
Generalized Linear Array methods as Mixed Models
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ABSTRACT

Linear mixed effects models, or simply mixed models, are an extension of regression models which

incorporate random effects. Since the 90’s, several authors have addressed the connection between

smoothing splines and mixed models. The interest on this representation is due to the possibility

of including smoothing in a large class of models (from correlated data to longitudinal studies and

survival analysis), and the use of the methodology and software already developed for mixed models for

estimation and inference. In the P -spline context, several authors have extended the model formulation

into a mixed model. However, less work has been done in the multidimensional case. In this paper,

we address the use of Genelarized Linear Array Methods (GLAM) as mixed models, and show how the

reparameterization we propose has some interesting properties.

1. P -splines as mixed models

For simplicity, let us suppose the case of a univariate Gaussian data, with response variable y

and regressor x. The smooth model is of the form:

(1) y = f(x) + ε, ε ∼ N (0, σ2I).

Eilers and Marx (19996) considered f(x) = Bθ, where B is a B-spline regression basis constructed

from the covariate x, such that, B = B(x), and θ, is the vector of regression coefficients. The

coefficients θ, can be obtained solving the least squares problem by minimizing the penalized sum of

squares:

(2) S = (y −Bθ)′(y −Bθ) + θ′Pθ,

and obtain the explicit solution:

(3) θ̂ = (B′B + P )−1B′y.

The term P is a difference penalty on the coefficients of the B-spline functions controlled by a

smoothing parameter λ. In matrix form, P = λD′qDq, where q denotes the order of the penalty (in

general we choose a second order penalty, i.e. q = 2).

The mixed model representation of a P -spline consists of reformulating the model (1) into a

standard mixed model given by:

(4) y = Xβ +Zα+ ε, with α ∼ N (0,G) and ε ∼ N (0, σ2I),

where X and Z are the model matrices and β and α are the fixed and random effects coefficients

respectively. The random effects have covariance matrixG, which depends on a variance of the random

effects σ2α.
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This reformulation can be viewed as a reparameterization of the original non-parametric model,

for which we transform the model B-spline basis into a new model basis, i.e: B → [X : Z], and

coefficients θ → (β,α)′. This representation decomposes the fitted values as the sum of a poly-

nomial/unpenalized part (Xβ) and a non-linear/penalized (Zα) smooth term. There are several

alternatives depending on the bases and the penalty used. The aim is to find a transformation matrix

T to achieve this reparameterization. We consider the singular value decomposition (SVD) of the

penalty matrix P , i.e. D′D = UΣU ′, where the matrix of eigenvectors U has two parts: Un of

dimension c × q containing the null-part eigenvectors and U s of dimension c× (c− q) with the non-

null eigenvectors. The diagonal matrix Σ contains the eigenvalues of the SVD of D′D, with q null

eigenvectors. For q = 2, Σ = diag(0, 0, Σ̃). Then, a suitable transformation matrix T is defined as

T = [Un : U s], hence we obtain a transformation such that: BT = [X : Z], where the fixed effect

matrix can be taken as X = [1 : x] and Z = BU s. Finally, the penalty θ′Pθ becomes α′Fα, for a

new diagonal penalty F = λΣ̃. Since T is orthogonal, we have (β,α)′ = T ′θ. Estimates of β and α

follow from the standard mixed model theory:

β̂ = (X ′V −1X)−1X ′V −1y, and(5)

α̂ = GZ ′V −1(y −Xβ̂), where G = σ2F−1.(6)

One of the many attractive features of the mixed model formulation of a spline model, is that

the smoothing parameter, becomes the ratio between the variance of the residuals and the variance of

the random effects, i.e. λ = σ2/σ2α. And therefore, the selection of the smoothing parameter can be

estimated using restricted or residual maximum likelihood (REML):

LR(λ) = −1
2 log |V | − 1

2 log |X ′V −1X| − 1
2y
′(V −1 − V −1X(X ′V −1X)−1X ′V −1)y,(7)

where V = σ2I +ZGZ ′.

For computational efficiency, it is possible to avoid the direct calculation the determinant and

inverse of the variance component matrix V , of dimension n × n. Given that V is an example of a

Schur complement, it can be shown that:

|V | = σ2n |G| |G−1 + 1
σ2Z

′Z|,(8)

V −1 = 1
σ2

(
I −Z(σ2G−1 +Z ′Z)−1Z ′

)
(9)

Note that, both expression (8) and (9), involves the inverses of m×m matrices, where m in this case

denotes the number of random effects coefficients, and it is smaller than n.

2. Multidimensional P -splines as mixed models

Now, we consider the bivariate case, with data arrange in a 2d array or matrix Y , of dimensions

n1 × n2. The model is now:

(10) E[Y ] = f(x1,x2),with covariates x1 = (x11, ..., x1n1)′ and x2 = (x21, ..., x2n2)′.

The regression basis B, n1n2 × c1c2, for model (10) is now the Tensor product of marginal B-splines

bases, defined by the Kronecker product:

(11) B2 ⊗B1 with B1 = B(x1), n1 × c1 and B2 = B(x2), n2 × c2.
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The regression coefficients are arranged into a matrix Θ, c1 × c2, such that vecΘ = θ, of length

c1c2 × 1. The penalization of the rows and columns of Θ is given by

(12) P = λ2D
′
2D2 ⊗ Ic1 + λ1Ic2 ⊗D′1D1.

As we showed in the previous Section, we use the SVD on the penalty matrix P to obtain the

mixed model transformation matrix T . In 2d, this transformation is defined as the Kronecker product

of the marginal transformation matrices:

(13) T = T 2 ⊗ T 1 = [U2n : U2s]⊗ [U1n : U1s],

where U in and U is are obtained from the SVD on D′iDi, for i = 1, 2. The mixed model matrices

becomes:

X = X2 ⊗X1, and Z = [X2 ⊗Z1 : Z2 ⊗X1 : Z2 ⊗Z1],(14)

and diagonal penalty:

F =

 λ2Σ̃2 ⊗ Iq1
λ1Iq2 ⊗ Σ̃1

λ1Ic2−q2 ⊗ Σ̃1 + λ2Σ̃2 ⊗ Ic1−q1

 ,(15)

where Σ̃1, and Σ̃2, of dimensions (c1−q1)×(c1−q1) and (c2−q2)×(c2−q2), are the diagonal matrices

of positive eigenvalues of D′1D1 and D′2D2.

Given the Kronecker structure of the model matrices, the use of array methods is straightforward.

2.1 Array methods

The main idea is the efficient computation of the matrix products involved in the REML expres-

sion in (7) and definitions of |V | and V −1, in (8), and (9). Taking advantage of the array structure

of X and Z in (14), we may use the GLAM algorithms for a fast and efficient computation of linear

and inner products. Let X1, n1 × q1, X2, n2 × q2, we use two basic array computations:

• Linear functions: the elements of X ′y are computed as

(16) (X2 ⊗X1)
′y, q1q2 × 1 ≡ (X ′1Y X2), q1 × q2,

where symbol ≡ indicates that both sides have the same elements but ordered in different

dimensions.

• Inner products: elements of X ′X are computed as

(17) (X2 ⊗X1)
′(X2 ⊗X1), q1q2 × q1q2 ≡ G(X1)

′WG(X2), q
2
1 × q22,

where W = 11′, n1 × n2, and G(X) is the row-tensor a matrix, defined as,

G(X) = (X ⊗ 1′q) ∗ (1′q ⊗X), n× q2
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DEMO ADDITIVEplusINTERACIONS TYPE1 by Dae-Jin Lee P -splines for ANOVA type Interaction Models
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Figure 1: Decomposition of the two dimensional surface into additive terms and interactions.

Both linear and inner products are also used to compute: Z ′y, Z ′Z, andX ′Z, but the operations

are repeated block-wise given the block structure of matrix Z in (14).

Figure 1 shows data simulated on a 30× 20 grid. We take B1, 30× 13, and B2, 20× 10 which

gives a full regression matrix B, 600×130. The bivariate model is reparameterized into a mixed model

and fitted by REML, with smoothing parameters λ1 and λ2.

Top left panel of Figure 1 also shows the decomposition of the two dimensional surface in terms

of a sum of additive and non-additive terms. Using our decomposition X and Z matrices in (14) can

be expanded and reorganized as:

X = [1n2 ⊗ 1n1 : 1n2 ⊗ x1 : x2 ⊗ 1n1 : x2 ⊗ x1],(18)

Z = [1n ⊗Z2 : Z2 ⊗ 1n1 : x2 ⊗Z1 : Z2 ⊗ x1 : Z2 ⊗Z1](19)

This partition facilitates two things:

• We can represent the fitted surface as an overall mean plus the sum of three components: (i) a

term for the first covariate (i.e. x1 and Z1); (ii) a term for the second covariate (i.e. x2 and

Z2); and (iii) those terms depending on the interactions of x1 and x2 (i.e. [x1 : Z1]⊗ [x2 : Z2]).

• We can consider a decomposition of the two-dimensional surface as:

f(x1,x2) = f1(x1) + f2(x2) + f1,2(x1,x2),

where functions f1 and f2 can be interpreted as an ANOVA-type model as main effects of

the covariates x1 and x2, and f1,2 is a two-dimensional interaction surface or interaction effect

between x1 and x2. This decomposition is strongly related to the work proposed by Gu (2002)

and the Smoothing Spline Analysis of Variance (or SS-ANOVA) models. For this Smooth-
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ANOVA model, the new mixed model penalty becomes:

(20) F =


λ1Σ̃1

λ2Σ̃2

λ3Σ̃1

λ4Σ̃2

λ3Ic2−q2 ⊗ Σ̃1 + λ4Σ̃2 ⊗ Ic1−q1

 ,

where we consider 4 smoothing parameters: λ1 and λ2 for the additive main effects for x1 and

x2, and λ3 and λ3 for the interaction between x1 and x2. Lee and Durbán (2011) showed

that this ANOVA decomposition avoids the identifiability problems in this type of models,

and demonstrated how this procedure based on the mixed model reparameterization is exactlty

equivalent to impose the usual linear constraints on the regression coefficients of the original

P -spline model.

3. A generalized linear mixed model approach

We can extend the methodology to non-Gaussian responses in the context of generalized linear

mixed models (GLMM). This approach consists of two stages: (i) reparameterize the linear predictor

and (ii) estimate the model parameters. We consider the Poisson case with log link function:

• Model: µ = E[y], logµ = Bθ is reparameterized into logµ = Xβ + Zα as we showed in the

previous Section.

• Linear predictor: η = exp(Xβ +Zα).

• Estimation: for Poisson data we use the penalized Quasi-Likelihood (PQL) approach of Breslow

and Clayton (1993), where the scoring algorithm is

(21)

[
X ′W δX X ′W δZ

Z ′W δX X ′W δZ +G−1

][
β̂

α̂

]
=

[
X ′W δ

Z ′W δ

]
z,

where z = η+W−1
δ (y−µ) is the working vector, and W δ is a diagonal matrix of weights equal

to diag(exp(Xβ +Zα)). Now, the variance V is given by V = W−1
δ +ZGZ ′, where as in the

Gaussian case computational more efficient expressions for V −1 and |V | can be used. The PQL

solution is obtained by iteration between (21) and REML estimates in (7) until convergence.

Now, the array methods are used for efficient estimation and updated in every iteration of the

algorithm to compute: X ′W δX, X ′W δZ, Z ′W δZ, X ′W δz, and Z ′W δz.

To illustrate the methodology for Poisson 2d data, we considered the mortality data analyzed in

Currie, et al. (2004). The data consists of the number of policy claims (or mortality y) and number

of years lived (or exposures e) for each calendar year (1947–1999) and each age (11-100). The total

number of observations is 53× 90 = 4770. We considered Ba = B(Age), 90× 23 and By = B(Year),

53× 13, hence the full regression basis if Ba ⊗By, 4770× 299.

For this example, we fitted a ANOVA model:

(22) logµ = f(Age) + f(Year) + f(Age,Year),
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using the mixed model representation showed in this paper. Figure 2 shows the components of ANOVA

model fitted to this data. The two top panels of Figure 2 shows the overall main effects of Age and

Year. Bottom panel shows the interaction effect, and the fitted surface.
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(c) Age-by-Year interaction effect
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Figure 2: ANOVA decomposition of mortality data.

The main advantage of the ANOVA model, is in terms of interpretability and inference. Although

both 2d and ANOVA models would give similar fitted values, the fact that we are considering different

and independent penalties: λa and λy for main Age and Year effects, and λ̆a and λ̆y for the Age*Year

interaction.

Then, we can compute separately effective degrees of freedom for each component and test

for additive terms versus the interaction effect, for instance considering a single isotropic smoothing

parameter, λ̆ = λ̆a = λ̆y, and then test for H0 : λ̆−1 = 0.

4. Discussion

GLAM as mixed models give a fast and compact method of 2-dimensional smoothing. The

method can be generalized to higher dimensions where the advantages of array methods in terms of

storage and speed are even greater. The mixed model formulation presented in this paper, enables us
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not only to estimate the smoothing parameter/s maximizing REML rather than using an information

criterion as AIC or BIC, but also to represent the fitted surface to be expressed as a sum of additive

and interaction terms. The new bases also allows going further and clarify the role of the penalty by

relating the penalty to each of the parts of the ANOVA-type decomposition (with its correspondent

smoothing parameters). This allow us to build and identifiable model in a very simple and intuitive

way and hence a number of possibilities can be considered as: model selection, or testing additive

models versus interaction.
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