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ABSTRACT

We provide a framework for the study of statistical quantities related to the Hurst phenomenon
when the data are non-precise with finite support.

1. Introduction

We consider non-precise data as defined by Viertl in [7]. We concentrate on a special type of
non-precise data, where the characterizing function for each data point is symmetric around some
central value xi and has finite support. Starting from a sample x1, ..., xn, which we assume to be
normalized so that x = 0, we consider each point as non-precise. At some λ-level, we get intervals
[xi − ελ, xi + ελ] called λ-cuts, where ελ is a non-increasing function of 0 ≤ λ ≤ 1. With such a
non-precise sample, we study the variance σ2, the partial sums Sj =

∑j
i=1 xi, the range R of partial

sums, and finally the ratio R/σ and the related Hurst exponent H.
Analysis of the ratio R/σ is motivated by the work of Hurst [5], where interesting properties

using this ratio were observed for several natural phenomena. We provide a framework by which we
can take the non-precision into account.

The rest of the paper is organized as follows. In Section 2, we review the non-precise formulation
and introduce the notion of symmetric characterizing functions. In Section 3, we present a small
example studied by Hurst [5]: the annual water discharges from Lake Albert. We use this example
to describe the Hurst exponent, which is used to quantify the long-term behaviour of several natural
phenomena. Analysis of the Hurst exponent is useful to quantify dependency in the data, a necessary
condition for the development of useful models. In Section 4, we study the functions described above
for non-precise data. We conclude in Section 5.

2. Non-precise data

We give a brief overview of the notation and concepts used in defining non-precise quantities.
More details can be found in [7] and [1].

2.1 Review and notation

We define a non-precise quantity x via its characterizing function. This concept is similar to the
notion of membership function used in fuzzy data analysis.
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Definition 1 A characterizing function ξ(.) of a non-precise number is a real function of a real
variable such that:
(i) ξ : R→ [0, 1]
(ii) ∃ x0 ∈ R : ξ (x0) = 1
(iii) ∀ λ ∈ (0, 1] , the set Bλ = {x ∈ R : ξ (x) ≥ λ} = [aλ, bλ] is a finite closed interval, a λ-cut of ξ.

Viertl [7] has shown that a characterizing function can be uniquely determined by the family of
λ-cuts {Bλ : λ ∈ (0, 1]} and moreover

(1) ξ (x) = max
λ∈(0,1]

λIBλ
(x) , ∀x ∈ R.

Characterizing functions can also be defined for a non-precise n-dimensional vector x∗.

Definition 2 A characterizing function ξ(.) of a non-precise vector x∗ is a real function of n variables
such that:
(i) ξ(.) : Rn → [0, 1]
(ii) ∃ x0 ∈ Rn : ξ (x0) = 1
(iii) ∀ λ ∈ (0, 1] , the set Bλ (x∗) = {x ∈ Rn : ξ (x) ≥ λ} is a star shaped compact subset of Rn, by
which we mean that the line segment joining any two points in the set lies entirely in the set.

An example of a non-precise vector is the location of an object on a radar screen. The object
appears as a cloud in two-dimensional space. The characterizing function may be constructed in
terms of the light intensity function. Given n non-precise observations, x∗1, x

∗
2, ..., x

∗
n, each taking

values in a space M with corresponding characterizing functions ξ1, ..., ξn, it is possible to define a
characterizing function ξ : Mn → [0, 1] for the combined sample via the product rule or the minimum
rule respectively as:

(2) ξ (x1, x2, ..., xn) = Πn
i=1ξi (xi)

(3) ξ (x1, x2, ..., xn) = min
i
ξi (xi) .

We use the minimum rule (3) in this paper. Any statistical function f (x1, x2, ..., xn) which
is the basis of inference for precise data x = (x1, x2, ..., xn) is then adapted for non-precise data by
computing its characterizing function in accordance with the rule:

(4) ψ (y) =
{

sup {ξ (x) : x ∈ Rn, f (x1, x2, ..., xn) = y} for f−1 ({y}) 6= ∅
0 for f−1 ({y}) = ∅

}
∀y ∈ R.

2.2 Symmetric characterizing functions with finite support

We consider symmetric characterizing function, as in [3], for the non-precise version of our data
so that every λ-cut is of the form Bλ(xi) = [xi − ελ, xi + ελ]. Some important families of symmetric
characterizing functions with finite support are listed next.

1. The truncated Gaussian characterizing functions are of the form ξ(x) = e−(x−µ)2/(2σ2) for |x−µ| ≤
T for some threshold T and ξ(x) = 0 otherwise.

2. The uniform characterizing functions: ξ(x) = 1 if and only if |x− µ| ≤ σ and 0 otherwise.
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3. The triangular characterizing functions: ξ(x) = 1− |x−µ|
σ for |x− µ| ≤ σ and 0 otherwise.

4. The trapezoidal characterizing functions: ξ(x) = 1 when |x−µ| ≤ σ, ξ(x) = 1− |x−µ|−σ
β for some

β > 0 when |x− µ| > σ and |x− µ| ≤ σ + β, and 0 otherwise.

The functions are illustrated in Figure 1, centered at µ = 0. We set σ = 1, T = 2 for the
truncated Gaussian, and β = 1 for the trapezoidal. In each case, a λ-cut yields an interval of values
symmetric around 0, as illustrated with the horizontal dashed lines for λ = 0.5.
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Figure 1: Some symmetric characterizing functions

3. Lake Albert Example

We consider the data from Table 1 on page 7 of [5], which lists the annual total discharge from
Lake Albert from 1904 to 1957 in billion of cubic meters. We let q1, q2, ..., qn represent the annual
discharge, with n = 54, and xi = qi − q. The data are listed in Appendix A. We define Sk =

∑k
i=i xi,

the partial sums, R the range of the {S1, ..., Sn} and σ2 the sample variance. If the qi are independent
and identically distributed, Feller [4] has shown that for any sequence of i.i.d. random variables with
finite variance,

(5) E(R/σ) = (nπ/2)1/2.

On the other hand, for many seemingly unrelated natural phenomenon, Hurst observed that
R/σ = (n/2)H with the Hurst exponent H > 1/2. In fact, it is reported in [5] that based on 690
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experiments, the average value for H was 0.73. In order to allow for easy comparison with the random
hypothesis, we use the generalized Hurst coefficient, as detailed in [6], namely

(6) R/σ = (nπ/2)H .

With this definition, for a process which does not exhibit dependency, we expect H = 0.5 for
any value of n. The average value for H as defined in (6) for the 690 experiments reported by Hurst
in [5] is 0.57. We will re-visit this example in the context of non-precise data.

4. Non-precise data analysis

Consider a sample x̂1, x̂2, ..., x̂n of precise quantities, which we assume to be the central values
for n identically shaped, symmetric characterizing functions ξi() with finite support. Let Supp(x̂i) be
the support of the characterizing function centered at x̂i. Then for all 1 ≤ i ≤ n, we have ξi(x̂i) = 1
and ξi(t) = 0, t /∈ Supp(x̂i). Without loss of generality, we assume that the data is centered around
0, namely

∑n
i=1 x̂i = 0.

Given some 0 < λ ≤ 1, there exists a quantity ελ ≥ 0 such that xi ∈ [x̂i − ελ, x̂i + ελ] for
1 ≤ i ≤ n, the λ-cuts. We define the set of feasible configurations at λ as:

Fλ = {x = (x1, x2, ..., xn) : xi = x̂i + αi, αi ∈ [−ελ, ελ] ∀i,
n∑

i=1

αi = 0}.

The last constraint ensures that the sample mean of the xi remains at 0. Given λ and some
x ∈ Fλ, we define the following quantities related to the Hurst phenomenon:

• the sample variance σ2 =
∑n

i=1 x
2
i /(n− 1),

• the partial sums Sj =
∑j

i=1 xi, 1 ≤ j ≤ n,

• the range of partial sums R = max1≤j≤n Sj −min1≤k≤n Sk = max1≤i<j≤n |xi + ...+ xj |,

• the ratio R/σ, and the Hurst exponent H = log(R/σ)/ log(nπ/2).

In order to compute the characterizing functions for the quantities related to the Hurst phe-
nomenon, we use the construction given in equation (4), along with the minimum rule given in (3).

1. For the sample variance σ2, we define

f(x1, ..., xn) =
{ ∑n

i=1 x
2
i /(n− 1);

∑n
i=1 xi = 0

0; otherwise.

2. For the range of partial sums R, we define

f(x1, ..., xn) =
{

max1≤i<j≤n |xi + ...+ xj |;
∑n

i=1 xi = 0
0; otherwise.

3. For the ratio R/σ, we define

f(x1, ..., xn) =
{

(max1≤i<j≤n |xi + ...+ xj |) /
(∑n

i=1 x
2
i /(n− 1)

)
;

∑n
i=1 xi = 0

0; otherwise.
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Finally, we let H = log(R/σ)/ log(nπ/2) to build the characterizing function for the Hurst
exponent. The computation of the characterizing functions above as given in expression (4) uses
the fact that each point has finite support, thus ξ(x) = 0 when at least one xi /∈ Supp(x̂i). The
characterizing functions are built by considering various levels of λ in turn, and the corresponding
points x ∈ Fλ. For the computation of the sample variance σ2 and the range of partial sums R, some
results given in Appendix B can be used to speed up the process.

4.1 Water discharge examples

In Figure 2, we plot the characterizing functions for the Hurst exponent H, respectively with
truncated Gaussian and triangular characterizing functions (with µ = 0, σ = 1), for the Lake Albert
dataset described earlier. The dashed horizontal line indicates the range of possible values when
λ = 0.5. For triangular characterizing function, λ = 0.5 corresponds to ελ = 0.5, the range of
truncation error for integer-valued data. With the characterizing functions centered above 0.58, these
plots further support Hurst’s observations since the value 0.5 is further on the left and is thus less
plausible.
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Figure 2: Characterizing functions for H for the Lake Albert dataset, respectively with Gaussian and
triangular characterizing functions for the data (µ = 0, σ = 1).

We ran a similar analysis on another set of hydrometric data from [2], which lists the average
monthly and annual water discharge of the Ottawa river from 1961 to 2007. We analyze the average
flows in m3/s rather than the total flow to avoid the issue of months having unequal number of days.
For the monthly data, equation (6) yields H ≈ .554 while with the annual data, we get H ≈ .509.
With such results, it is not a-priori clear if the Hurst phenomenon is present in this data. Considering
non-precision is then useful to quantify our conclusion.

In Table 1, we list the range of values taken by H under various ελ ranging from 0 (precise data)
to ±5 m3/s. A given ελ corresponds, for example, to triangular characterizing functions as defined in
Section 2, with σ = 2ελ and λ = 0.5. We see that the Hurst phenomenon is supported for the monthly
data. At the ελ = .5 level, the range we obtained are still above the expected value of 0.5 under the
random hypothesis. However with wider intervals on non-precision, the Hurst phenomenon is unclear
for the annual data. In Figure 3, we plot the characterizing functions for H respectively for the annual
and monthly data. We used triangular characterizing functions for the measurements with µ = 0 and
σ = 5.
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ελ monthly data annual data
0 [.554,.554] [.509,.509]
.5 [.553,.555] [.508,.511]
1 [.553,.555] [.507,.512]

2.5 [.550,.557] [.503,.516]
5 [.547,.561] [.496,.522]

Table 1: Range for H for the Ottawa river data at various levels of ελ.
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Figure 3: Characterizing functions for H for the Ottawa river datasets, respectively annual and
monthly, with triangular characterizing functions (µ = 0, σ = 5).

4.2 Asymptotic considerations

The Hurst exponent depends on the ratio R/σ, and both values carry some non-precision, which
makes the evaluation of the characterizing function for H more difficult. For large values of n, can
we fix σ and concentrate on the non-precision due to R? We ran a series of experiments based on the
Lake Albert dataset with the qi as i.i.d. Gaussian random variables, with µ = 23.72 and σ = 6.88.
The characterizing function for the Hurst exponent is given by

Ψ(H) = sup
{
ξ(x1, ..., xn) ; H =

log(R)
log(nπ/2)

− log(σ)
log(nπ/2)

}
.

In this example, the second term in the expression for H is about .15 with n = 106 and .07 with
n = 1012, which is non-trivial considering that H ≈ .5, so it can hardly be ignored in practice.

5. Conclusion

Hurst observed that for several environmental series of data there was a persistent long term
effect which he quantified through the Hurst coefficient. For such series the value coefficient was greater
than 0.5. When data exhibit a persistent long term effect, they can in general be suitably modeled.
In this article we re-consider the calculation of the Hurst coefficient when the data are treated as
non-precise. Our analysis provides strong evidence to support Hurst’s findings for the Lake Albert
annual discharge data set. We then applied our methodology on the Ottawa river data for the period
1961-2007. We conclude that there is evidence to support the existence of the Hurst phenomenon
when the measurements are made monthly but not when they are made annually. By treating the
data as non-precise we develop confidence in our conclusions.
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APPENDIX

A. Lake Albert Dataset

year discharge (qi) year discharge (qi) year discharge (qi)
1904 35 1922 13 1940 20
1905 31 1923 14 1941 19
1906 34 1924 18 1942 29
1907 33 1925 16 1943 26
1908 26 1926 19 1944 18
1909 29 1927 25 1945 15
1910 26 1928 21 1946 16
1911 22 1929 19 1947 25
1912 19 1930 21 1948 28
1913 20 1931 26 1949 24
1914 21 1932 28 1950 18
1915 24 1933 29 1951 17
1916 27 1934 23 1952 25
1917 47 1935 20 1953 21
1918 48 1936 20 1954 19
1919 29 1937 24 1955 20
1920 23 1938 26 1956 21
1921 17 1939 24 1957 23

The annual discharges qi are in billions of cubic meters. We define the partial sums Sk =
∑k

i=1 qi.
We get maxk Sk = 91.44 at k = 16 (year 1919), mink Sk = 0, so the range is R = 91.44. We compute
the sample standard deviation σ = 6.88, so R/σ = 13.29 and H ≈ 0.57, the Hurst exponent as defined
in (6).

B. Computational considerations

Computing the characterizing functions for the statistics described in Section 4 is done by fixing
λ and empirically estimating the range of values taken by this statistic over all x ∈ Fλ. For the
variance σ2 and the partial sum range R, some results can be used to speed up this process.

Consider all x ∈ Fλ with ordering of the indices such that x1 ≤ x2 ≤ ... ≤ xn. We first show that
the maximum value taken by the sample variance over all x ∈ Fλ is obtained with αi = −ελ, i ≤ n/2
when n is even, with all other αi = ελ. With n odd, we do the same and leave the middle point as it
is.
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Lemma 1 If we have a set of values x = (x1, ..., xn) ∈ Fλ with x1 ≤ .. ≤ xn such that ∃i < j, αi >

−ελ, αj < ελ, then there exists another x ∈ Fλ with larger variance.

Proof: Start with S1 =
∑n

i=1 x
2
i , and let x = 0 w.l.g. Let αi ← αi − δ, αj ← αj + δ such that

αi ≥ −ελ, αj ≤ ελ, δ > 0, then we compute:
S2 =

∑
k 6=i,j x

2
k + (xi − δ)2 + (xj + δ)2 = S1 + 2δ(δ + xj − xi) > S1. ¤

To find the configuration with smallest variance, we use the following result.

Lemma 2 If we have a set of values x = (x1, ..., xn) ∈ Fλ with x1 ≤ .. ≤ xn such that ∃xi < xj , αi <

ελ and αj > −ελ, then there exists another x ∈ Fλ with smaller variance.

Proof: Start with S1 =
∑n

i=1 x
2
i , and let x = 0 w.l.g. Let αi ← αi + δ, αj ← αj − δ such that

αi ≤ ελ, αj ≥ −ελ, (xj − xi)/2 > δ > 0, then we compute:
S2 =

∑
k 6=i,j x

2
k + (xi + δ)2 + (xj − δ)2 = S1 + 2δ(δ + xi − xj) < S1. ¤

We turn our attention to the partial sums Sj =
∑j

i=1 xi for all x ∈ Fλ. We assume that
Sn = 0, thus x = 0. For any x ∈ Fλ, let m = argmin1≤i≤nSi and M = argmax1≤i≤nSi. Thus
the overall range of the partial sums corresponding to all x ∈ Fλ is given by R = SM − Sm =
max1≤i<j≤n |xi + xi+1 + ...+ xj | . Assume first that M < m, so the maximum partial sum is reached
before the minimum. We know that Sm ≤ 0 and SM ≥ 0 with R = SM − Sm. We note that, with m
and M known and fixed:

◦ changing x1, .., xM affects both Sm and SM in the same way, leaving R unchanged;

◦ changing xM+1, .., xm affects only Sm, thus also R;

◦ changing xm+1, .., xn affects neither Sm nor SM .

We do not know the values of m and M for the optimal configuration, but we can test the
assumptions M = i,m = j, s = (j − i) ≥ 1 in turn. In order to maximize R, we need:

αi+1 + ...+ αj =
{ −sε; s ≤ n/2
−(n− s)ε; s ≥ n/2

therefore:

α1 + ...+ αi + αj+1 + ...+ αn =
{

+sε; s ≤ n/2
+(n− s)ε; s ≥ n/2.

This leads to the following algorithm to compute max(R) over all x ∈ Fλ.

1. Pre-compute ∆ = (ελ, 2ελ, ..., (n/2)ελ, (n/2−1)ελ, ..., ελ) of length n−1; let ∆i be the ith element
in vector ∆.

2. For M = i, the maximum range is given by maxi+1≤j≤n(xi − (xj −∆j−i));
try all M = i and take maximum value

max
1≤i<n

(
max

i+1≤j≤n
(xi − (xj −∆j−i))

)
.

3. Verify all cases where m = i,M = j, i < j in a similar way and take the overall maximum.

8

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS076) p.1298


