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We review the theory and techniques of record linkage that date back to pioneering work by Fellegi and

Sunter on matching records in two lists. When the task involves linking K > 2 lists, the most common approach

consists of performing all
(
K
2

)
possible pairs of lists using a Fellegi-Sunter-like approach and then somehow

reconciling the discrepancies in an ad hoc fashion. We describe some important uses of the methodology, provide

a principled way of accomplishing the reconciliation and we finally present some key parts of the generalization

of Fellegi and Sunter’s method to K > 2 lists.

Introduction

Record linkage is a family of techniques for matching two data files using names, addresses, and other

fields that are typically not unique identifiers of entities. Most record linkage approaches are based or emulate

a method presented in a pioneering paper by Fellegi and Sunter (1969). Winkler (1999) and Herzog et al.

(2007) document the basic two-list methodology and several variations. We begin by reviewing some common

applications of record linkage techniques, including the linking K > 2 lists.

Data Integration. Synthesizing data on a group of individuals from two or more files in the absence of

unique identifiers requires record linkage, e.g., to create a data warehouse to be used for querying such as credit

checks, e.g., see Talburt (2011), or to assess enrollment in multiple government programs, e.g., see Cole (2003).

Multiple Systems Estimation. Estimating the size of a population often requires the use of multiple

samples from the population itself. This problem is widely known as capture–recapture estimation in biological

settings and multiple systems estimation in social settings. These methods have the intrinsic assumption that

the individuals simultaneously recorded by different samples can be identified (e.g., see Fienberg, 1972; Darroch

et al., 1993). Record linkage becomes important in many social contexts where unique identifiers are unavailable,

e.g., census correction and human rights violations (e.g., see Anderson and Fienberg, 2001; Guberek et al., 2010;

Fienberg and Manrique-Vallier, 2009).

Analysis Using Linked Data. When the goal is a statistical analysis of the computer-matched files,

care must be taken to propagate the uncertainty in the record linkage into the analysis. This line of research

is referred to as “analytic linking” by Winkler (1999). For example, Lahiri and Larsen (2005) propose ways

to perform regression on the record-linked files in a way that attempts to account for bias introduced by

the matching error. The techniques hinge on the availability of well-calibrated probability models of record

linkage, i.e., good estimates of the probability of a particular record-pair being a match. These techniques

have applications in drug safety and surveillance, for example in long term vaccine surveillance, where the goal

is to perform logistic regression predicting some side effect using patients’ vaccine histories. In this case the

side effect data may reside in medical records, whereas the data regarding vaccine exposure may reside in an

insurer’s database, e.g., see Brown et al. (2010).

In the next section, we describe a modern variation of the basic Fellegi–Sunter methodology. When the
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task involves linking K > 2 lists, the most common approach consists of performing all
(
K
2

)
possible pairs of

lists using a Fellegi–Sunter–like approach and then somehow reconciling the discrepancies in an ad hoc fashion.

In a subsequent section, we provide a principled way of accomplishing the reconciliation and later we present

an alternative which involves the generalization of the Fellegi–Sunter ideas. Finally we provide a comparison of

the computational complexity of both approaches.

Record Linkage of Two Files

Following Fellegi and Sunter (1969), we let A and B denote the two overlapping subpopulations of

individuals from some larger population whose data is recorded in files. We assume the existence of a pair

of record-generating processes, α, β which produce the actual data recorded in the files, α(A) = {α(a); a ∈
A} and β(B) = {β(b); b ∈ B}, where α(a) and β(b) represent vectors of information of individuals a and b,

respectively. The set of ordered record pairs

α(A)× β(B) =
{(

α(a), β(b)
)
; a ∈ A, b ∈ B

}
is the union of the set of matched record pairs M , with the set of unmatched record pairs U , i.e.,

M =
{(

α(a), β(b)
)
; a = b, a ∈ A, b ∈ B

}
and U =

{(
α(a), β(b)

)
; a ̸= b, a ∈ A, b ∈ B

}
.

Our aim is to identify M and U , a process that is non-trivial in the absence of unique identifiers. Below we

present a modern version of the Fellegi–Sunter approach.

Reduction of Data by Comparison Functions. We apply a vector of comparison functions, γ, to each

record pair, rj ∈ α(A) × β(B), yielding γj = γ(rj) = (γ1(rj), . . . , γι(rj)) ∈ {0, 1}ι, where γji = γi(rj) is the ith

comparison function applied to pair rj . A simple choice of comparison function, when the files record the same

set of variables, is to set γi(rj) = 1 whenever the records have the same value for field i, and zero otherwise. This

information alone is insufficient for the determination of whether rj ∈ M , since the variables being compared

are random in nature. Therefore we estimate P(rj ∈ M |γj) and P(rj ∈ U |γj) = 1 − P(rj ∈ M |γj). In the

absence of correctly matched files, there is no easy way to obtain these probabilities, but we can estimate them

using the EM algorithm.

EM Estimation. Applying Bayes’ rule to P(γj |rj ∈ M) and P(γj |rj ∈ U) we get

(1) P(rj ∈ M |γj) = P(γj |rj ∈ M)P(rj ∈ M)

P(γj |rj ∈ M)P(rj ∈ M) + P(γj |rj ∈ U)(1− P(rj ∈ M))

Next, we let

gj =

{
1 if rj ∈ M,

0 if rj ∈ U,

and define xj = (gj , γ
j) as the “complete data” vector for rj . Winkler (1988) and Jaro (1989) model the

complete data, xj , via some vector of parameters Φ, as:

P(xj ; Φ) =
[
P(γj , rj ∈ M)

]gj[
P(γj , rj ∈ U)

]1−gj

=
[
P(γj |rj ∈ M)P(rj ∈ M)

]gj[
P(γj |rj ∈ U)(1− P(rj ∈ M))

]1−gj
,
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and thus they obtain the log–likelihood for the sample x = {xj ; j = 1, . . . , n} as

ℓ =

n∑
j=1

gj log
[
P(γj |rj ∈ M)P(rj ∈ M)

]
+

n∑
j=1

(1− gj) log
[
P(γj |rj ∈ U)P(rj ∈ U)

]
.

In order to estimate P(γj |rj ∈ M) and P(γj |rj ∈ U), Fellegi and Sunter (1969) use the simplifying assumption

that the components of the vector γj are conditional independent with respect to the state of the indicator gj ,

i.e.,

P(γj |rj ∈ M) =
ι∏

i=1

m
γj
i

i (1−mi)
1−γj

i and P(γj |rj ∈ U) =
ι∏

i=1

u
γj
i

i (1− ui)
1−γj

i ,

where mi = P(γji = 1|rj ∈ M) and ui = P(γji = 1|rj ∈ U). Defining p = P(rj ∈ M), we obtain the log-likelihood

as

ℓ =
n∑

j=1

gj log
[
p

ι∏
i=1

m
γj
i

i (1−mi)
1−γj

i
]
+

n∑
j=1

(1− gj) log
[
(1− p)

ι∏
i=1

u
γj
i

i (1− ui)
1−γj

i
]

Since the values of gj are unknown, we do the estimation of the parameters Φ = (p,m1, . . . ,mι, u1, . . . , uι) via

maximum likelihood estimation using the EM algorithm following Jaro (1989).

Weights. Once we estimate the parameters Φ, our next step is to determine the matched pairs of records

using estimates of the likelihood ratios:

wj = log
P̂ (rj ∈ M |γj)
P̂ (rj ∈ U |γj)

∝ log
P̂ (γj |rj ∈ M)

P̂ (γj |rj ∈ U)
=

ι∑
i=1

wj
i where wj

i =

{
log( m̂i

ûi
) if γji = 1,

log(1−m̂i
1−ûi

) if γji = 0.

The Assignment Problem. Having obtained the weights for each record pair, we can treat the as-

signment of record pairs as a linear sum assignment problem, following Jaro (1989). Setting cab = wj for some

a ∈ A, b ∈ B and where j is the index associated with the pair (a, b), we take:

yab =

{
1 if record (α(a), β(b)) ∈ M,

0 otherwise.

We then solve the maximization problem:

max
y

|A|∑
a=1

|B|∑
b=1

cabyab subject to yab ∈ {0, 1},
|A|∑
a=1

yab ≤ 1, b = 1, 2, . . . , |B|,
|B|∑
b=1

yab ≤ 1, a = 1, 2, . . . , |A|.

The first constraint ensures that the variables represent a discrete structure, and the second and third constraints

assure that each element of A is matched with at most one element of B. This is a maximum-weight bipartite

matching problem, for which efficient algorithms exist. Note that this step is convenient only if there are not

intra list duplicates.

Cutoff Values. The process thus far yields matching that maximizes the sum of the weights among the

declared matches, but the possibility exists that the matching will include some pairs with a very low matching

weight. Thus Fellegi and Sunter (1969) propose to compute cutoff values of the weights, to declare a pair as a

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS059) p.1066



link or as a non-link. We order the 2ι possible values of γj by their weights in decreasing order indexing by the

subscript (j) and determine two values, (j′) and (j′′), such that

(j′)−1∑
(j)=1

P(γj |rj ∈ U) < µ ≤
(j′)∑

(j)=1

P(γj |rj ∈ U) and
2ι∑

(j)=(j′′)

P(γj |rj ∈ M) ≥ λ >
2ι∑

(j)=(j′′)+1

P(γj |rj ∈ M)

where µ = P(assign rj as link|rj ∈ U) and λ = P(assign rj as non–link|rj ∈ M) are two admissible error

levels. Finally, we divide the record pairs assigned with configurations of γ(j) into three groups: (1) those for

(j) ≤ (j′) − 1 are links, (2) those for (j) ≥ (j′′) + 1 are non–links, and (3) those with configurations between

(j′) and (j′′) require clerical review.

Blocking. When the sizes of the data files to be linked are moderate (e.g., tens of thousands of records

or more) then applying the above theory may be too inefficient, since there would be hundreds of millions of

pairs under consideration. A common way to deal with this problem is to perform “blocking” whereby we

remove “obvious” non-matches from consideration, leaving blocks of potential links. The terminology goes back

in some sense to the census uses where the population is divided into physical blocks, but also reflects the

experimental design notion of “blocking” to remove heterogeneity. The idea is that a “reliable” field such as

zip code or gender may be used to quickly label some of the non-links. See Herzog et al. (2007) for discussion.

The result is a tradeoff of computational efficiency versus accuracy in the final linkage; however, the impact on

the accuracy is usually fairly mild.

Extensions of Fellegi-Sunter for More than Two Data Files

We now turn to the possibility that multiple files may be matched together at the same time—an impor-

tant practical problem heretofore explored only via ad hoc approaches. Two possibilities suggest themselves:

(1) estimate the matching weights for each pair of files, and then perform matching of all the files at once

(reconciliation), or (2) estimate the matching weights for the direct product of all the files, and then perform

the matching. We explore these alternatives in turn.

Let A1, A2, . . . , AK correspond to K overlapping subpopulations with recorded data files and suppose

that, for each data file, there exists one different record generating process

αk(Ak) = {αk(ak); ak ∈ Ak}, k = 1, . . . ,K,

where the member αk(ak) represents a vector of information for individual ak, who belongs to subpopulation

Ak. This information could be erroneous or incomplete.

Define theK-ary cartesian product
⊗K

k=1 αk(Ak) =
{(

α1(a1), α2(a2), . . . , αK(aK)
)
; ak ∈ Ak, k = 1, . . . ,K

}
composed by all the possible record K-tuples in which the kth entry corresponds to the information recorded

for some unit ak in the subpopulation k. When we dealt with two files, this cartesian product was simply par-

titioned into the set of matches and non-matches. With multiple files a tuple can contain multiple individuals

and therefore we must re-define the goal of record linkage.

It is possible that certain record K-tuple contain information about K different individuals, i.e. for some

(α1(a1), α2(a2), . . . , αK(aK)
)
, ai ̸= aj for all pairs i, j. At the other extreme, the same individual can appear in

all K data files, i.e., in the record K-tuple (α1(a1), α2(a2), . . . , αK(aK)
)
, a1 = a2 = · · · = aK . In general, we aim

to classify the elements of each record K-tuple into subsets that record information about the same individual.

In order to establish formally this idea, let ΠK denote the set of partitions of the set NK = {1, 2, . . . ,K}. Thus,
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each record K-tuple is characterized by an element of ΠK .

Let Sp be the set of record K-tuples corresponding to the pattern of agreement p ∈ ΠK . It is clear that

K⊗
k=1

αk(Ak) =
∪

p∈ΠK

Sp(2)

Thus the goal of multiple record linkage is to partition the product of the files into the disjoint sets Sp cor-

responding to the p ∈ ΠK . The number of ways a set of K elements can be partitioned into nonempty

subsets is the Kth Bell number, BK , found using the recurrence relation BK =
∑K−1

k=0 Bk

(
K−1
k

)
, where B0 = 1.

There are BK subsets Sp of record K-tuples. Let n denote the cardinality of (2). Also, for j = 1, . . . , n, let

rj =
(
α1(a1), α2(a2), . . . , αK(aK)

)
, for some ak ∈ Ak, k = 1, . . . ,K, be the jth record K-tuple of the K-ary

product (2).

As before, in the absence of unique identifiers for the individuals, the partitioning cannot be done exactly.

Therefore we take the same approach as above, namely to reduce each tuple to a set of matching variables,

then to estimate a model of the match variables given the partition. By using this information our goal is to

estimate the probability that the record K-tuple belongs to each subset Sp. We proceed by first demonstrating

the possibility of using the above two-file record linkage approach as a module in a larger procedure, then give

a second approach which instead generalizes the Felligi–Sunter method for multiple files.

Approach 1: Reconciling Bipartite Record Linkages

Suppose we had estimated the
(
K
2

)
Fellegi–Sunter models described above, one for each pair of files under

consideration. We may then naturally compute the probability that a particular K-tuple belongs to a certain

block of the partition Sp. For notational convenience define the relation a ≡p b, for a, b ∈ {1, . . . ,K} whenever

a, b are in the same block of the partition p ∈ ΠK . Then a tuple r =
(
α1(a1), α2(a2), . . . , αK(aK)

)
is in Sp, if

for all pairs i, j we have i ≡p j if and only if ai = aj , in other words elements are in the same partition iff they

correspond to the same individual. For each pair i, j we have a Fellegi-Sunter model which gives:

P((ai, aj) ∈ Mi,j |γi,j(r)) and P((ai, aj) ∈ Ui,j |γi,j(r))

i.e., the probability that elements (ai, aj) are matches or non matches, based on the requisite match variables

(here represented as functions of the entire tuple). We therefore may take:

P(r ∈ Sp|γ(r)) ∝
∏
i̸=j

P((ai, aj) ∈ Mi,j |γi,j(r))1{i≡pj}P((ai, aj) ∈ Ui,j |γi,j(r))1{i̸≡pj}

The normalizing constant is the summation over the BK possible partitions. Then the final partitioning of

the tuples may be done via a method described below. This method is conceptually appealing since it uses the

original Fellegi–Sunter method as a sub-routine to estimate model parameters, and then finally performs a joint

record linkage of all the files at once.

Approach 2: Fellegi–Sunter Extension for K > 2 Data Files

The alternative is to modify the Fellegi–Sunter approach so that it directly applies to multiple files. We

describe the changes needed to the original method below.
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Comparison Data. In order to model the probability that a certain record K-tuple belongs to some

subset Sp, we determine the pattern of agreement for each field of the information recorded. If we search

for agreement for a certain field, we can associate each component of the record K-tuple with a number in

{1, 2, . . . ,K} and a partition would describe the pattern of agreement of the record K-tuple, grouping in the

same element of the partition all the files that agree in the field being compared. Now, let γ
jf
p = 1 if the record

K-tuple rj has the pattern of agreement p in the field f . Then, for each field f = 1, . . . , F , of each record

K-tuple rj , we obtain a vector γjf = (γ
jf
1/2/.../K , . . . , γ

jf
p , . . . , γ

jf
12...K). The length of the vector γjf is BK , since

that is the number of patterns of agreement for each field. Finally, the comparison data for rj is the vector

containing the information of all the F fields, and we write it as γj = (γj1 , . . . , γjf , . . . , γjF ), which represents

(BK)F possible patterns of agreement γj for each record K-tuple.

Matching Probabilities. Let gj = (gj1/2/.../K , . . . , gj12...K) be the vector that indicates the subset Sp

that contains the record K-tuple rj , such that gjp = 1 if rj ∈ Sp and it is 0 otherwise. Thus, it is clear that∑
ΠK

gjp = 1. Now, let xj = (gj , γj) be the (unobserved) complete data vector for rj . In order to model the

matching probabilities we consider

P(xj |Φ) =
∏

p∈ΠK

[
P(γj |Sp)P(Sp)

]gjp
.

Each γjf represents the pattern of agreement of rj in the field f , which corresponds to categorical information

that we can model using a multinomial distribution with just one trial as

P(γjf |Sp) =
∏

p′∈ΠK

(πf
p′|p)

γ
jf

p′ ,

where πf
p′|p = P(γjfp′ = 1|Sp), and p′ is just another indicator of the patterns of agreement in ΠK . Under

conditional independence for the sample x = {xj ; j = 1, . . . , n} and the assumption of independence for the

comparison data of each field, we obtain the complete log–likelihood as

L =

n∑
j=1

∑
p∈ΠK

gjp

[
log ��p +

F∑
f=1

∑
p′∈ΠK

γ
jf
p′ log π

f
p′|p

]
,

where ��p = P(Sp). We can use a standard EM algorithm for estimation here, e.g., see Sadinle (2011).

A Generalized Fellegi–Sunter Decision Rule. Each record K-tuple is potentially declared to belong

to the subset Sp if and only if p is the pattern for which P̂(Sp|γj) is maximum among all possible patterns in

ΠK . Thus, the set of record K-tuples is partitioned in BK subsets and for each tuple in one of these partitions

we consider only two possibilities, whether to declare it belongs to the subset Sp or to keep it undeclared. For

the record K-tuples in each partition, we order the possible values of γj using weights wj
p = logit[P̂(Sp|γj)]

in non-increasing order indexing by the subscript (j)p. See Sadinle (2011) for a detailed justification and a

comparison with the traditional weights for bipartite record linkage. Later, we find one value (j′)p for each

set of weights related to each subset, in order to determine the record K-tuple membership. The value (j′)p
satisfies

(j′)p−1∑
(j)p=1

P̂(γ(j)p |Sc
p) < µp ≤

(j′)p∑
(j)p=1

P̂(γ(j)p |Sc
p)
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where µp = P(assign to rj the membership of Sp|rj ∈ Sc
p) is an admissible error level. We can compute each

P̂(γ(j)|Sc
p) as

P̂(γ(j)p |Sc
p) =

P̂(γ(j)p)− P̂(γ(j)p |Sp)�̂�p
1− �̂�p

.

Finally, for those record K-tuples with configurations of γ(j)p , (j)p = 1, . . . , (j′)p − 1, we allocate them to the

subset Sp. For those record K-tuples with configurations γ(j)p with (j)p ≥ (j′)p, we keep them undeclared.

This decision rule minimizes the probability of assigning the tuples to the wrong subset Sp or keeping them

undeclared, subject to a set of admissible error levels µp, p ∈ ΠK (Sadinle, 2011). We could then send the

undeclared tuples to clerical review or iterate between clerical review and refitting the mixture model (Larsen

and Rubin, 2001).

Computational Issues

When the number of files and their sizes grow large, then one or both of the above techniques may

be infeasible from a computational perspective. Thus we briefly describe the growth of the computational

complexity. We use K to be the number of files and n, F to be the maximum number of elements and fields

respectively in any file. The first step of either approach is the construction of the match variables. For the first

approach there are
(
K
2

)
n2F = O(K2n2F ) pairs to consider (modulo blocking). For the latter approach, entire

K-tuples are considered at once, of which there are O(nKF ) modulo blocking, therefore the latter approach

may be vastly more computationally expensive as the number of files is allowed to grow.

The second phase is the estimation of the parameters. Both procedures resort to the use of EM, for which

the number of iterations depend on the data themselves and are impossible to characterize in terms of the

input sizes. Nevertheless we may consider the computational cost of an iteration of EM in either case. In the

reconciliation approach, there are
(
K
2

)
independent instances of EM, in which there are two models to update in

the M-step, one for links and one for non-links. In the E-step there are at most 2F matching patterns for which

the class membership indicator expectations are computed. Thus the overall complexity of an iteration scales as

O(K22F ). For the second approach, there are essentially |Πk| models to update in the M-step, and in the E-step

there are |ΠK |F matching patterns (recall that |ΠK | = BK is the Kth-Bell number which is exponentially large

in K). Thus the overall complexity of the EM phase of this approach is O(BF
K) which may grow astronomically

large as K increases. In the final phase, the approaches seem to be on an equal footing if the goal is to optimize

exactly the probability of the output partitioning, so both require computing O(BKnK) partition membership

probabilities for the tuples. We speculate that this could be instead rapidly approximated, if we use the pairwise

Felligi–Sunter models to efficiently filter out those tuples in which some elements are either clearly matches or

clearly non-matches; however, this is a goal for future work.

While the second approach may be more expensive for moderate or large numbers of files, when the

number is small, e.g., K = 3, then either approach will be computationally tractable, and we may anticipate

superior performance from the second model, since it encodes a richer model of the matching variables, i.e., it

does not make a false independence statement with respect to the pairs of files.
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