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Abstract

In this paper, we make use of probability weighted moments of largest observations, in order to

build classes of estimators of the extreme value index. Due to the specificity of these estimators, a

direct estimation of the optimal sample fraction, done on the basis of estimates of scale and shape

second-order parameters, is problematic. Again, the use of bootstrap computer intensive methods

helps us to provide an adaptive choice of the optimal number of order statistics to be used in the

estimation. We also apply the developed methodology to a data set in the field of insurance.

1 Introduction and preliminaries

The extreme value index (EVI) is the parameter γ ∈ R in the general extreme value (EV) distribution

function (d.f.)

(1) EVγ(x) :=

{
exp(−(1 + γx)−1/γ), 1 + γx > 0 if γ ̸= 0

exp(− exp(−x)), x ∈ R if γ = 0.

Let (X1, . . . , Xn) denote a sample of size n from either independent, identically distributed (i.i.d.)

or even weakly dependent random variables (r.v.’s) and consider the associated sample of ascending

order statistics (o.s.’s) (X1:n ≤ · · · ≤ Xn:n). The EV d.f., in (1), appears as the limiting d.f., whenever

such a non-degenerate limit exists, of the maximum Xn:n, suitably linearly normalized. We then say

that F is in the domain of attraction for maximum values of the general EV d.f., in (1), and use the

notation F ∈ DM(EVγ).

We shall deal with heavy-tails, i.e. a positive EVI. Then the right-tail function is of regular

variation with an index of regular variation equal to −1/γ, i.e.

(2) F ∈ DM(EVγ)γ>0 ⇐⇒ F := 1− F ∈ RV−1/γ ,

where the notation RVβ stands for the class of regularly varying functions at infinity with an index of

regular variation equal to β, i.e., positive measurable functions g such that lim
t→∞

g(tx)/g(t) = xβ, for

all x > 0.

With the notation

(3) U(t) := F←(1− 1/t), t ≥ 1, F←(y) := inf {x : F (x) ≥ y} ,

condition (2) is equivalent to saying that U ∈ RVγ .
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One of the first classes of semi-parametric estimators of a positive EVI was considered in Hill

(1975). Hill’s estimators are based on the log-excesses over an intermediate o.s., Xn−k:n, with the

functional form

(4) γ̂Hk,n :=
1

k

k∑
i=1

{lnXn−i+1:n − lnXn−k:n} , k = 1, 2, . . . , n− 1.

Consistency is achieved in the whole DM(EVγ)γ≥0 provided that Xn−k:n is an intermediate o.s., i.e.,

we need to have

(5) k = kn → ∞ and k/n → 0, as n → ∞.

We shall also deal with Pareto probability weighted moments (PPWM) EVI-estimators, recently

introduced in Caeiro and Gomes (2009). They are valid for heavy right-tails, compare favourably with

the Hill estimator, in (4), and are given by

(6) γ̂PPWM
k,n := 1− â1(k)

â0(k)− â1(k)
,

with

â0(k) :=
1

k

k∑
i=1

Xn−i+1:n and â1(k) :=
1

k

k∑
i=1

i

k
Xn−i+1:n.

Again, consistency is achieved under the first-order framework in (2) and intermediate k-values, i.e.,

whenever (5) holds.

In order to derive the asymptotic normality of the estimators either in (4) or in (6), it is often

assumed the validity of a second-order condition either on F , in (2), or on U , in (3), like

(7) lim
t→∞

lnU(tx)− lnU(t)− γ lnx

A(t)
=

xρ − 1

ρ
,

where ρ ≤ 0 is a second-order parameter, which measures the rate of convergence in the first-order

condition, (2). If the limit in (7) exists, it is necessarily of the above mentioned type and |A| ∈ RVρ

(Geluk and de Haan, 1987). If we assume the validity of the second-order framework in (7), these

EVI-estimators are asymptotically normal, provided that
√
kA(n/k) → λA , finite, as n → ∞, with A

given in (7). Indeed, if we denote γ̂•k,n, either the Hill estimator in (4) or the PPWM estimator in (6),

we have, with Z•k asymptotically standard normal and for adequate (b•, σ•) ∈ (R, R+), the validity

of the asymptotic distributional representation

(8) γ̂•k,n
d
= γ +

σ•Z
•
k√
k

+ b• A(n/k)(1 + op(1)), as n → ∞.

In this article, after a brief review, in Section 2, of the role of the bootstrap methodology in the

estimation of optimal sample fractions, we provide an algorithm for the adaptive estimation of the

EVI through the PPWM EVI-estimators, also valid for the Hill estimators. In Section 3, we apply

such a data-driven estimation to a data set in the field of insurance.

2 The bootstrap methodology and optimal levels

Under the second-order framework, in (7), but with ρ < 0, let us parameterize the function A as

A(t) = γβtρ, where β and ρ are generalized scale and shape second-order parameters. Given any

semi-parametric EVI-estimator, γ̂•k,n, let us denote

k•0 ≡ kγ̂
•

0 (n) := argmin
k

MSE(γ̂•k,n),

with MSE standing for mean squared error.
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2.1 Adaptive estimation of the EVI

With E denoting the mean value operator, a possible substitute for the MSE of any classical EVI-

estimator γ̂•k,n is, cf. equation (8),

AMSE(γ̂•k,n) := E
(
σ• Zk√

k
+ b• A(n/k)

)2

=
σ2
•
k

+ b2• γ
2 β2 (n/k)2ρ,

depending on n and k, and with AMSE standing for asymptotic mean squared error. We get (Dekkers

and de Haan, 1993)

k0|γ̂•(n) := argmin
k

AMSE
(
γ̂•k,n

)
=

(
(−2ρ) b2• γ

2β2 n2ρ/σ2
•
)−1/(1−2ρ)

= kγ̂
•

0 (n)(1 + o(1)),

For the Hill estimator, we have, in (8), σH = γ and bH = 1/(1 − ρ). Consequently, with (β̂, ρ̂) any

consistent estimator of the vector (β, ρ) of second-order parameters, (9) justifies asymptotically the

estimator

(9) k̂H0 :=

[(
(1− ρ̂)2n−2ρ̂

−2ρ̂β̂2

)1/(1−2ρ̂)]
,

where, as usual, [x] denotes the integer part of x. Moreover, provided that
√
k (n/k)ρ → λ, finite,

and with bk,n,ρ = 1 + β(n/k)ρ/(1− ρ),
√
k
{
γ̂Hk,n/γ−bk,n,ρ

}
is approximately N (0, 1). We may then get

approximate 100(1− α)% confidence intervals (CI’s) for γ,

(10)

 γ̂Hk,n

bk,n,ρ +
ξ1−α/2√

k

,
γ̂Hk,n

bk,n,ρ −
ξ1−α/2√

k

 ,

where ξp is the p-quantile of a N (0, 1) d.f. If λ = 0, we may replace in (10) the bias summand

β(n/k)ρ/(1− ρ) by 0.

The same does not happen with the PPWM EVI-estimators, with an asymptotic variance

(σPPWM ) and a dominant component of bias (bPPWM ) dependent on γ. In this situation, it is sensible

to use the bootstrap methodology for the adaptive PPWM EVI-estimation. Just as in Gomes and

Oliveira (2001), for the estimation of γ through the Hill estimator, and in Gomes et al. (2009), for

adaptive reduced-bias estimation, let us consider the auxiliary statistic,

(11) T •k,n := γ̂•[k/2],n − γ̂•k,n, k = 2, . . . , n− 1.

On the basis of the results similar to the ones in Gomes et al. (2000) and Gomes and Oliveira (2001),

we can get, for the auxiliary statistic T •k,n, in (11), the asymptotic distributional representation,

T •k,n
d
= σ• Q

•
k/
√
k + b• (2

ρ − 1) A(n/k) + op(A(n/k)),

with Q•k asymptotically standard normal, and (b•, σ•) given in (8). The AMSE of T •k,n is thus minimal

at a level k0|T •(n) such that
√
k A(n/k) → λ′

A
̸= 0, i.e. a level of the type of the one in (9), with b•

replaced by b•(2
ρ − 1), and we consequently have

k0|γ̂•(n) = k0|T •(n) (1− 2ρ)
2

1−2ρ (1 + o(1)).

Then, given the sample Xn = (X1, . . . , Xn) from an unknown model F , consider for any n1 = O(n1−ϵ),

with 0 < ϵ < 1, the bootstrap sample X∗n1
= (X∗1 , . . . , X

∗
n1
), from the model F ∗n(x) =

1
n

∑n
i=1 I{Xi≤x},

the empirical d.f. associated with the original sample Xn. Next, associate to that bootstrap sample the
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corresponding bootstrap auxiliary statistic, denoted T ∗k1,n1
, 1 < k1 < n1. Then, with the obvious nota-

tion k∗0|T (n1) = argmink1 AMSE
(
T ∗k1,n1

)
, k∗0|T (n1)/k0|T (n) = (n1/n)

− 2 ρ
1−2 ρ (1 + o(1)), Consequently,

for another sample size n2, and for every α > 1,(
k∗0|T (n1)

)α
k∗0|T (n2)

(
nα
1

nα

n

n2

)− c ρ
1−c ρ

=
{
k0|T (n)

}α−1
(1 + o(1)).

It is then enough to choose n2 = n (n1/n)
α, to have independence of ρ. If we put n2 = n2

1/n, i.e.,

α = 2, we have
(
k∗0|T (n1)

)2
/k∗0|T (n2) = k0|T (n)(1 + o(1)), as n → ∞. We are now able to estimate

kγ̂0 (n), on the basis of any estimate ρ̂ of ρ. With k̂∗0T denoting the sample counterpart of k∗0T , ρ̂ the

ρ-estimate and taking into account (9), we can build the k0-estimate,

(12) k̂•0∗ ≡ k̂•0∗(n;n1) := min

(
n− 1,

[(1− 2ρ̂
) 2

1−2ρ̂
(
k̂∗0|T (n1)

)2
k̂∗0|T ([n

2
1/n] + 1)

]
+ 1

)
,

and the γ-estimate

(13) γ̂•∗ ≡ γ̂•∗(n;n1) := γ̂k̂•0∗(n;n1),n
.

A few practical questions, some of them with answers out of the scope of this paper, may be raised

under the set-up developed: How does the asymptotic method work for moderate sample sizes? What

is the type of the sample path of the new estimator for different values of n1? Is the method strongly

dependent on the choice of n1? What is the sensitivity of the method with respect to the choice of

the ρ-estimate? Although aware of the theoretical need to have n1 = o(n), what happens if we choose

n1 = n?

2.2 An algorithm for the adaptive EVI-estimation

The estimates (β̂, ρ̂), of the vector (β, ρ) of second-order parameters, are the ones already used in

previous papers, like Gomes et al. (2009). Now, and with γ̂PPWM
k,n defined in (6), the algorithm is the

following:

1. Given a sample (x1, x2, . . . , xn), plot, for tuning parameters τ = 0 and τ = 1, the observed

values of ρ̂τ (k) introduced and studied in Fraga Alves et al. (2003).

2. Consider {ρ̂τ (k)}k∈K, with K = ([n0.995], [n0.999]), compute their median, denoted ητ , and

compute Iτ :=
∑

k∈K (ρ̂τ (k)− ητ )
2, τ = 0, 1. Next choose the tuning parameter τ∗ = 0 if I0 ≤ I1;

otherwise, choose τ∗ = 1.

3. Work with ρ̂ ≡ ρ̂τ∗ = ρ̂τ∗(k1) and β̂ ≡ β̂τ∗ := β̂ρ̂τ∗ (k1), k1 = [n0.999] and β̂ρ̂(k) given in Gomes

and Martins (2002).

4. Compute γ̂PPWM
k,n , k = 1, 2, · · · , n− 1.

5. Next, consider a sub-sample size n1 = o(n), and n2 = [n2
1/n] + 1.

6. For l from 1 until B, generate independently B bootstrap samples (x∗1, . . . , x
∗
n2
) and

(x∗1, . . . , x
∗
n2
, x∗n2+1, . . . , x

∗
n1
), of sizes n2 and n1, respectively, from the empirical d.f. F ∗n(x) =

1
n

∑n
i=1 I{Xi≤x} associated with the observed sample (x1, . . . , xn).
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7. Denoting T ∗k,n the bootstrap counterpart of TPPWM
k,n , defined in (11), obtain (t∗k,n1,l

, t∗k,n2,l
),

1 ≤ l ≤ B, the observed values of the statistic T ∗k,ni
, i = 1, 2. For k = 2, . . . , ni − 1, compute

MSE∗(ni, k) =
1

B

B∑
l=1

(
t∗k,ni,l

)2
,

and obtain k̂∗0|T (ni) := argmin1<k<ni
MSE∗(ni, k),, i = 1, 2.

8. Compute the threshold estimate k̂0∗ ≡ k̂PPWM
0∗ , in (12).

9. Obtain PPWM∗ ≡ γ̂PPWM
∗ ≡ γ̂PPWM

∗ (n;n1) := γ̂k̂0∗,n, already provided in (13).

A similar procedure can be used for the bootstrap data-driven estimation through the Hill estimator,

in (4). Note also that bootstrap confidence intervals are easily associated with the estimates presented,

through the replication of this algorithm r times.

3 A case study in the field of insurance

We shall next consider an illustration of the performance of the adaptive PPWM EVI-estimates under

study, comparatively with the same methodology applied to the Hill EVI-estimates, again through the

analysis of automobile claim amounts exceeding 1,200,000 Euro over the period 1988–2001, gathered

from several European insurance companies co-operating with the same re-insurer (Secura Belgian

Re). This data set was already studied in Beirlant et al. (2004), Vandewalle and Beirlant (2006) and

Beirlant et al. (2008) as an example to excess-of-loss reinsurance rating and heavy-tailed distributions

in car insurance. See also Gomes et al. (2009). A preliminary graphical analysis of the data, xi,

1 ≤ i ≤ n, n = 371, leads us to an immediate conclusion that data have been censored to the left

and that the right-tail of the underlying model is quite heavy. The sample paths of the ρ-estimates

associated with τ = 0 and τ = 1 lead us to choose, on the basis of any stability criterion for large k, the

estimate associated with τ = 0. The algorithm here presented led us to the ρ-estimate ρ̂0 = −0.76,

obtained at the level k1 = [n0.999] = 368. The associated β-estimate was β̂0 = 0.80. For the Hill

estimator, we got the estimate k̂H0 = 55, with k̂H0 provided in (9), and an associated γ-estimate equal

to 0.291. The associated approximate 95% confidence interval, in (10), is (0.2115, 0.3432), with a size

0.1317.

The application of the algorithm presented in Section 2.2 of this paper, with a sub-sample

size n1 = [n0.955] = 284, and B = 250 bootstrap generations, led us to k̂PPWM
0∗ = 58 and to the

adaptive PPWM EVI-estimate PPWM∗ ≡ γ̂PPWM
∗ = 0.272. This same algorithm applied to the Hill

estimates leads us to k̂H0∗ = 48 and to the adaptive Hill EVI-estimate H∗ ≡ γ̂H∗ = 0.310. These values

are pictured in Figure 1, where we also present the estimates under study as a function of k. The most

adequate estimate seems neatly to be the one associated with the PPWM methodology, as detected

in a comparative study of the bootstrap Hill and PPWM provided by this algorithm, a topic out of

the scope of this paper.

3.1 Resistance of the methodology to changes in the sub-sample size n1

In Figure 2, we picture at the left, as a function of the sub-sample size n1, ranging from n1 = [n0.95] =

275 until n1 = [n0.9999] = 370, the estimates of the OSF for the adaptive bootstrap estimation of γ

through the Hill and the PPWM estimators, in (4) and (6), respectively. The associated bootstrap

EVI-estimates are pictured at the right.
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Figure 1: H and PPWM EVI-estimates for the SECURA data, as a function of k.
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Figure 2: Estimates of the OSF’s k̂PPWM
0 /n, k̂H0 /n (left) and the bootstrap adaptive extreme value index estimates γ̂PPWM

∗
and γ̂H

∗ (right), as functions of the sub-sample size n1, for the SECURA data.

The bootstrap PPWM EVI-estimates are indeed quite stable as a function of the sub-sample

size n1 (see Figure 2, at the right), varying from a minimum value equal to 0.271 until 0.273, with a

median equal to 0.273, not a long way from the value we obtain for the bootstrap γ-estimate associated

to the arbitrarily chosen sub-sample size n1 = [n0.955] = 284, equal to 0.272. We can indeed guarantee

the two decimal figures, i.e. the estimate 0.27. The bootstrap estimates of the OSF for the estimation

of γ through the PPWM estimator, in (6), vary from 14.0% until 19.4%. For the bootstrap Hill EVI-

estimates the volatility is higher. We get EVI-estimates from a minimum value equal to 0.279 until

a maximum value equal to 0.315. The median of these values is 0.297, also not a long way from the

value we obtain for the bootstrap γ-estimate associated to the same arbitrarily chosen sub-sample size

n1 = 284, equal to 0.299. The volatility of the OSF’s for the Hill estimation is similar to the one we

get for the PPWM EVI estimation, ranging from 12.4% until 16.4%, with a median equal to 14.3%.

The running of the above mentioned algorithm r = 100 times, for n1 = [n0.95] = 275 until

n1 = [n0.9999] = 370, and B = 200 bootstrap generations, provided average estimate, as well as the
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95% bootstrap confidence intervals for γ presented in Figure 3. Figure 3 has a vertical dashed line for

280 300 320 340 360

0.10

0.12

0.14

0.16

0.18

0.20

n1

k̂0*(n, n1)

PPWM

H

280 300 320 340 360

0.27

0.28

0.29

0.30

0.31

n1

γ̂*(n, n1)

H

PPWM

284

Figure 3: Estimates of the OSF’s k̂PPWM
0 /n, k̂H0 /n (left) and the bootstrap adaptive extreme value index estimates and 95%

bootstrap confidende intervals of γ̂PPWM
∗ and γ̂H

∗ (right), as functions of the sub-sample size n1, for the SECURA data.

n1 = [n0.955] = 284, which was used in the first application of the algorithm presented in Section 2.2.

The size of the confidence intervals as well as the above mentioned simulation study are in

favour of the PPWM estimation, as expected. As already detected in previous papers, and in the

most diversified comparisons, the Hill estimates are clearly over-estimating the true value of the

extreme value index.
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