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ABSTRACT 

Vector autoregression (VAR) is one of the most used models to make inferences 

about relations between time series. Parameters estimation is simple and the 

interpretation of statistical results is intuitive. In the analysis of fMRI data, Granger 

causality methods based on VAR estimation have been used to study effective and 

functional connectivity between brain regions. However, stationarity condition is 

usually not valid in many real data applications. Furthermore, the BOLD signal 

measured in fMRI can be influenced by artefacts that may generate spurious correlation 

between the signals.  Finally, the high dimensionality of the data is an obstacle to infer 

relationships between neural modules. In this paper, we present a review of some 

approaches developed to tackle these problems. We describe the Dynamic Vector 

Autoregressive Model based on Wavelets expansion, Partial Directed Coherence 

Analysis of fMRI data and the Cluster Granger Analysis. 
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Introduction 

 

Functional magnetic resonance imaging (fMRI) is a modality of neuroimaging 

that has been widening the exploration of the functioning of human brain in vivo. 

Basically, several images of the whole brain are acquired over time, allowing a 

monitoring of the blood oxygenation level dependent (BOLD) signal, measured using 

the MRI scanner. The BOLD signal is related to haemodynamic coupling and it can be 

considered an indirect measure of local neuronal activity (Logothetis et al., 2001). The 

MRI system acquires images of the whole brain (volume) at different time points, and 

each volume is composed of thousands of voxels (3D units, analogous to pixels in 2D 

images). Thus, in an fMRI session, thousands of time series measured at different 

regions of the brain are acquired. The spatial resolution of the voxels is in the scale of 

millimetres (usually between 3 and 4mm) and the temporal sampling rate is usually 

between 0.5 to 1Hz. 

Several studies in literature use fMRI to identify brain regions that are activated 

during the presentation of certain stimuli (auditory, visual, emotional, etc) or during the 

execution of some specific tasks (fingertapping, memorization, etc). However, since the 

brain is anatomically and functionally organized in an interconnected network, the study 

of the interactions between different regions at different contexts is extremely important 

to enhance the comprehension of brain functioning. In addition, the description of 

information flow in the brain can be crucial to characterize neuropsychiatric disorders, 

because several diseases are related to disruption in some circuitries. 

Granger causality (Granger, 1969) identification using Vector autoregressive 

(VAR) models is an attractive approach to make inferences on brain connectivity. This 

concept is related to temporal precedence and conditional distributions, allowing an 

exploratory analysis of relations between signals, without requiring a priori 

specification of the network structure.  

However, direct application of VAR to fMRI data is limited due to some 

obstacles. The first one is that inferences using VAR models usually assume data 

stationarity, which in cases of experiments involving more than one experimental 
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condition (e.g.: resting vs fingertap) is not satisfied. Another obstacle is that several 

artefacts such as low frequency oscillations, breath and cardiac rhythms may induce 

misleading relationships in the data, since they are not related to neural connectivity. In 

effective connectivity analysis, it is very common to make inferences about the 

connectivity between some regions of interest (ROI). Each ROI is composed of a set of 

voxels and the mean time series between these voxels is usually assumed to be the ROI 

representative. This mean time series is then used to VAR modelling and Granger 

causality identification. Since the mean may dilute relevant information, this may not be 

the most sensitive approach to identify the information flow between the ROIs. 

In the current paper, some approaches developed to deal with these problems are 

presented. 

 

Methods 

Vector Autoregressive Model 

 

 Although Vector Autoregressive (VAR) models are frequently used in Econometrics 

and time series analysis, Harrison et al. (2003) were the pioneers in applying VAR models 

for effective connectivity analysis of fMRI data. The main attractive property of VAR is 

the simplicity on identifying Granger causality. The VAR model of order p  for K 

regions of interest (A, B,…, K) is given by: 
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where ���  are white noise processes with mean zero and variance one. The parameters 

estimates can be easily obtained by the method of Least Squares or Maximum 

Likelihood.  The Granger causality test for region A on region K can be done by testing 

whether at least one parameters ��	, … , ��
 is different from zero (using Wald, Score or 

LR tests). Evaluation of the Granger causality from any other region is analogous. Note 

that these inferences are based on the temporal precedence of BOLD signals at different 
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regions. In addition, since Granger causality is not symmetrical, it may suggest the 

direction of information flow within this network composed of the specified ROIs. 

 Finally, Goebel et al. (2003) and Abler et al. (2006) have shown that brain 

connectivity inferences based on VAR models during motor execution are in agreement 

with literature and results are reproducible in different subjects. 

 

Partial Directed Coherence 

 

As seen in previous subsection, Granger causality relationships of BOLD signals 

may unveil the underlying influences and interactions between different brain regions. 

However, since the BOLD signal is not a direct measure of neuronal activity but it is 

related to haemodynamic coupling, the oscillations of cardiac or breath rhythms may 

drive common variations in BOLD signal, which may lead to spurious influences when 

testing Granger causality. In order to overcome this limitation, Sato et al. (2009) 

suggested the application of partial directed coherence (PDC, Baccala and Sameshima, 

2001) for the analysis of fMRI data. The authors also proposed a bootstrap approach for 

statistical testing in group analysis. 

PDC can be seen as a frequency domain version of Granger causality (which is 

in time domain). The PDC from the j-th time series to the i-th at frequency λ  is defined as: 
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)(l

ija  is the autoregressive coefficient of VAR model matrix at row i  and column j  at lag l , 

1=
ij

δ  if ji = and 0 otherwise. Null PDC values at all frequencies indicate absence of Granger 

causality and vice-versa. 

The squared value of PDC at frequency f can be interpreted as the percentage of 

energy from area A spectrum at frequency f which is being send to area B. In other 

words, the PDC decomposes Granger causality in different frequencies. Thus, the 

influences between regions, which are observed in frequencies which are not related to 

the experiment, are probably driven by artefacts or components not of interest. 

Since most fMRI studies are based on inferences about group of subjects, we are 

interested in evaluating the significance of the mean PDC (across subjects) at a given 

frequency. PDC is based on parameters of VAR models, and thus, residuals bootstrap 

can be applied in this case for both significance testing and obtaining confidence 

intervals. 

In an illustrative verbal fluency experiment, Sato et al. (2009) have shown that 

PDC were more suitable and powerful than conventional coherence analysis, and it was 

also useful to identify the direction of information flow at frequencies related to the task 

execution. 

 

Dynamic Vector Autoregressive model 

 

One of the main limitations of VAR modelling of fMRI data is the stationarity 

assumption. Except by resting state acquisitions, most fMRI experiments are based on 

the execution of different tasks or the alternation between different experimental 

conditions. Thus, it is expected that the influences between the regions of interest to 

change according to the task being executed. All VAR coefficients are constant in time, 

implying that the connectivity structure is assumed to be the same independently on the 

task being executed or the stimuli presented. 
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In order to overcome this limitation, Sato et al. (2005; 2006) introduced the 

wavelets based Dynamic Vector Autoregressive Model (DVAR). The basic idea of this 

model is to assume that the coefficients of VAR models to be functions of time. These 

functions can then be decomposed using wavelets, and the coefficients of this expansion 

are estimated using Generalized Least Squares. Theoretical asymptotic properties can be 

derived assuming local stationarity conditions (Dahlhaus et al., 1999).  

The DVAR model is given by 
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where ut is a random error vector of null mean and covariance matrix 
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 and v(t) and Ai(t) (i=1,2,…,p) are coefficient matrices  
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The main idea of DVAR based on wavelet expansion is to decompose all functions from 

previous matrix as 
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where )(tφ  is the scale function and 
)(

,

i

kjc  (j=-1,0,1,…T-1 ; k=0,1,2,…,2j-1 ; i=1,2,…p) are the 

wavelet coefficients of the i-th autoregressive coefficient function )(talmi . In this expansion, the 

wavelets functions )(tφ  and )(tjkψ  are defined a priori. Sato et al. (2005; 2006) have shown 

that by using this approximation, the DVAR model can be written as a particular case of the 

general linear model. 
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In addition, Sato et al. (2005) has derived the asymptotic distribution of the 

estimators, showing normality and consistency. The authors have also shown, by using 

computational simulations, that these properties can be accurately approximated in case 

of large samples. Finally, they have illustrated the application of this model in real 

fMRI datasets, showing that the connectivity of motor system and parietal regions 

changes when the subject alternates between resting state and fingertapping conditions. 

 

Cluster Granger Analysis 

 

 Another important limitation in all ROI analysis of MRI data is that the ROIs are 

composed of several voxels at each brain region. This means that within a region, there 

are several time series at different voxels. In most cases, the average time series (across 

voxels at each timepoint) or the first principal component is assumed to be the ROI 

representative. All connectivity analyses are then carried out using these regional 

representative signals. However neither the average nor the 1st PCA are taking into 

account the predictive power of lagged valued. Thus, relevant temporal information 

may be diluted when averaging these signals. 

 In order to deal with this problem, Sato et al. (2010) have proposed the Cluster 

Granger Analysis (CGA) of fMRI data. This approach is a combination of multivariate 

methods focusing on the identification of Granger causality between sets of time series. 

CGA pipeline is composed of the following steps: 

1. Define the voxels representing each region of interest; 

2. Obtain principal components from the BOLD signals at each ROI. Select the 

components contributing more than 5% of the data variance; 

3. Apply Partial Canonical Correlation Analysis (PCCA) in order to evaluate 

whether the past values of each ROI can be used to predict the current values of 

the others. 

4. Apply bootstrap to approximate the p-values of Granger causality tests. 

The mathematical foundation of CGA can be found in detail on Sato et al. (2010). 

By using computational simulations, the authors have shown that CGA is indeed more 
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powerful than Granger causality tests based on VAR models assuming the mean (and 1
st
 

PCA) BOLD signal of each ROI as the region representative. Finally, the authors 

applied CGA in real fMRI dataset from an experiment involving the presentation of 

faces with sadness valence. In this analysis, CGA identified more connections than 

conventional VAR analysis, for the same level of Type I Error. 

 

Discussion 

 

 Neuroscience literature describe that the brain is anatomically and functionally 

organized in a complex network. This organization implies that multivariate analysis of 

brain signals is necessary to enhance the knowledge about cognitive processing. 

Because its simplicity and exploratory description, Granger causality concept has 

become an important tool regarding the inferences about information flow between 

brain regions. 

 Although the presented approaches were developed to tackle some obstacles to 

the use of Granger causality in fMRI data, there are still open and major problems. The 

main limitation is related to the nature of the BOLD signal, which is not a direct 

measure of brain activity. The main focus of connectivity analysis is to make inferences 

about neural networks, but an inherent obstacle is that the signals observed are related to 

haemodynamic coupling. Thus, local haemodynamic parameters or process may 

influence or mask the results. This means that caution is necessary when interpreting 

Granger causality inferences. Some authors have proposed deconvolution models to 

reduce the effects of haemodynamics, but the solution is still an open question. 

 Future perspectives point towards the development of connectivity approaches to 

deal with signals from multimodal acquisition, such as simultaneous EEG-fMRI or 

EEG-NIRS. The main concern is the integration of information at different 

spatial/temporal resolution from electric/metabolic measurements. 
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