011) build several testbeds

Tk, k = 1, 2, . . ., of functions fk,l, l = 1, . . . , L, corresponding to sample paths of a Gaussian process,

with zero-mean and a Matérn covariance function, simulated on a set of q = 600 points in [0, 1]d

generated using a Latin hypercube sampling (LHS), with different values for d and for the parameters

of the covariance. Here, we present the results obtained for two testbeds in dimension 1 and 4 (the

actual parameters are provided in Table 1).

Figures 1 and 2 show the average errors and also the distributions of the error of estimation of the

global optimum. These empirical results show that the EI strategy performs much better in average

than the space-filling strategy. Large errors are also less frequent with the EI strategy. Moreover,

we can also assess the cost of estimating the parameters of the covariance. EGO and FBA have very

similar average performances. In fact, both of them perform almost as well, in this experiments,

as the EI strategy, where the true parameters are assumed to be known. Comparing the tails of

complementary cumulative distribution function of the error Sf − Ŝnf shows, however, that using a

fully Bayesian approach brings a reduction of the occurrence of large errors with respect to the EGO

algorithm. In other words, the fully Bayesian approach appears to be statistically more robust than

the plug-in approach, while retaining the same average performance. Empirical studies such as the
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Parameter \ Testbed T1 T2

Dimension d 1 4

Number of sample paths L 20000 20000

Variance σ2 1.0 1.0

Regularity ν 2.5 2.5

Scale β = (β1, . . . , βd) 0.1 (0.7, 0.7, 0.7, 0.7)

Table 1: Parameters used for building the testbeds of Gaussian-process sample-paths. The Gaussian process has a

zero-mean and a isotropic Matérn covariance function k[ν,σ2,ρ] : (x, y) ∈ R
d × R

d 7→ σ2κν(‖x − y‖/ρ) with κν(h) =
1

2ν−1Γ(ν)

(
2ν1/2h

)ν
Kν

(
2ν1/2h

)
, h ∈ R, where Γ is the Gamma function, Kν is the modified Bessel function of the second

kind, and ν, σ2 ρ are strictly positive scalar parameters (see Stein, 1999).

one presented here are therefore very useful from a practical point of view, since they make it possible

to obtain fine and sound performance assessments of any strategy with a reasonable computational

cost.
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Ŝ

n
f

ref 1
ref 2
FBA
EGO

6 8 10 12 14 16 18 20 22 24

10−6

10−4

10−2

100

(a) Average error to the maximum

Sf − Ŝnf
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Figure 1: Average results and error distributions for testbed T1, for FBA (solid black line), EGO (dashed black line),

the EI with the parameters used to generate sample paths (solid gray line), the space-filling strategy (dashed gray line).

More precisely, (a) represents the average approximation error as a function of the number of evaluation points. In (b)

and (c), F (x) stands for the cumulative distribution function of the approximation error. We plot 1−F (x) in logarithmic

scale in order to analyze the behavior of the tail of the distribution (big errors with small probabilities of occurrence).

Small values for 1 − F (x) mean better results.
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Figure 2: Average results and distribution of errors for testbed T2. See Figure 1 for details.
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