
Flexible Spatio-temporal smoothing with array methods

Dae-Jin Lee

CSIRO, Mathematics, Informatics and Statistics

Private Bag 33, Gate 5

Clayton VIC 3168, AUSTRALIA

E-mail: dae-jin.lee@csiro.au
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ABSTRACT

In recent years, spatio-temporal modelling has become a challenging area of research in many

fields (e.g. epidemiology, environmental studies, and disease mapping). However, most of the models

developed are constrained by the large amount of data available. Smoothing methods present very

attractive and flexible modelling tools for this type of data set. In the context of environmental studies,

where data often present a strong seasonal trend, and the interaction of spatial and temporal processes

may be strong, the size of the regression basis needed to capture the temporal trend is large and, as

a consequence, the estimation of the spatio-temporal interaction is computationally intensive. We

propose the use of Penalized Splines as mixed models for smoothing spatio-temporal data. The array

properties of the regression bases allow us to fit Smooth-ANOVA-type models, imposing identifiability

constraints over the coefficients. These models are fitted taking advantage of the array structure of the

space-time interaction and the use of the GLAM (generalized linear array methods) algorithms. We

illustrate the methodology with the analysis of real environmental problems.

1. Introduction

Spatio-temporal data structure arise in many contexts such as, meteorology, environmental

sciences, epidemiology or demography, among others. This wide variety of settings has generated a

considerable interest in the development of spatio-temporal models. Recently, Lee and Durbán (2011)

proposed the use of multidimensional penalized splines (Eilers and Marx, 1996) for smoothing spatio-

temporal data using tensor products of B-splines bases. In this paper, we show generalized linear

array methods, or GLAM (Currie et al. (2006) and Eilers et al. (2006)) can be used in the spatio-

temporal smoothing context. The model is treated in a compact array notation in which the space-time

interaction is modelled using a tensor product of a marginal B-spline basis for space (2d) and time.

The GLAM algorithms take advantages of the structure of the data, avoiding computational issues in

storage and allow managing huge amount of data also with high speed and efficient computations in

model estimation.

Our methodological development is motivated by the analysis of air pollution levels study in

Europe between January 1999 and December 2005. Figure 1 presents the locations of the monitoring
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Figure 1: (a) sample of 43 monitoring stations over Europe. (b) O3 levels in four selected countries.

stations, and the seasonal pattern of ozone levels in four different countries (Spain, Sweden, Austria

and UK). The plots show that the stations cover a large area where spatial trends are likely to appear

(mostly due to climate conditions), and a clear seasonal pattern is present along the years. Therefore, a

smoothing spatio-temporal models seems suitable to estimate simultaneously the spatial and temporal

trends.

The paper is organized as follows: in Section 2, we present the interaction model for spatio-

temporal smoothing, and show how it can be viewed as GLAM. We present a new model, the Smooth-

ANOVA model, where additive effects of space and time are estimated simultaneously with the space-

time interaction. In Section 3, we present the estimated models and finally we conclude with some

discussion.

2. Spatio-temporal data smoothing with P -splines

Consider data are located in n geographical locations, s = (x1,x2), and measured over t time

periods xt. Most of the common approaches in spatio-temporal smoothing assume an additive model

with two components: a two-dimensional term for the spatial surface and a one-dimensional term for

the temporal dimension, of the form:

(1) y = fs(x1,x2) + ft(xt) + ǫ, where ǫ ∼ N (0, σ2I)

Therefore, they impose a separable structure for the spatio-temporal process that, in many cases, will

not represent the real structure of the data, as the interaction between space and time is completely

ignored.

As an alternative, Lee and Durbán (2011) proposed a class of non-separable models of the form

(2) y = fst(x1,x2,xt) + ǫ, ǫ ∼ N (0, σ2I) ,
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where the smooth function of space and time, fst(·), is modelled using the P -spline methodology as:

(3) fst(x1,x2,xt) = Bθ,

where B is a regression B-spline basis, constructed from the model covariates (x1,x2,xt), and θ a

vector of regression coefficients penalized by a discrete penalty matrix P and controlled by smoothness

parameters. The coefficients are obtained by penalized likelihood as:

(4) θ̂ = (B′W δB + P )−1B′W δy,

where W δ is a diagonal matrix of weights (for Gaussian data W δ is an identity matrix). In next

Section, we focus on how to construct the appropiate basis and penalty for model (3).

2.1 GLAM for spatio-temporal data

In general, spatial data are scattered rather than in a regular grid. Therefore, for the spatial dimension,

the model basis is constructed by the row-wise kronecker product, or box -product (Eilers, et al. 2006)

of the marginal B-splines bases of geographical coordinates, i.e.:

(5) Bs = B12B2,

where B1(x1) and B2(x2) are of dimensions n×c1, and n×c2 respectively. Then, the spatial B-spline

basis Bs is of dimension n× cs, where cs = c1c2, with regression coefficients θs of length cs × 1, and

2d penalty:

(6) P s = λ1D
′

1D1 ⊗ Ic2 + λ2Ic1 ⊗D′

2D2,

where Di, i = 1, 2, is a q order difference matrix (in general, we consider a q = 2). The penalty P s

in (6), allows for anisotropic smoothing by considering a different amount of smoothing for longitude

and latitude coordinates (λ1 6= λ2). Note that, scattered data are not in a array structure (or regular

grids), hence we are not in the GLAM context, an then array algorithms are not applicable.

However, in the spatio-temporal setting, we can consider a 3-dimensional space-time interaction model

in a GLAM context by constructing a full basis from the kronecker product of spatial and temporal

B-spline bases, i.e. for model (3), we use:

(7) B = Bs ⊗Bt, of dimension nt× csct ,

where Bt is the t× ct marginal B-spline basis for time. Now, smoothness is imposed via the penalty

matrix P st, based on second order difference matrices D1, D2 and Dt. The penalty term in 3-

dimensions is:

(8) P st = τ1D
′

1D1 ⊗ Ic2 ⊗ Ic3 + τ2Ic1 ⊗D′

2D2 ⊗ Ic3 + τtIc1 ⊗ Ic2 ⊗D′

tDt ,

and for the temporal component (λt). Once, we are in the GLAM context, we can use the array

methods to compute efficiently linear and inner products as: Bθ, B′W δy, and B′W δB as detailed

in Currie, et al. (2006).

Lee and Durbán (2011) proposed a mixed model representation of the spatio-temporal interaction

model (2), where Bθ is reparameterized into Xθ + Zα, where α can be viewed as a random effect
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α ∼ N (0,G), where G = σ2F , with some diagonal matrix F , that penalizes the α coefficients. Then,

model can be estimated using standard mixed models equations and restricted or residual maximum

likelihood (REML) for variance components. The mixed model is then formulated as:

(9) y = Xβ +Zα+ ǫ,with ǫ ∼ N (0, σ2I) and α ∼ N (0,G),

where the new bases maintain the kronecker product structure:

X = Xs ⊗Xt, and Z = [Xs ⊗Zt : Zs ⊗Xt : Zs ⊗Zt],(10)

where Xs = [1n : x1] ⊗ [1n : x2] and Xt = [1t : xt]. Hence, the array methods can also be used for

computational efficiency (see Durbán (2011) for details).

2.1 Spatio-temporal Smooth-ANOVA model

In most situations, the interpretation of a space-time interaction may result complex, hence we could be

interested in a more interpretable model that identifies the spatial and temporal additive components,

as well as the space-time interaction. Lee and Durbán (2011) proposed a model with functional form

given by:

(11) y = fs(x1,x2) + ft(xt) + fs,t(x1,x2,xt) + ǫ,

where main additive effects of space and time and space-time interaction are modelled and estimated

explicitly. Then, an adequate basis for model (11) would be:

(12) B = [ Bs ⊗ 1t : 1n ⊗Bt : Bs ⊗Bt ],

with 1n and 1t are column vectors of ones’ of length n and t respectively, where each block of (12)

corresponds to each of the smooth functions defined in (11). And block-diagonal penalty:

(13) P = blockdiag(P s,P t,P st),

where the first two blocks (P s and P t) correspond to the spatial and temporal penalty terms respec-

tively, and P st is the 3d penalty defined in (8) for the space-time interaction. The smoothness is

control by a set of smoothing parameters: λs = (λ1, λ2) for space, λt for time, and τst = (τ1, τ2, τt) for

space-time interaction.

Model (11) can be seen as a particular case of the Smoothing Splines ANOVA (SS-ANOVA) models

proposed by Chen (1993) and Gu (2002). SS-ANOVA models are functional analogous to classical

ANOVA models, however, their use are constrained to the dimension of the model basis, and the

identifiability constraints on the functional terms of the decomposition.

The model proposed in Lee and Durbán (2011), has important advantages:

1. It is based on low-rank P -splines smoothers.

2. Identifiability problem is avoided using the mixed model representation. In fact, their reparam-

eterization gives the linear dependent terms on the model basis, so that the repeated terms are

removed from the model bases. The mixed model bases are exactly equivalent to those in the

space-time interaction model in (10), but reordered according to the spatio-temporal ANOVA

model functional form in (11).
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3. They also demonstrated that, this reparameterization is exactly equivalent to impose the usual

constraints on the original P -spline coefficients.

4. Models are also fitted taking advantage of the array structure of the model bases using the

GLAM algorithms for the estimation of the variance components and coefficients by REML.

3. Application to air pollution data in Europe

A repeated exposure to ozone pollution ground-level may cause important damages to human

health (including asthma, reduced lung capacity or susceptibility to respiratory illnesses), ecosystems

and agricultural crops. The formation of ozone is increased by hot weather and in urban industrial

areas, and the concentrations over Europe also present a wide variation and large differences due to

climate conditions over the continent. Therefore, it is expected that ozone concentrations around

Europe present a spatio-temporal pattern.

The harmful effects of ozone have become an important issue the development of new policies.

The European Environment Agency (EEA) has established a program to monitor changes in ozone

levels in the last decade. The EEA presents annual evaluation reports of ground-level ozone pollution

in Europe from April-September, based on information submitted to the European Commission on

ozone in ambient air. Further information is available at the Web site http://www.eea.europa.eu/.

We analyzed monthly averages of air pollution by ground-level ozone (in µg/m3 units) over Europe

from January 1999 to December 2005. The data were collected in 43 monitoring stations in 15 european

countries. Following the methodology described in previous sections, we fitted 3 models to the data:

(i) spatio-temporal S-ANOVA model; (ii) 3d interaction model and (iii) space-time additive model. The

three models formulation are then:

i. S-ANOVA: fs(x1,x2) + ft(xt) + fs,t(x1,x2,xt)

ii. Interaction: fs,t(x1,x2,xt) , and

iii. Additive: fs(x1,x2) + ft(xt)

Lee and Durbán (2011) showed the superior performance of S-ANOVA and interaction models

with respect to the additive model in terms of model residuals and Akaike Information Criteria (AIC).

This could be expected since it is unrealistic to force the spatial pattern of ozone concentrations to

increase and decrease similarly in all locations. The interaction model, although giving a better fit,

uses a large amount of effective degrees of freedom. This is due to the fact that model has a single

smoothing parameter for the temporal component.

Figure 2a shows the smoothed spatial surface for the ozone levels of the S-ANOVA model.

The estimated spatial trend surface reflects a non-uniform picture across Europe, since the highest

concentrations are observed in Southern Europe in Mediterranean countries as Spain, France and

Italy, and the lowest levels are in North West Europe and the UK. The seasonal cycle of ozone levels

is captured by the temporal trend shown in Figure 2b, where the highest levels are recorded during

spring and summer months (April-September). The spatio-temporal S-ANOVA model also allows the

explicit modelling of the space-time interaction in addition to the spatial and temporal trends. Figure

3 shows the fitted values of additive and S-ANOVA models plotted along the years. The additive

model, ignores the interaction and assumes a spatial smooth surface over all monitoring stations
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(a) Smoothed spatial surface, fs(x1,x2) in S-ANOVA model
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Figure 2: Smoothed main effects for space and time.
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(b) Fitted values of S-ANOVA model

Figure 3: Comparison of fitted values of additive (no space-time interaction) and S-ANOVA model

(with space-time interaction) in four selected countries.

that remains constant over time. The fitted values vary smoothly according to a seasonal pattern,

but maintain the same differences among locations (Figure 3a). In contrast, the spatio-temporal S-

ANOVA model fit, is able to capture the individual characteristics of the stations throughout time.

Figure 3b shows the particular phase and amplitude given the geographic and seasonal inter-annual
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(b) Space-time interaction plotted across space.

Figure 4: Space-time interaction of S-ANOVA model at May 2002.

variations of four monitoring stations. The space-time interaction is shown in Figure 4, we plotted

the space-time interaction term fs,t(x1,x2,xt) along time and across space. It can be seen that the

patterns are very different. Figure 4b shows, the interaction at May 2002.

4. Discussion

We have presented a flexible modelling methodology for spatio-temporal data smoothing, that

can be fitted using array methods. This methodology allowed us to construct ANOVA-type models.

In practice, it is also easy to extend the model by the incorporation of other relevant covariates as

smooth additive terms or as interactions. One of the main benefits of the spatio-temporal S-ANOVA

model proposed is the interpretation of the smoothing and the ability of visualize each of the terms

of the decomposition in descriptive plots. The S-ANOVA model also gives a direct interpretation in

terms of their smoothing parameters and regression coefficients, since we set independent and separate

penalties and coefficients for each smooth term.

If a larger sample of monitoring stations would have been considered in the study during a

larger time period, the number of parameters in the interaction Bs ⊗Bt could easily be of the order

of thousands, and the computational burden prohibitive. Nevertheless, the GLAM methods also have

an important role in the algorithms implementation, since they allow us to store the data and model

matrices more efficiently and speed up the calculations. This computational aspect is a topic of current

research.

Acknowledgements
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