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1 Introduction

We examine the extreme values of a phenomenon Y with a heavy tailed distribution function F

through the sample Y1, . . . , Yn. For a heavy tailed distribution, also called a Pareto type distribution,

1 − F (y) = y−1/γℓ(y), with ℓ(y) a slowly varying function. The parameter γ is called the extreme

value index and is positive for heavy tailed distributions, where the larger γ, the heavier the tail.

An extensive treatment of Pareto type distributions can e.g. be found in [1]. The Hall class, with

P (Y > y) ∼ Cz−1/γ (1 +Dzρ), with C, D constants and ρ < 0 constitutes a wide subclass of the

Pareto-type distributions.

In this text we study a variable Y |x that can vary with some covariate information x (e.g. x=time)

in which the main interest lies in the extreme data points. The extreme value index might depend on

the covariate information and is denoted as γ(x) as such. In Dierckx et al. (2010) we concentrated on

testing whether an instantaneous change occurs in the value of the extreme value index γ. Now we

illustrate with an explicit example that in some cases the extreme value index seems to change grad-

ually rather than instantaneously according to some trend. More generally there might be a change

point in the trend parameters as well.

Example Swiss Re. Worldwide major catastrophes often have a grave humanitarian impact with

regard to losses and victims. Therefor, Swiss Re, one of the leading global reinsurers, listed the biggest

disasters of different types (hurricanes, ...). We analyse the losses Y (adapted for inflation) of these

disasters from January 1, 1970 until January 1, 2009 (n=62). These losses are plotted in time in

Figure 1. This plot seems to indicate that the losses become more heavy tailed in time, suggesting a

time varying extreme value index.
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Figure 1: Swiss Re Loss data: (x, Y ) where x denotes the number of 5 years since 1970

In Section 2 we will focus on studying a trend in the extreme behaviour. Some comments on change

points of the trend parameters are made in Section 3..
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2 Trend behaviour

2.1 Trend models

The problem of non-stationary extremes has already been addressed in the literature, especially with

applications in climatology. Note however that in that context the authors often suggest to use a

constant extreme value index γ, whereas other parameters account for the non-stationarity.

Several authors focus on fitting a Generalized Extreme Value (GEV) distribution

F (x) = exp

(

−

(

1 + γ
x− µ

σ

)

−1/γ
)

,

which, in extreme value theory, is known to be the limiting distribution for maxima and containing

the extreme value index. The non-stationarity can be introduced via the parameters in the GEV

distribution as was done e.g. in katz et al. (2002), Kharin et al. (2005) and Cooley (2009). These

authors introduced a parametric model for the parameters in de GEV distribution. Other authors use

a non-parametric approach, e.g. Davison et al. (2005) and Chavez et al. (2005).

Although commonly used in climatology, analyzing e.g. annual maxima of temperatures, the GEV

approach is not very efficient. Therefor, in this article, we prefer to use, what is called, a peaks over

threshold method. Instead of only working with maxima, we will model all data exceeding a predefined

threshold. For this threshold we adopt the following definition

(1) 1 − FY (u) =
k

n
,

where k/n is a small number, indicating what percentage of data will be called extreme. The choice of

the threshold u then corresponds to the choice of k. Typically, different k values are taken in extreme

value statistics to obtain estimators to get a clearer view.

From Extreme Value Theory it is known that the distribution of absolute excesses Y − u, over a high

threshold u can be approximated well by a Generalized Pareto Distribution

P (Y − u 6 x|Y > u) ∼ 1 −
(

1 + γ
x

σ

)

−1/γ
.

Again several authors proposed to introduce non-stationarity via the parameters of this model. Al-

though some authors use a fixed threshold, the need for a varying threshold u(x) depending on x

has recently been recognized by several authors, e.g. Smith (1989), Nogaj et al. (2007), Coelho et al.

(2008), Jagger et al. (2009), Eastoe et al. (2009) and Kyselý at al.(2010).

In this text, since we are working with Pareto type distribution, we will not make use of the general

Generalized Pareto Distribution as the limiting distribution of the absolute excess over a high threshold

u. Instead we will focus on the the limiting distribution of the relative excesses over the high threshold

u(x) to estimate the trend γ(x) in a positive extreme value index. Let us denote the relative excesses

of Y |x over a high threshold u(x), given that Y |x exceeds u(x) by Z|x. For a Pareto-type distribution

with parameter γ(x), Z satisfies the condition

(2) P

(

Y

u
> z|Y > u

)

= P (Z > z|X = x) → z
−

1
γ(x) , u(x) → ∞.

Although one can expect similarities with the GPD approach from above, some clear difference can

be remarked.
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First, note that the scale parameter σ does not occur in the limit for the relative excesses for Pareto

type distributions. In case of numerical estimation procedures, this might enhance the convergence to

stable solutions of such procedures.

Next, as in the GPD approach, the threshold u(x) has to be determined. We will work with a varying

threshold and explain in Section 2.2 how we can determine this threshold in our setting.

Further, although second order properties of the GPD have been studied in a univariate context (see

e.g. Drees et al. (2002), Beirlant et al. (2009)), and although Chavez-demoulin et al. (2005) remark,

based on some simulations, that the overall biases in the trend setting seem to be sufficiently small,

the second order properties are not systematically studied when trends appear. In this text we assume

the following second order condition

P (Z > z) = z−1/γ

(

1 + b(u)
zρ − 1

ρ

)

, b(u) ∼ B uρ → 0, Bconstant; ρ < 0, u→ ∞(3)

which is mild, as one can e.g. easily check that distributions of the Hall class satisfy the condition in

(3). Note that Y , u, γ and B, ρ and b(u) may depend on the covariate x.

Using a second order condition as in (3) allows for a study of the asymptotic bias of the resulting esti-

mates which, together with the asympotic variance, could be usefull when determining an appropriate

k-value.

Finally, we will concentrate on a linear trend function for γ(x, α) = α1 + α2x. This choice can be

argumented by the fact that in practice one does not expect a huge change in γ, such that (at least

locally) a linear trend might describe most practical data sets well, at least locally. In case this is not

true, the proposed methods can be easily adapted for any kind of trend function.

2.2 Threshold choice

As stated before, it is already recognized by several authors that a varying threshold is needed. In this

text, we focus on studying how the threshold alters with the covariate information due to a change in

the heaviness of the tail. This is now illustrated in Figure 2 for a simulated data set.

Simulated data.

We illustrate the trend functions of the different parameters for a simulated data set of size n = 500

from the heavy tailed Fréchet distribution. Recall that the distribution function of a Fréchet(α)

distribution is given by

1 − F (x) = 1 − exp(−x−α) .

In Figure 2, a simulated data set from a Fréchet(1/(0.5+0.1x)), with x = 0.01, 0.03, . . . , 10 as covariate

information, is shown. For a Fréchet distribution, the extreme value index equals γ = 1/α, leading to

γ(x, α) = 0.5 + 0.1x. From Figure 2 it is clear that the data become more heavy tailed as x grows.

From the definition of the threshold in (1) it follows that u(x, ψ) =
(

− log
(

1 − k
n

))

−1/α
. For k = 50,

x = 1, resp. x = 9 this becomes u = 6.36, resp. u = 75.05. Since the data are becoming more heavy

tailed as x grows, a value of 15 is out of ordinary for small x, where it is not so exceptional for larger

x.

We propose to apply the parametric quantile regression methodology of Koenker and Basset (1987) to

derive an expression for the threshold u(x). The authors determine the pth regression quantile using

the following optimization problem

(4) minψ
∑

(

p (Yi − u(xi, ψ))+ + (1 − p) (Yi − u(xi, ψ))−
)

,
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Figure 2: (x, Y |x) for a simulation of size 500 of a Fréchet(1/(0.5 + 0.1x)). Note that the y-axis is

limited to 65, although 7 Y-values exceed this value. The maximum Y-value of 2290 is attained for

x = 8.69

with x+ = max(0, x) and x− = max(0,−x).

Since u(x) was defined such that P (Y |x > u(x)) = k/n for k/n small, u(x) is actually the p =

(n− k)/(n+ 1)th regression quantile.

In our setting, the threshold u(x) might indeed be assumed to change according to some known law

u(xi, ψ). As mentioned and argumented before, we will concentrate on a linear trend function for

γ(x, α) = α1 + α2x in this text. Therefore, a suitable choice for u might be u(x, ψ) = exp(ψ1 + ψ2x),

since for Pareto-type distributions belonging to the Hall subclass k
n = F̄ (u(x, ψ)) ∼ Du−1/γ(x), u→ ∞.

This shape of the function u can be found in the literature as well (see e.g. Eastoe et al. (2009)).

Simulated data set. The Koenker and Basset technique, is illustrated on the simulated data set. It

will be argumented later that k=179 might be a good choice. The estimators of the threshold u(x) for

this k-value is shown on top of the scatterplot in Figure 3. The true u(x) is also added and practically

coincides with the estimated threshold.

0 2 4 6 8 10

0
5

10
15

Figure 3: (x, Y |x) as in Figure 2 together with the estimated u(x) for k = 179. The dashed line is

showing the true u(x).

Note that it might be interesting to study the underlying mechanism of the variation of the threshold

as a function of x. This variation indeed might be twofolded. As illustrated before, the threshold might

alter with the covariate information due to a change in the heaviness of the tail. However, a change

in location also results in a threshold evolving with the covariate information x. We assume that such

a change in location has been removed. The technique of local polynomial quantile regression can be

now e.g. be used to remove a trend due to a change in location.

From now on, we will retain a data point (xj , Yj) as extreme only if Yj exceeds the corresponding
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threshold u(xj). As such we are left with k data combinations (xi, Zi), i = 1 . . . k, where Z1, . . . , Zk
are notations for the relative excesses of Yj as before. Based on these data, estimators concerning the

extreme value index are obtained.

2.3 Estimators concerning γ(x, α)

Maximum likelihood estimators for γ(x, α) will be provided. The asymptotical variance and bias of

the corresponding estimators will be studied and lead to a hypothesis test to detect whether a trend

is showing in the extreme value index.

The parameters α1 and α2 occuring in the extreme value index γ = α1 + α2x can be calculated using

the maximum likelihood method based on the model in (2). This leads to the following score functions

δ logL

δα1
= −

k
∑

i=1

1

γ(xi)
+

k
∑

i=1

log(Zi)

γ2(xi)
= 0(5)

δ logL

δα2
= −

k
∑

i=1

xi
γ(xi)

+
k
∑

i=1

xi log(Zi)

γ2(xi)
= 0

The resulting maximum likelihood estimators are denoted by α̂1 and α̂2. Note that also estimators

for small probabilities and large quantiles can be proposed based on û(x) and γ̂(x).

Simulated data set 1. The estimators α̂1 and α̂2 are given in Figure 4. E.g. for k = 179, this

leads to the estimators α̂1=0.525 and α̂2=0.106. Together they give rise to an estimate of γ(x). This

estimate is compared to the true γ(x) in Figure 5 for x = 0.1, 1, 3, 5, 7, 9.
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Figure 4: (a) For the same data as in Figure 2: (k, α̂1); (b) (k, α̂2). The horizontal line is indicating

the true values α1 = 0.5 and α2 = 0.1.
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Figure 5: For the same data as in Figure 2: (k, γ̂(x)) together with the true values (dashed lines) for

x = 0.1, 1, 3, 5, 7, 9.
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The asymptotic variance of the estimators α̂1 and α̂2 can be found from the inverse information

matrix I(α) = −E
[

δ2 logL
δαiδαj

]

. Exploiting the fact that E[logZi] ∼ γ(xi), it follows immediately that

asymptotically

Var (α̂1) =
1

D

k
∑

i=1

x2
i

γ2(xi)
; Var (α̂2) =

1

D

k
∑

i=1

1

γ2(xi)
; Cov(α̂1, α̂2) = −

1

D

k
∑

i=1

xi
γ2(xi)

(6)

where the denominator D equals
∑k

i=1
1

γ2(xi)

∑k
i=1

x2
i

γ2(xi)
−
(

∑k
i=1

xi

γ2(xi)

)2
.

By neglecting the terms of order b(u(xi)) a bias will be introduced in the estimators α̂1 and α̂2.

Formulas for these biases can derived and are given by

Bias(α̂1) = E

[

−
1

F

(

k
∑

i=1

x2
i

γ2(xi)

k
∑

i=1

bxi
(u(xi))Z

ρ̂
i +

k
∑

i=1

xi
γ2(xi)

k
∑

i=1

xibxi
(u(xi))Z

ρ̂
i

)]

Bias(α̂2) = E

[

−
1

F

(

k
∑

i=1

1

γ2(xi)

k
∑

i=1

xibxi
(u(xi))Z

ρ̂
i +

k
∑

i=1

xi
γ2(xi)

k
∑

i=1

bxi
(u(xi))Z

ρ̂
i

)]

(7)

where the denominator F equals
∑k

i=1
1

γ2(xi)

∑k
i=1

x2
i

γ2(xi)
−
(

∑k
i=1

xi

γ2(xi)

)2
.

The order of this bias is determined by the order of b(u(xi)), which tends to zero as u → ∞. The

bias could be estimated using the second order parameters. However, using maximumlikelihood to

estimate a parametrized version of (3), leads to unstable estimators. Using a bootstrap method to

estimate the bias seems to lead to better results and so this method is used in this article.

The bias and variance of γ̂(xi) follow from the bias, variance and covariance of the estimators α̂1 and

α̂2. Indeed if, γ(xi) = α1 + α2xi then

Var (γ̂(xi)) = Var (α̂1) + x2
i Var (α̂2) + 2xiCov(α̂1, α̂2)(8)

Bias(γ̂(xi)) = Bias(α̂1) + xiBias(α̂2)

Note that as such the AMSE could be calculated as well. One might adopt the k-value minimizing

the AMSE as optimal.

Simulated data set 1. The variance and the covariance of the estimators can be estimated based

on the data when plugging in the estimator γ̂(xi) in (6), as is illustrated for the variance in Figure 6.

Estimators of the squared bias, using the bootstrap methodology, are added in the same graph. Based

on the AMSE for γ(x), the ’optimal’ k-value of 179.
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Figure 6: For the same data as in Figure 2: (k, Var (α̂))(full line) and (k,Bias2(α̂)) (dotted line) for

(a); α̂1; (b) α̂2.
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Finally one could also look at the following diagnostic plot. According to (3), log(Z) divided by γ(x)

is asymptotically distributed as a standard exponential distribution. Thus when a good estimate of

γ(x) is used, we expect the exponential QQ plot for log(Z)/γ̂(x) to show approximatly a linear pattern

with slope 1 for a suitable k-value.

Simulated data set 1. In Figure 7 an exponential QQ plot is given for log(Z)/γ̂(x) for k = 179.
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Figure 7: For the same data as in Figure 2: Exponential QQ plot (k = 179) (first bissector is added

in dotted line); .

2.4 Real life data

Let us now analyse the losses Y (adapted for inflation) from the Swiss Re example. These losses are

plotted in time in Figure 8(a). The extreme value index of these losses seems to increase in time as

can be concluded from the Moving Hill plot in Figure 8(b).
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Figure 8: Swiss Re Loss data: (a) (x, Y ) where x denotes the number of 5 years since 1970 with the

estimation for the threshold u superimposed for k = 31; (b) Moving Hill plot with γ̂(x) for k = 31

added in dashed line.

Let us assume that the extreme value index changes according to some linear trend γ(x) = α1 + α2x,

where x denotes the number of 5-years since January 1, 1970. The corresponding maximum likelihood

estimators are shown in Figure 9. In this example the choice of k is not crucial as the estimators are

quite stable. E.g. for k = 31, minimizing AMSE(x = 7), α̂1 = 0.001, whereas α̂2 = 0.1366.

It seems that γ can be estimated as 0.001 + 0.1366x. Note that α2 is significantly different from 0.

This linear trend model summarizes well the moving Hill plot as be seen in Figure 8(b). Another

diagnostic that can be used to assess the linear trend funcion is the exponential quantile plot. In

Figure 10(b), such an exponential quantile plot is provided, together with the first bissector which is

linked to the expected standard exponential. There seem to be no clear indications that a linear trend

function is unappropriate.
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Figure 9: Swiss Re Loss data: (a) (k, α̂1); (b) (k, α̂2) with 95% confidence intervals.
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Figure 10: Swiss Re Loss data: Exponential QQ plot for logY/γ(x), with first bissector added in

dashed line.

Finally, the estimator γ̂(x) can be used to determine small probabilities and large quantiles as in

Figure 11. For comparison, also the estimators based on the classical Weismann type estimators using

the Hill estimator under the assumption that no time component is to be taken into account, are added

in the same Figure. Clearly these last estimators do not describe well the behavior of the extreme

values, indicating that one can not defend that the extreme value index stays unaltered in time.
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Figure 11: Swiss Re Loss data: (a) (x, p̂(x; 60000); (b) (x, q̂(x, 0.01)); based on the trend function

γ(x) = 0.001 + 0.159x. The estimation is also performed assuming that the extremal behavior of the

data does not change in time and is added with a dotted line.

3 Change point in trend parameters

To study whether a change point in the trend parameters occurs, we denote the sample as Y1, . . . Ym,

Ym+1, . . . Yn. The following hypothesis test for α e.g. might be of interest.
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H0 : α1 = α2 = . . . = αn = α

versus(9)

H1 : α1 = αm∗ 6= αm∗+1 = αn for some m∗,

To detect a change point in Y1, . . . Ym∗ , Ym∗+1, . . . Yn at m∗, for the parameter θ, Csörgő and Horváth

(1997) introduce a likelihood based test statistic. First we will shortly repeat the general procedure

as introduced by Csörgő and Horváth (1997). Then we will adapt the general procedure to perform

the hypothesis test in (9).

3.1 General procedure

Csörgő and Horváth (1997) basically compare a likelihood of the whole data set to the corresponding

likelihoods of the two groups Y1, . . . Ym∗ and Ym∗+1, . . . Yn.

In general, denoting the loglikelihood based on the whole data set by logLn and the loglikelihoods of

the two subgroups by logLm resp. logL∗

m, the following test statistic is suggested

Zn =

√

max
16m<n

(−2 log Λm) ,(10)

with

−2 log Λm = 2
[

Lm(θ̂m) + L∗

m(θ̂∗m) − Ln(θ̂n)
]

(11)

where θ̂m is the likelihood estimator based on (Y1, . . . , Ym), θ̂+
m on (Ym+1, . . . , Yn) and θ̂n on (Y1, . . . , Yn).

For a change in 2 parameters Csörgő and Horváth (1997) suggest to use the critical values based on
√

sup
ǫ6t<1−ǫ

B2
2(t)

t(1 − t)
,

with B2(t) the sum of two Brownian bridges.

3.2 Specific procedure

First find an expression for the threshold u(x) as in Section 2.2 for the whole data set, using the quan-

tile regression methodology of Koenker and Basset (1978). Next, again only retain the data points Y

overshooting u(x), denoted by Z. The Z-values of the first group are denoted by Z1, . . . Zk1 . In the

same way Zk1+1, . . . Zk denote the Z − values of the second group. Further put k = k1 + k2.

Under H0, Z1, . . . , Zk asymptotically follow a Pareto distribution with parameter γ(x, α) as in (2).

The loglikelihood function Ln(α) is given by

logL(z) =
k
∑

i=1

log γ(xi) −
k
∑

i=1

(

1

γ(xi)
+ 1

)

logZi

The loglikelihood based on the whole data set is denoted by logLn. The loglikelihoods of the two

subgroups are denoted by logLm resp. logL∗

m. Test statistic (10) can then be used, with

−2 log Λm = 2 [Lm(α̂m) + L∗

m(α̂∗

m) − Ln(α̂n)](12)

where the likelihood estimator α̂m is based on (Y1, . . . , Ym), α̂+
m on (Ym+1, . . . , Yn) and α̂n on (Y1, . . . , Yn).

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS021) p.298



References

[1] Beirlant, J., Goegebeur, Y., Segers, J. and Teugels, J.L. (2004). Statistics of extremes. Wiley. 490p.

[2] Beirlant, J., Joossens, E. and Segers, J. (2009). Second-order refined peaks-over-threshold modelling for

heavy-tailed distributions. Journal of Statistical Planning and Inference 139, 2800-2815.

[3] Chavez-Demoulin, V. and Davison, A. (2005). Generalized additive modelling of sample extremes. J R Stat

Soc Ser C Appl Stat 54, 207-222.

[4] Coelho, C., Ferro, C., Stephenson, D. and Steinskog, D. (2008). Methods for Exploring Spatial and Temporal

Variability of Extreme Events in Climate Data. Journal of Climate 21, 2072-2092.

[5] Cooley, D. (2009). Extreme value analysis and the study of climate change. Climate Change 97, 77-83.
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